GIS・RTK-GNSS・フォトグラメトリによる 埋蔵文化財試掘確認調査のデジタルフロー

宫本利邦 (阿蘇市教育委員会教育部教育課)

A Digital Workflow for Test-Pit Excavations using GIS, RTK-GNSS, and Photogrammetry Miyamoto Toshikuni (Aso City Board of Education Education Department Education Division)

・地理情報システム/GIS・RTK衛星測位/RTK-GNSS
・フォトグラメトリ/Photogrammetry

1. はじめに

(1) 紙とデジタルが混在する文化財行政現場での工夫

これまで文化財に係る記録は、基本的に紙媒体や 写真フィルムなどアナログ方式で行われてきた。し かし、技術の進展に伴ってデジタル方式の記録もあ らゆる分野で膨大な量となっており、過去のアナロ グ形式記録の資産と増え続けるデジタルデータの取 り扱いについては多くの自治体で対応に苦慮してい るものと思われる。

筆者が所属する当市においても例外ではなく、町 村合併以前の旧自治体それぞれ独自に作成された記 録類の整理に苦慮しながら、合併以降の新市として 体制整備を進めてデジタル化対応に取り組んでき た。対応の方向性として、文化財情報のキーポイン トである位置情報に注目し、GIS を活用した文化財 情報の総合化を目指してきた。本稿では、GIS によ る遺跡地図のデジタル化と低廉化した計測機器を用 いた埋蔵文化財試掘確認調査のデジタルフロー化の 試みについて紹介する。

2. これまでの経過

(1) 遺跡地図のGIS化

2005年の町村合併で新たに誕生した阿蘇市では、 1998年に熊本県教育委員会が刊行した『熊本県遺跡 地図』と合併以前の2000年に旧阿蘇町教育委員会が 刊行した『阿蘇町遺跡地図』を併用していた。しか し県地図と町地図は縮尺が異なり、区域を分割して 製本しているため市域全域を俯瞰的に閲覧すること が不可能であった。また旧町村を跨る大規模な開発 行為を確認する場合に両方の地図を確認する必要が あり、運用面で非常に効率が悪かった。

そこで、2008年から熊本県・市町村電子自治体共 同運営協議会が運用する GIS「くまもと GPMap」¹⁾ を導入し、県・町遺跡地図をデジタル化してGISで 統合した。以降、民間事業者や公共工事部門からの 遺跡照会はGIS上で照合し、照会位置はGISに即時 入力して管内の開発事業を一元的に把握できるよう にした。また、文化財文化財保護法第93条・94条 の埋蔵文化財発掘届出・通知個所や試掘確認調査実 施個所も逐次入力し、GIS上に埋蔵文化財業務に関 する情報を蓄積して過去の実績を随時参照できる体 制を整えている。くまもと GPMap は 2021 年 3 月を もって公開運用を終了しているが、入力データは ソフトの独自ファイル形式の他に CSV ファイル・ SHP ファイルの汎用性のある GIS データで出力が可 能であったため、2016年から導入したオープンソー スGIS「QGIS」へ特に支障なくデータ移行すること ができた。

(2) GIS化の効果

遺跡地図をGIS化することで、背景図や縮尺の切 替がシームレスになり、紙媒体印刷物のような物理 的制約がなくなり閲覧性が向上する。GIS上に表示 される遺跡範囲や地点には遺跡台帳やカードに記載 される名称や時代などといった属性情報を紐づけし て内包させることが可能であり、情報検索も可能で ある。同時にGIS上のデータは位置情報を持ってお り、例えばGPSなど衛星測位システムを内蔵した情 報端末で遺跡地図に現在位置を表示しながら現地踏 査を行うことができ、GPSで測位した遺物の採取地 点データをGISに入力して遺跡範囲の更新にフィー ドバックするといった応用方法もある。

前述のように汎用ファイル形式で出力すれば他 のGISアプリケーションでも表示・編集ができ、ま た従来の印刷版型に合わせて PDF でも紙媒体でも 出力が可能であり、遺跡地図を GIS 化すればアナロ グ・デジタル双方での対応ができるのである。

(3) 高精度位置情報の取得

GIS 導入当初は遺跡地図をパソコンに表示閲覧す る単純なデジタル地図としての使用に止まっていた が、システム機能の理解が進むとともに分布調査や 試掘確認調査時の現地での位置情報取得の手法を改 める必要性を認識するようになった。例えば、分布 調査では地形図に目測でおよその遺物採取位置を記 入したり、試掘確認調査では、当教育委員会では トータルステーションなど測量機器を保有していな いため、トレンチの位置を敷地の隅や特徴点を起点 に巻き尺などで測って工事図面に記入していた。そ れは座標などの位置情報持たない正確性に欠ける記 録であり、また現場で記入した地図や図面から調書 取りまとめのために別図面にさらに転記・清書する という手間が生じていた。

まず現地での位置情報を取得するために活用した のが筆者が個人所有していたトレッキング用のポータ ブル GPS 端末である。衛星補足が良好な場合数 m 級 の精度が期待でき、測位地点を数値座標として定量的 に取得できることから測位結果の GIS への入力が簡 易になった。とは言えm級程度の精度では分布調査で の遺物採取地点の把握レベルまでで、試掘確認調査で のトレンチ位置の正確な測位には不十分であった。

そこでさらなる高精度位置情報を取得するために 導入したのが RTK-GNSS 受信機(図 – 1) であり、 RTK-GNSSによる測位 では cm 精度でリアルタ イムに位置情報を取得 できる。当教育委員会 が導入したのはネット ワーク型 RTK の VRS 方式とよばれるもので、 受信機1台と配信事業 者から配信される電子 基準点の観測データを 購入し埋蔵文化財予備 調査で運用している。

図-1 RTK-GNSS受信機

3. 試行

(1) 機器・アプリケーション

近年のデジタル技術に関するソフト・ハードの開 発と普及は目覚ましく、これまで高額だった機器や アプリケーションの低廉化や無償で使用できるオー プンソースソフトウエアの発展により、導入ハード ルが高かった技術を個人レベルで使用可能な環境が 生まれている。

こうした近年の状況とこれまで当市が経験した平 成28年熊本地震などの大規模災害による文化財の被 災や復旧復興事業に係る埋蔵文化財対応の教訓を踏 まえ、先述のGISや文化財3D計測などデジタル技術 の活用のための機器・アプリケーションを導入した。

今回、埋蔵文化財試掘確認調査における取得記録 のデジタルフロー化の試行にあたっては以下の機 器・アプリケーションを使用した。

① GIS・フォトグラメトリ処理用デスクトップパソコン

・マウスコンピュータ製 DAIV X9

OS : Windows11 Pro 64bit

CPU:インテル Core i9-10940X (最大 4.8GHz)

メモリ:128GB(16GB×8/クアッドチャンネル) SSD:512GB(M.2)HDD:1TB

GPU : NIVIDIA GeForece RTX2080SUPER

② RTK-GNSS 受信機

・ビズステーション製 ドロガーRWP

- ③ フォトグラメトリ・点群編集アプリケーション
 - · Agisoft 社製 Metashape Standard 版
 - ・オープンソース CloudCompare
- ④ GIS アプリケーション
 - ・オープンソース QGIS (PC用アプリ)

・オープンソース SMASH (モバイル用アプリ) ⑤ オフィススイート

・オープンソース LibreOffice

(2) 事前準備

まず事前準備として、紙媒体で提供を受けてい る調査対象となる建物配置図をスキャナーで JPEG などの画像ファイル化する。その画像ファイルを QGIS のジオリファレンス機能で読み込んで位置座 標値を付与して QGIS に表示している地形図にレイ ヤー追加して配置する (図 – 2)。地形図上に配置 した建物配置図を下地にさらに上位レイヤーを追加 し、建物輪郭をポリゴンとしてトレースしてデジ タイズすることで建物輪郭の GIS データが作成され る²⁾。作成した建物輪郭データを Geopackage 形式 ファイルで保存し、保存データを Google ドライブな

図-2 QGISに読み込んだ建物配置図

図-3 SMASHアプリに表示した建物輪郭

どクラウド経由でSMASHアプリをインストールし たタブレット端末にコピーする³⁾。

(3) 現地計測

建物建設予定地でのトレンチ設定の際、タブレット端末の GPS をオンにし SMASH アプリで建物輪 郭を表示することで、常に現在位置を画面上で把握 できる(図-3)。

トレンチ掘削後、RTK-GNSS受信機をトレンチの 地表上の四隅に設置して測位する。またフォトグラ メトリによる 3D 計測のためトレンチ内部の断面・ 底面などを多方向からデジタルカメラでスケール基 準となる曲尺などを写し込んで撮影し、土層堆積状 況など観察し逐次記録する(図 – 4)。

(4) データ整理

①トレンチ配置図:RTK-GNSS 受信機で測位し たトレンチ位置情報は端末の制御アプリ⁴⁾をインス トールしているモバイル端末内にウェイポイントと して GPX 形式ファイルで保存されている。そのファ イルをモバイル端末からクラウドドライブ経由でデ スクトップパソコンにコピーしQGISに読み込む。事

図-4 トレンチ掘削の様子

図-5 QGISで合成したトレンチ配置図

前準備で QGIS に表示した建物配置図にトレンチ測 点をポイントとしてレイヤー追加し、QGIS のプロ セッシングツールでポイント間をラインで閉合し各 トレンチの掘削範囲をポリゴン化する(図-5)。

建物配置図とトレンチ範囲をレイヤー表示すると トレンチ配置図となり、この状態をレイアウト機能 で方位やスケールなどを適宜表示して画像ファイル またはPDFで出力する。

トレンチ測点のポイントには XY 座標や標高デー タが含まれており、CSV で出力することで表計算ソ フトで編集が可能となる。

②トレンチの3Dモデル・断面図作成:デジ タルカメラで撮影したトレンチの多方向画像を Metashape Standard版に読み込み、写真のアライ ンメント→高密度クラウド構築→メッシュ構築→テ クスチャー構築までのワークフロー処理を行いトレ

図-6 Metashapeによる3Dモデル作成

図-7 CloudCompare による調整

図-8 CloudCompare による断面画像の切り出し

ンチの 3D モデルを作成し obj 形式などで保存する (図-6)。作成した 3D モデルを Cloud Compare に読 み込み、撮影時に写し込んだ曲尺を基準に位置合わ せツールでスケールを入力してモデルを実際の大き さに調整する (図-7)。

調整したモデルを掘削断面に沿って半裁して土層 断面を切り出し(図-8)、DisplayのRenderツールで 表示画面を画像ファイルで出力する。

(5)報告書作成

データ整理で作成・出力した図面の画像ファイル をあらかじめ用意しているワードやエクセルなど確 認調査報告書フォーマットに挿図していく。

QGISからCSVで出力したトレンチ測点のポイン トデータはそのまま表計算ソフトで編集してトレン チー覧表に転用できる。

4. まとめ

今回の試みでは、まず使用するアプリケーション はフォトグラメトリ処理の Metashape 以外は無償 のオープンソースソフトウェアを活用した。これは アプリケーションの導入コスト抑制を意識したもの で、Metashape Standard版でも公費購入時点で2万 8千円程度で他のフォトグラメトリアプリケーショ ンと比較すると低価格なものである。オープンソー スの点群編集ソフト CloudCompare と併用すること で機能としては十分と言える。また高精度位置情報 を取得するために導入した RTK-GNSS 受信機であ るビズステーションが販売するドロガー RWP も公 費購入時点では付属品込みで10万円程度であり、従 来測量機材として数百万円代で販売されている受信 機と比較すると破格の値段であるが、機能・精度と しては遜色ないものである。

以上のように当教育委員会では、低価格の機材や アプリケーション、またオープンソースアプリケー ションを活用して業務を内製化して文化財計測や調 査のデジタル化に取り組んでいる。内製業務と業務 委託による外注についてはコストのバランスを考慮 し、埋蔵文化財試掘確認調査や指定文化財のモニタ リングなど経常的業務については可能な限り自前で 実施できるように整備を進めているところである。

本稿の試みがこれからデジタル技術の導入を検討 している自治体文化財担当者の参考の一助になれば 幸いである。

【補註および参考文献】

1) 2008 年から WebGIS である熊本県・市町村共同行政 情報インターネット地図公開システムともに運用開 始。2011 年から熊本県遺跡地図が公開システムから 閲覧、2016 年から熊本県遺跡地図の GIS データのダ ウンロードが可能となっていたが、2021年3月をもっ て公開運用を終了した。

https://www.pref.kumamoto.jp/soshiki/26/77716.html

- 2)石井淳平 2022「文化財分野における GIS 利用 [19] QGIS を利用した発掘調査記録のデジタル化」『デジ タル技術による文化財情報の記録と利活用4』独立行 政法人国立文化財機構奈良文化財研究所 pp.123-140
- 3) 喜多耕一 2021 「GIS データの現場での活用法: QGIS

とスマホアプリ「SMASH」との連携」『現代林業 2021 年4月号』全国林業改良普及協会 pp.46-55 なお、QGIS の全般的な解説としては喜多氏著作によ

る次の刊行本が詳しい。

喜多耕一 2022 『改訂版 Ver.3.22 対応業務で使うQGIS ver.3 完全使いこなしガイド』全国林業改良普及協会

 4) ビズステーション製ドロガーRWPを制御する同社純 正 android アプリ「Drogger GPS」 https://play.google.com/store/apps/details?id=jp. bizstation.drgps&hl=ja&gl=US なお、阿蘇市役所庁舎屋上に設置してある四等三角

点で RWP を使用した VRS による測位結果は次のとおりである。

	X (m)	Y (m)	標高(m)
四等三角点	-5313.011	11340.4	522.7
RWP	-5312.9947	11340.4099	522.734
2点間の差	0.0163	0.0099	0.034

世界測地系(測地成果2011)・平面直角座標系2