貝層の研究Ⅰ

1 9 9 9

千葉市立加曽利貝塚博物館

 本書は、樋泉岳二氏が千葉市加曽利貝塚において実施した貝層分析調査の総括報告である。
 第1章は1992・93年に実施した博物館からの委託研究「加曽利北貝塚貝層断面観覧施設における貝殻成長線分析調査」、第2章は1991・92年に実施した千葉市教育委員会文化課からの 委託研究「加曽利南貝塚貝層分析調査」の報告で、第3章に総合的な考察を掲載した。

後半に付編として、1964年日本考古学協会を中心として加曽利貝塚調査団が結成され、同 年8月から1965年12月まで実施された加曽利南貝塚の調査資料の中で、現在公開している南 貝塚貝層断面観覧施設の位置にあたる第3トレンチ-3区の未報告土器の一部を掲載・紹介 した。

- 2. 第1章から第3章にかけての貝層の研究については、著作権は樋泉岳二氏に帰属する。
- ・付編に伴う整理作業は、佐藤順一・村田六郎太が担当し、木暮澄子・山田ふみ子・三浦美 を子・森山弥生の協力を得て進めた。執筆・挿図作成は村田があたった。

土器の実測については明治大学文学部助教授阿部芳郎氏の指導のもと、

相原 和範・新井 達哉・大久保智之・大沼 由香・春日 美海・堺 陽子

須賀 博子・高久 昌子・橋本 麻子・福井 庸子・細野 恵介・若江 幾哉

の諸氏に多大なご協力を賜った。記して謝意を表したい。

付編凡例

- 1. 付編に掲載した土器は、拓本や実測が可能なものの中から無作為に選別したため、出土の 全てを掲載した訳ではない。
- 2. 遺物の注記番号は、遺跡記号が KS で、その後にグリット番号・グリット別遺物番号が続く。グリット番号は調査当初のものを踏襲している。
- 3. グリット別遺物番号は、出土資料をグリト別に仕分けした後、出来得る限り日付順に番号を付けたものである。整理の過程で多少の混乱がみられるが、注記番号の書き換えが困難であるため、変更は行っていない。
- 各グリット順に台帳並びに土層断面図を掲載している。土層断面図中のゴシック数字は遺物番号を表する。
- 5. 遺物図版中の区画線は、遺物番号による区分けで、別層の場合は実線、同一層で別袋・番 号の場合は一点鎖線で区切り、区画の右下に遺物番号を表した。
- 6. 出土土器の実測図は1/4、拓本と断面のみの場合は1/3で掲載し、図中のスケールは省略した。
- 7. 右断面法を用い、断面の左に外面、右に内面、上に口縁部の拓影を掲載した。

加曽利貝塚における貝層の研究

- 貝殻成長線分析による貝層形成過程と

貝類採集活動に関する考察-

樋 泉 岳 二

ł

加曽利貝塚における貝層の研究

- 貝殻成長線分析による貝層形成過程と 貝類採集活動に関する考察-

樋泉岳二

(早稲田大学)

- 目 次 -

はじめに

- 第1章 加曽利北貝塚における貝殻成長線分析調査 ------1
 - 第1節 調査の概要
 - 第2節 加曽利北貝塚における貝屬形成の季節性
 - 第3節 加曽利北貝塚産ハマグリの成長速度と年齢構成

第2章 加密利南貝塚における貝層分析調査 ----- 62

- 第1節 調査の概要
- 第2節 加曽利南貝塚における貝類遺体群の構成
- 第3節 加曽利南目塚における貝層形成の季節性
- 第4節 加曽利南貝塚産ハマグリの成長速度と年齢構成

第3章 加曽利北貝塚・南貝塚における貝層形成過程と採貝活動の比較 ------- 90

- 第1節 貝層の形成過程
- 第2節 貝類採集の季節性
- 第3節 ハマグリ資源に対する捕獲圧

- 図1. 加曽利貝塚全体図と調査地点.
- 図2.加曽利北貝塚貝層断面観覧施設(南断面)の全体図と試料採取区画の位置.
- 図3. 加曽利北貝塚における各区画間の層位的関係および各区画内における層序を示す模式図.
- 図4. 加曽利北貝塚におけるハマグリの冬輪間および冬輪-障害輪間の日成長線数.
- 図5.加曽利北貝塚区画A(I層)の貝層断面.
- 図6.加曽利北貝塚区画A(I層)における二枚貝類の死亡季節組成.
- 図7.加曽利北貝塚区画A(I層)における死亡季節の層位分布.
- 図8.加曽利北貝塚区画A(I層)における季節層の分布.
- 図9.加曽利北貝塚区画A(I層)における死亡季節の層位変化を示すダイアグラム.
- 図10. 加曽利北貝塚区画A(I層)における貝層構成要素と堆積季節の関係.
- 図11. 加曽利北貝塚区画D(住居跡内貝層)の貝層断面.
- 図12. 加曽利北貝塚区画D(住居跡内貝層)における二枚貝類の死亡季節組成.
- 図13. 加曽利北貝塚区画D(住居跡内貝層)における死亡季節の層位分布.
- 図14. 加曽利北貝塚区画D(住居跡内貝層)における季節層の分布.
- 図15. 加曽利北貝塚区画D(住居跡内貝層)における死亡季節の層位変化を示すダイアグラム.
- 図16.加曽利北貝塚区画D(住居跡内貝層)における貝層構成要素と堆積季節の関係.
- 図17. 加曽利北貝塚区画B(II層)の貝層断面と死亡季節の層位分布.
- 図18. 加曽利北貝塚区画B(II層)における二枚貝類の死亡季節組成.
- 図19. 加曽利北貝塚区画B(II層)における季節層の分布.
- 図20. 加曽利北貝塚区画B(II層)における死亡季節の層位変化を示すダイアグラム.
- 図21. 加曽利北貝塚区画B(I層)における貝層構成要素と堆積季節の関係.
- 図22. 加曽利北貝塚区画C(Ⅲ層)の貝層断面と試料採取位置.
- 図23. 加曽利北貝塚区画C(Ⅲ層)における二枚貝類の死亡季節組成.
- 図24. 加曽利北貝塚区画C(II層)における二枚貝類死亡季節と季節層の層位分布.
- 図25. 加曽利北貝塚区画C(III層)における死亡季節の層位変化を示すダイアグラム.
- 図26. 加曽利北貝塚区画A(I層)におけるハマグリの冬輪(W)形成時の殻高分布.
- 図27. 加曽利北貝塚区画B(II層)におけるハマグリの冬輪形成時の殻高分布.
- 図28. Walford の定差図法による加曽利北貝塚区画A(I層)ハマグリの成長速度.
- 図29. Walford の定差図法による加曽利北貝塚区画B(Ⅱ層)ハマグリの成長速度.
- 図30. 加曽利北貝塚における貝殻成長線分析用ハマグリ試料の殻高分布.
- 図31. 加曽利北貝塚区画A(I層)におけるハマグリの年齢と死亡季節の関係.

- 図32. 加曽利北貝塚区画B(住居跡内貝層)におけるハマグリの年齢と死亡季節の関係.
- 図33、加曽利南貝塚(貝層断面観覧施設)における貝層断面(西断面)の全体図.
- 図34. 加曽利南貝塚貝層試料におけるハマグリの殻高分布,
- 図35. 加曽利南貝塚貝層試料におけるイボキサゴの殻径分布.
- 図36. 加曽利南貝塚におけるハマグリの冬輪間および冬輪-障害輪間の日成長線数.
- 図37. 加曽利南貝塚ブロック1における二枚貝類の死亡季節組成.
- 図38. 加曽利南貝塚ブロック1における貝層断面と死亡季節の層位分布.
- 図39. 加曽利南貝塚ブロック1(左)・ブロック2(右)における二枚貝類死亡季節の層位変化を示すダイアグラム
- 図40. 加曽利南貝塚ブロック2における二枚貝類の死亡季節組成.
- 図41. 加曽利南貝塚ブロック2における貝層断面と死亡季節の層位分布.
- 図42. 加曽利南貝塚ブロック3における二枚貝類の死亡季節組成。
- 図43. 加曽利南貝塚ブロック3における貝層断面と死亡季節の層位分布.
- 図44、加曽利南貝塚ブロック3における二枚貝類死亡季節の層位変化を示すダイアグラム、
- 図45. 加曽利南貝塚におけるハマグリの冬輪形成時の殻高分布.
- 図46. Walford の定差図法による加曽利南貝塚ハマグリの成長速度.
- 図47. 加曽利北貝塚・南貝塚における二枚貝類の死亡季節組成の比較.
- 図48. 加曽利北貝塚(区画A・B)と加曽利南貝塚におけるハマグリの成長曲線の比較.

一表目次一

- 表1.加曽利北貝塚区画A(I層)における貝層の層相.
- 表2.加曽利北貝塚区画A(I層)における貝殻成長線分析試料と分析結果。
- 表3、加曽利北貝塚区画D(住居跡内貝層)における貝層の層相.
- 表4.加曽利北貝塚区画D(住居跡内貝層)における貝殻成長線分析試料と分析結果。
- 表5. 加曽利北貝塚区画B(II層)における貝層の層相.
- 表6.加曽利北貝塚区画B(II 層)における貝殻成長線分析試料と分析結果.
- 表7. 加曽利北貝塚区画C(II層)における貝層の層相.
- 表8.加曽利北貝塚区画C(Ⅲ層)における貝殻成長線分析試料と分析結果.
- 表9、加曽利南貝塚貝層試料の貝類組成、

表10. 加曽利南貝塚貝層試料の主要貝類計測値.

表11. 加曽利南貝塚における貝殻成長線分析試料と分析結果.

一図版目次一

- 図版1.加曽利北貝塚「貝塚断面観覧施設」における貝層断面(南断面).
- 図版2.加曽利南貝塚「貝層断面観覧施設」建設地(第旧皿トレンチ3区)の西壁断面.
- 図版3.加曽利貝塚出土ハマグリの貝殻成長線(1).
- 図版4.加曽利貝塚出土ハマグリの貝殻成長線(2)。

はじめに

加曽利北・南両貝塚は縄文貝塚を代表する遺跡のひとつであり、わが国の貝塚研究史・縄文 文化研究史の中で重要な役割を果たしてきたことは周知の通りである。加曽利貝塚をめぐる研 究は土器編年・集落論・生業論など多岐にわたるが、その中でも、こうした巨大な貝塚がなぜ、 いかなる過程を経て形成されたのか、あるいはその原動力となった貝類採集活動の実態はどの ようなものであったのかは中核的な課題のひとつであり、これまでにも様々な見解が提示され、 議論が交わされてきた。しかしながら、貝類遺体の内容や貝層の堆積構造・形成過程などに関 する基礎研究は意外に少なく、このため従来の研究がいまひとつ実証性に欠けていた点は否め ない。

貝塚の形成過程や貝類採集活動の実態を具体的に復元するための有力な手法のひとつとして、 ハマグリをはじめとする二枚貝類の貝殻成長線分析がある。貝殻成長線は貝の成長の履歴であ り、これを読み解くことによってその貝の年齢・成長速度・死亡季節を推定することができる。 その考古学的応用研究としては、(1)貝類採集活動の季節性の復元、(2)貝層堆積過程のタ イムスケールとしての利用(堆積季節・堆積所要期間の推定など)、(3)遺体群の年齢構成の 推定による貝類資源動態の推定、などが挙げられる。

本研究では、南北両貝塚から比較可能な方法で採集された二枚貝類の貝殻成長線の分析を通 じて、それぞれの貝塚における貝層の形成過程と景観的な変遷、貝類採集活動の季節性、およ び当時の貝類採集活動がハマグリ資源に与えた影響を具体的に描き出す作業を試みた。さらに、 その結果を比較検討することにより、南北両貝塚の特徴と相違点について考察した。

第1章 加曽利北貝塚における貝殻成長線分析調査

第1節 調査の概要

1. 調査の目的

この調査は加曽利北貝塚「貝層断面観覧施設」内の露呈断面において実施した。調査の目的 は以下の2点である。

(1) 貝層断面から採取した貝殻の死亡季節を推定し、貝層内における死亡季節の層位的な分 布を調べることにより、貝層の堆積季節と堆積速度を明らかにする。また、貝層の堆積季節と 貝類組成や他の構成要素との関係を調べ、貝類採集活動や貝層形成過程の季節パターンについ て検討する。

(2) ハマグリの殻成長速度と年齢構成を推定し、当時の貝類採集活動がハマグリの資源動態 に及ぼした影響について検討する。

図1、加曽利貝塚全体図と調査地点 A.北貝塚(貝層断面観覧施設) B.南貝塚(貝層断面観覧施設)

2. 調査地点と層序

加曽利北貝塚は縄文時代中期を主な形成時期とする典型的な環状貝塚で、貝層外縁の直径は 約140~150m 内外である。「貝層断面観覧施設」は環状の貝層の西側に位置する(図1)。この 地点は1966年度発掘調査(杉原編、1970)のCトレンチに相当し、本貝塚の中でも貝層が最も 厚く、かつ良好な状態で保存されている部分である。同施設は、貝層を放射方向(東西方向) に切り通し、露呈した貝層断面を固定・展示したもので、施設内では貝層断面を発掘時のまま の状態で観察することができる(ただし、貝層断面の表面は崩落を防ぐため、ウレタン系の樹 脂で固定してある)。調査は切り通しの両側壁面(「南断面」と「北断面」)で実施したが、こ こでは南断面での結果についてのみ報告する。

南断面の貝層は、幅約20m、厚さは最大1.8mに達する(図2、図版1)。断面観察によれば、 まず中央部にカマボコ状の貝層が形成され、以後その両側(東側と西側=貝層環の内側と外側) に向けて貝層が拡大していったと推定される。こうした堆積過程に基づいて、ここでは貝層を 大きく3層に区分した。すなわち、中央部下層・上層の東側(貝層環の内側)・上層の西側 (外側)である。ここでは、これらをそれぞれI層・II層・II層と呼ぶことにする。これらは 後藤(1970:59)によってCトレンチ南壁のC群、A群、B群と記載された層群にそれぞれ対 応する。II層とII層は共にI層の上位に位置するが、両者の前後関係ははっきりしない。こう した状況は北断面においてもほぼ同様である。なお、断面東側には住居跡があり、その覆土内 部にもレンズ状の貝層が見られる。この貝層は層位的にはI層とII層の中間に位置づけられる。 出土土器による貝層の考古年代は、I層がおもに加曽利EI式期、II層・II層が加曽利EII式 期とされている(杉原編、1970)。

I層・Ⅱ層・住居跡内員層は、ハマグリを主体とする二枚貝類の層、完形のイボキサゴ層、 粉砕されたイボキサゴ殻の層の互層から成る。一方、Ⅲ層ではハマグリを主体とする二枚貝の 層が卓越しており、イボキサゴが少ない点で、Ⅰ層・Ⅱ層とは対照的な様相を呈している。

第2節 加曽利北貝塚における貝層形成の季節性

上記のとおり、加曽利北貝塚の貝層は平坦地に形成されているにも関わらず2m近くに及ぶ 層厚をもち、また内部構造はハマグリなどの二枚貝、イボキサゴの完形殻・破砕殻などの薄層 が緻密かつ複雑な互層を成しており、東京湾東岸域の縄文貝塚の中でも特異な堆積構造を示し ている。こうした貝層の形成過程にはどのような特徴が見られるのか、またその堆積にはどの 程度の時間を要しているのかの解明を主眼として分析を実施した。

図2.加曾利北貝塚貝層街面観覧施設(南断面)の全体図と試料採取区画の位置

図3.加曽利北貝塚における各区画間の層位的関係および各区画内における層序を示す模式図

1. 試料

試料の採取方法は、貝層断面から試料を直接採取する方法を採った。この方法では、貝層中 における試料の層位的位置と死亡季節との関係を確実にとらえることができる。分析試料には 主にハマグリ (Meretrix lusoria)を用いたが、一部でアサリ (Tapes philippinarum)、シオフ キ (Mactra veneriformis) も用いている。これら3種は加曽利貝塚における二枚貝類の主要種 であり、かつ成長線の観察が容易で分析に適している。

試料の採取に当たっては、まず貝層断面の中から連続的かつ安定した堆積構造が認められる 部分4ヶ所を選定し、試料採取用の区画(区画 A~D。図2)を設定した。区画 A・B・C は、 それぞれ I 層・Ⅱ層・Ⅲ層を、また区画 D は I 層・Ⅱ 層間に介在する住居跡内レンズ状貝層 を対象として設定されたものである。これら各区画の層位的関係を図3に模式的に示した。

次いで、各区画内の貝層断面の詳細な実測図を作成したのち、区画内の貝殻(分析対象種) の中から保存状態の良好なものを選び、位置を断面図中に記録しながら採取した。このとき試 料ができるだけ均等に分散するように留意した。採取試料数は、区画A 227点、区画B 60点、区 画C 200点、区画D 122点である。ただし区画 C については、後述の通り二次堆積層の疑いが濃 厚だったので、この点を確認することに目的を絞り、区画内のおよそ1/4の範囲(試料数70 点)についてのみ分析を行った。

2. 分析方法

(1) 死亡季節の推定

貝殻の表面には貝層断面の固定に用いられた樹脂が付着しており、プレパラートを作成する 際の障害となったため、試料を数分間アセトンに浸して洗浄し、樹脂と表面の汚れを除去した。 次に、試料番号を記入し、種名と破損状態を記録した後、殻長と殻高を計測した。

プレパラートの作成および死亡季節の推定方法は、小池の方法(Koike、1980)に準じた。 試料は、殻高・殻長を計測した後、殻頂と腹縁の殻高計測点を結ぶ線に沿って(破片試料につ いては輪脈に対して直交方向に最大長が得られるように)切断し、樹脂包埋と切断面の研磨、 0.1N希塩酸によるエッチング(約1分半)の後、切断面に酢酸メチルを滴下してアセチルセ ルロースフィルムを貼付した。フィルムは乾燥しきらない内に剥離すると収縮するため、充分 に乾燥するまで数時間放置した後に剥離して、貝殻断面のレプリカを作成した。これをスライ ドグラスとカバーグラスに挟んでプラスチック・テープで固定し、メカニカルステージ付き生 物顕微鏡下40~200倍で検鏡した。すべての試料について、まず冬輪の数を確認し、最終冬輪 から腹縁までの日成長線数を計数した。また区画Aの試料に関しては、複数の冬輪をもつ試料 について各冬輪間の日成長線数を計数した。 潮間帯に棲む二枚貝の貝殻成長線は、一般に潮の干満をペースメーカーとして形成されるこ とが知られており(大野、1989)、今回分析したハマグリの貝殻成長線の配列にも明らかな潮 汐周期のパターンが認められた(図版3-1a・1c・1e)。潮汐は約半日(12.4時間)を周期 とし、2周期でほぼ1日に相当することから、ここでは潮汐周期2単位に相当する成長線をもっ て日成長線1とカウントした。冬輪形成の中心時期は、Koike(1980)に従って東京湾の最低 水温期である2月中旬と見なした。死亡時期は最終冬輪から腹縁までの日成長線数(2月中旬 から死亡時までの経過日数)で表現し、記載中ではこれを月に換算して表記した。

なお、今回の分析試料の中には冬輪が確認できない(=生後一度も冬を経ていない、または 経ていても冬輪が殻頂の間近にあるため観察できない)若齢個体が多数含まれていた。これら の試料については殻頂から腹縁までの観察可能な全ての日成長線数を最小日齢(生後最低でも それ以上は経過している日数)とし、推定結果は「最小日齢-冬輪形成前(BW)」のように表 示した。

(2) 死亡季節推定に関する問題-年間日成長線数の不足および障害輪の介在

ハマグリの殻成長の速度は、主として海水温の影響により、年周期の変動を示すことが知ら れている(Koike、1980)。海水温が最低値を示す冬(通常は2月)には殻成長も著しく低下し、 貝殻成長線相互の間隔が詰まって、顕著な成長線の密集帯(以下「低成長帯」とする)が形成 される。これが「冬輪」で、ハマグリなどの貝殻成長線分析では冬期の指標として、年齢や死 亡季節を推定する際の基準点に用いられる(図版3-1b・1d・1f・2)。

このように、冬輪は年に1回、しかも毎年ほぼ同じ時期に形成されるので、冬輪と冬輪の間 の日成長線数は年間日数に近似した値を示すことが期待され、有明海(熊本県緑川河口干潟) 産のハマグリではこれを支持する結果が報告されている(Koike、1980)。しかしながら、今回 の分析試料(区画 A)における冬輪間の日成長線数は、第1-第2冬輪間で225~394(322± 38.2、平均±標準偏差)、第2-第3冬輪間およびそれ以降では230~257(239±9.2)となった (図4 A)。この値は年間日数(正確には、年間潮汐周期数/2=354)よりかなり少なく、ま た高齢の個体ほど年間の成長線数を減じる傾向が認められる。こうした年間日成長線数の不足 は関東~東海地方の貝塚産ハマグリに一般的に認められる現象で、冬季を中心とした殻成長の 停止によるものと考えられる(樋泉、1995、1998)。

これらの試料では、通常の方法で死亡季節を推定した場合、推定値と実際の死亡季節の間に ズレが生じる可能性がある。すなわち、ハマグリの殻成長速度の周年変動がおもに海水温によっ て支配される(Koike、1980)ことから、この成長停止期間の中心を最低水温期=2月中旬と 仮定すれば、殻成長の再開時期は、成長停止期間の長さに応じてそれより遅れることになる。 したがって、死亡時期も前記の方法による推定値よりその分だけ後ろにずれることになる。筆

図4. 加曽利北貝塚におけるハマグリの冬輪間および冬輪-障害輪間の日成長線数 W1:第1冬輪;W2:第2冬輪;D:障害輪

1

者は愛知県水神第2貝塚での分析に際してこの点の補正を試みたが(樋泉、1998)、この方法 は補正の根拠に不確定要素を残すため、さらに検討の余地がある。よって、以下ではとくに補 正を行わず、未補正値を用いて記述を進めるが、この値は実際の死亡季節よりも若い値を示し ている可能性があるという点に留意が必要である。

また、本遺跡のハマグリには、夏期に障害輪を形成するものが多数確認された。この障害輪 は冬輪に類似した成長線の密集帯だが、成長低下が冬輪より弱いか、短期間であることなどに よって区別される(図版4-4b・4d)。第1~第2冬輪で見ると、第1冬輪中心から障害輪 までの日成長線数は173±33.7、障害輪から第2冬輪までの日成長線数は168±33.3で(図4B)、 障害輪は前後の冬輪のちょうど中間付近に形成されることが多い。

障害輪の形成要因としてまず考えられるのは産卵障害(産卵に伴うストレスによる成長の一時的な低下)である。ハマグリの殻断面には、Koike (1980)によって産卵障害とされている特徴的な障害輪(Koike、1980:31、Pl.3E)が見られる。これは、レプリカ上ではクロスラメラが強く表現され、透過光で観察すると暗色の帯に見える部分で、成長の低下を伴うことが多い(図版3-3)。しかし本遺跡の場合、問題の障害輪は上記の産卵障害のパターンとは明らかに異なること、また生殖年齢に達していない成長段階でも出現し始める(図版4-4)ことから、生殖活動に起因するものとは考えにくい。今のところその原因は明らかでないが、障害輪の形成季節から見て、おそらく夏期における何らかの生息条件の悪化(たとえば過度の高水温、豪雨の際の出水による塩分濃度の低下や土砂による干潟の被覆など)が成長障害の原因となっているのではないかと推測される(樋泉、1995)。

冬輪か障害輪かの判別が難しい試料も少なくない。これらの試料の低成長帯(成長線の密集 帯)は、成長線の密度や配列パターンから判断する限り、すべて冬輪(またはすべて障害輪) のように見えるが、低成長帯間の日成長線数は181±34.5と著しく少なく(図4C)、先に述べ た冬輪ー障害輪間の日成長線数(図4B)とほぼ一致している。このことから見て、その多く は夏における成長低下が著しい(または冬季の成長低下が小さい)ために、冬輪と夏の障害輪 とが見分けにくくなっているものと推測される。このような「夏に形成される冬輪と同様の著 しい障害輪」を、ここでは「擬冬輪」と呼ぶことにする。擬冬輪の介在は千葉県市原市能満上 小貝塚(縄文後期~晩期)のハマグリでも確認されている(樋泉、1995)。

擬冬輪をもつ試料については、最後の低成長帯を冬輪と見なすか、あるいは最後の低成長帯 を擬冬輪とし、もう一つ前の低成長帯を冬輪と見るかによって、死亡季節の推定値はふたつの 候補に分かれる。そこで、推定結果を記載する際には、これらの推定値を/で結んで表記した。

(3) 貝層の保存状態と堆積季節の推定

貝層内における廃棄単位の保存状態および各層の堆積季節を推定するため、まず成長線分析

によって得られた死亡季節推定値を、試料採取時の記録に基づいて員層断面図にプロットした。 次いで、堆積層序に沿って死亡季節の分布状況を調べ、死亡季節の近い貝がまとまって分布し ている部分が認められた場合には、これを「季節層」と認定し、その季節の示す期間内の廃棄 単位が保存されているものと見なした。

廃棄単位が保存されていると判定された層については、堆積季節を推定した。堆積季節の推 定方法は、ハマグリなど二枚貝主体の層と、その他の層とで異なる。二枚貝層の場合、季節層 はその層全体の堆積季節を直接示していると考えられる。しかし、貝層中には、イボキサゴや その破砕貝を主体とする層や、土層がしばしば介在している。これらの層の場合、イボキサゴ や土そのものから堆積季節を知ることはできないので、混在する二枚貝から間接的に堆積季節 を推定することになるが、試料数の不足のため堆積季節を推定しにくいいケースが多かった。 また、内部に含まれる二枚貝が季節層を示している場合でも、それが層全体の堆積季節を表し ているとは限らない (例えばイボキサゴ層中に混じった二枚貝の死亡時期が4月であったとし ても、イボキサゴそのものは1~6月まで捨てられ続けたものかも知れない)。そこで、こう した層の堆積季節については、内部の試料に加え、層の上面・下面の試料の死亡季節も参照し て総合的に判定した(たとえば、層下面=冬、内部=春、層上面=夏のケースでは、「春を中 心に、冬~秋の期間内」とした。ただしこの場合、堆積は冬~秋の間のある時期に起こった、 という意味であり、必ずしも冬~秋まで堆積が継続したということではない)。

(4) 堆積速度の推定

季節層が連続して堆積している場合には、貝層の堆積序列に沿って堆積季節の推移を調べ、 これに基づいて貝層の堆積速度を推定した。

堆積季節・速度の推定方法には基本的な問題がある。例えば、ある層から得られた試料が春 に集中している場合、ここではその層の堆積季節を「ある年の春」と推定した。しかし、こう した場合でも、実際には「ある年」と「別の年」の春のミックスであった可能性は残る。また、 上下2枚の層が、下層で春、上層で夏の季節性を示している場合、これらの層は「ある年の春 から夏」の間に堆積したものと見なしたが、実際には両者の間に1年以上のブランクがあった かもしれない。イボキサゴ層や土層については、前節で述べたように、上下の層の堆積季節が 明らかな場合、その間の期間をもって堆積季節と仮定したが、上記と同様の理由から、より長 期間の時間的空白があったことは充分に考えられる。とくに土層の場合は、貝の廃棄の中断を 示している可能性もあるので、その可能性はより高いといえる。成長線分析では、「死亡年」 を特定することができないため、堆積季節・速度を推定する際には常にこうした疑惑がつきま とう。

これらの理由により、貝層全体の堆積所要時間を特定することは、現段階では困難である。

したがって、ここでは季節推移が認められた部分について、それらの堆積が1年以上のブラン クを置かずに連続して進行したと仮定した場合の堆積所要時間を推定した。いいかえれば、こ こでの推定値は、認められた季節推移と矛盾しない範囲内で、もっとも短く見積った場合の堆 積期間ということになる。

(5) 堆積季節と貝層構成要素の関係

最後に、堆積季節と貝層の構成要素(貝類組成・混入物など)との間に規則的な関係が見ら れるかについて検討した。まず、層相の特徴によって、「二枚貝主体層」、「完形イボキサゴ主 体層」、「粉砕イボキサゴ主体層」などのように層を分類し、各カテゴリーにおける堆積季節の 分布状況を比較検討して、特定の季節との対応関係が見られるかを調べた。

3. 結果と考察

ここでは、各層(区画)ごとに、貝層の堆積状況、季節組成の概要、貝層内における死亡季 節分布について記載し、またこれらに基づいて推定された貝層の保存状態、堆積速度、および 堆積季節と層相との関係について検討する。

(1) 区画A(I層)

貝層の堆積状況

図5 に区画Aにおける貝層の堆積状況を示す。I層では、ハマグリなどの二枚貝を主体とす る層、イボキサゴの完形殻を主体とする層、およびイボキサゴの破砕殻を主体とする層が互層 を成して堆積している(図版1-5)。各層は厚さ数cmから10cmていどの扁平なレンズ状をな すものが普通である。貝層内容の層位的推移を詳細に観察すると、1~7層、8~18層、20~ 33層の3層準間で異なった傾向がみられる。

1~7 層と20~33層は、基本的にハマグリ主体の層とイボキサゴ層との互層から成っている。 ハマグリ層にはヤマトシジミが伴うことが多く、土・灰が多く含まれる傾向がある。1~7 層 ではハマグリ層の上にキサゴの破砕層が乗るが、20~33層ではキサゴの破砕層は見られない。

8~18層ではハマグリが少なく、貝層はイボキサゴの完形貝層と破砕層の互層を基本とする 単純なもので、II層に類似する。この部分は西側に向けて厚さを増すとともに、互層もより明 瞭となり、区画Cの下部(5~11層)に連続する。

なお、1~2層は大別層のⅡ層と、また3層は区画Dの住居跡内貝層と同層準に相当する可能性がある(図3)。

図5. 加曽利北貝塚区画A (I層)の貝層断面(各層の記載は表1を参照)

表1.加曽利北貝塚区画A(I層)における貝層の層相(図5参照)

(mat ca	Silia 1. tutor		1	
1005	准工等		その個	
	税貝閣	イボギザゴ王体、ハマグリ(小型)多い、		
2	科良恆	イボギサゴ(破砕)主体。		· · · · · · · · · · · · · · · · · · ·
38	和~混土貝的	/ ハマグリ (小ー中型) 主体、ヤマトシジミ含む、	ļ	
<u>b</u>	純~混土貝磨	(ハマグリ(小~中型)主体、シオフキ含む、	Ļ	
c	純~混土貝紹	ハマグリ(小型) 主体		
4	純貝船	イボキサゴ主体、ハマグリ合む。		
5	純貝腐	イボキサゴ(破砕)主体.		
6	土層		灰	
7a.	混土貝層	ハマグリ主体、アサリ含む。		
b	<u> </u>	ハマグリ主体、アサリ・シオフキ合む。		
8	純貝層	イボキサゴ(破砕)主体.		
9	純貝層	ヤマトシジミ主体	1	
10	純貝唇	イボキサゴ主体		
11	純貝層	イボキサゴ(破砕)主体	下部に灰	
12	混土貝图	イポキサゴ(破砕)主体、	下部に灰	11層と同一層
13a	混土貝層	イボキサゴ主体、ハマグリ・シオフキ含む。	1	
b	純貝層	イボキサゴ主体、アサリ(小型)含む、		
14	純~混土貝因	イボキサゴ(敬酔)主体.	 	
15	混土貝腐	二枚貝(破砕)主体(一部シオフキ主体、アサリ多い)。		15~19回の境界部は堆
		上面にハマグリ(小型)の薄層		積が乱れており不明瞭。
16	混貝土層	イボキサゴ主体、ハマグリ・マガキ含む。	灰	16・17回は内容から見
	,	上面にハマグリ(小型)が散在		て同一層の可能性があ
17	混土貝尼	イボキサゴ主体、マガキ・二枚貝(破砕)多い、		る。15・17層はやや撥
18	純貝層	イボキサゴ主体		乱されている可能性が
19	混土負幣	ハマグリ (小~大型) 主体.		ある、
20	純貝圈	ハマグリ (小型) 主体, ヤマトシジミ多い, シオフキあり,		
21	混具土图	ハマグリ(小・大型)・シオフキあり	灰(多鼠)	
Ž 2	純貝唇	ハマグリ(小型)主体、ヤマトシジミ多い。		
		上面にヤマトシジミの薄層あり。		
23	純貝房	イボキサゴ主体。		
24	混土貝閣	マガキ主体		<u> </u>
25	純貝唇	ハマグリ(小型)主体、シオフキ・ヤマトシジミ多い		
26	混員土曆	ハマグリ・シオフキあり、	灰	
27	土間		灰 (多量)	
28	土層		· · · · · · · · · · · · · · · · · · ·	
29	混土貝顏	ヤマトシジミ・ハマグリ(小型)主体		
30	混土貝層	ヤマトシジミ主体		
31	<u> </u>	ハマグリ (小~中型) 主体、マガキあり		
32	混士貝層	イボキサゴ・二枚目(破砕)主体		
33	混貝土閣	二枚貝(ハマグリ等)主体		
. <u></u>				

表 2. 加曽利北貝塚区画 A (I 層)における貝殻成長線分析試料と分析結果

No.	sp.	L/R	SL	SH	W/F	seasonality	N. of	sh	oll hight at	winter ring	*2
	*L		*2	+2	*3		W.R.	W1	W2	W3	W4
1	ML	L	* 29.1	25.4	₩	161	1	17.9			
2a	ML	R	* 32.2	27.7	w	43 ?	t	(25.1)			
3a	ML	ΙL.			*	164	1	+			
4L	ML	Lι	26.9	23.4	w	269 ?	1	(+)			
5a	ML	Lι	-	-	ิต		?	7			
66	ML	Ιī	* 32.7	26.9	w	235 ?	1	10.7			
7	м	Ĩĩ	30.0	24.8	w	123 2		(206)			
l ai	M	17	34.2	28.6		22 / 08		20			
0.	MI	17	-	. 27.7	ι	210 2252-801 2	1	(22)	· '		
1 10	M	1.	21.6	26.6	1	254-BW(CW7)		(2.3)			
li.	ART .		37.0	20.0		204-04(041)	2	1 50 1	1 200 3		
12	N/I		217	27.0		250[<224-014] 2	-	(3.5)	(20.0)		
1.5	MI	12	22.5	21.0		200[/224-010]:		(3.3)			
		1.	00.0	20.0		203[/ 2/3-040] :		1.0 /			
16	MIL		20.0	22.0	w	203 7	-	1.9	100.43		
10	ML	12	20.4	23.3		20 :	2		(22.9)		
	ML	1.	32.3	21.5	W	240-6W(250?)	1	(4.0)			
	ML		29.7	25.2	*	=(autumn?)		7			
18	MI.		31.1	26.8	w	89[/240-BW]	1	(19.8)			
19	ML.		34.0	28.2	w	259-BW	1	<+>			
20a	ML		34.9	28.8	w	243-BW	1	<+>			
21	ML,	L	34.0	29.1	w	331-BW?	1	<+>			
22	ML	4	30,3	26.5	w	270-8W(EW?)	1	<+>			
23	ML	1	31,4	26.3	w	39	2	< + >	25.4		
24	ML	11	32.5	26.9	₩	282[-8W]	1	(2.9)			
25	ML,	L	25.5	21.8	w	205-BW	0	-			
26L	ML	L	33.1	28.3	w	257 ?	t	4.3			
27	TP	R	33.8	24.4	w	w	2				
26	ML	R	* 41.9	34.5	w	w	2	4.3	33.1		
29	ML	L	33.2	28.2	w	244 ?	1	(2.2)			
30a	ML	L	35.8	30,3	w	246	1	6.0			
31	ML	L	32.9	27.9	w	258	1	2.0			
32	ML	R	50.4	40.9	w	190[/W]	2	(2.8)	(33,4)		
33a	ML	R	34.6	29.7	w	327-BW	1	<+>			
34	ML	R	36.3	31.1	w	W	2	< + >	30,0		
35	ML	R	31.0	27.5	w	[87/]296	1	1.9			
36	ML,	Ļ	29.6	25.0	w	193-BW	0	-			
37	ML	R	29.1	26.1	w	101	1	17.6			
38	ML	L	31.3	26.2	w	76[/202-BW]	1	(18.9)			
39	ML	R	-	* 30.0	(w)	227[-BW]	1	(1.2)			
40	ML	R	34.5	28.7	w]	330 ?	1	(3.2)			
41aL	TP	L	36.0	29.1	w	197 ?	2				
42	ML	R	25.3	21.6	w	297/324-BW	?	1			
43a	ML	L	30.4	26.5	w	103	1	20.5			
44	ML	L	28.7	25.5	w	106	1	19.1			
45	ML	R	32,0	28.1	w	97	1	19.6			
46	ML	L	30.6	26.3	w	271-BW(310?)	1	(3.0)			
47	ML	L	31.4	26.5	w	20	1	25.9			
48	MV	R	39.t	34,5	w	242	1				
49	ML	L	30.0	25.8	w	258[-BW]	1	(41)			
50	ML	R	30.4	26.1	w	[43/]314	i	(81)			
510	ML	R	+ 31.6	27.1	w l	87/277	;	· "/ '			
52	ML	R	37.8	29.5	w	97/279	2	1			
53	ML	R	38.3	32.2	w	25/137	7	'			
54	ML	R	28.7	24.5	w	58/234	÷	<i>'</i> /			
55	ML	Ľ	27.0	22.7	w l	234[-BW]	i	(22)			
56	ML	Ē	30.5	25,4	w	242[-BW]	i	(4.0)			

No	40	1 /9	61	64	Wi/C	na zaszality	N of		all blacks as		
1.00	ap, ∎i	100	#2	*2	10/F	sourcements	WD U	wi wi	ย่าง เหตุการณ์	winter ring	+Z 16/4
57	MI		31.8	270		10/166/202	11.10	 "/	1 112		184
50	M		31.0	* 25.0	12	20 / 172 / 217		1 1			
50	MI		210	26.5	L	33/ 173/ 311		1 1			
1 50		1.	+ 07.0	20.0		1/1/ 329		′			
00	110	12	7 21.0	19.0		14		l ,			
		15	31.1	20.0		1427 280	11	1			
62		. K	25.8	22.3	۳.	159 7		(13.1)			
63	ML	12	32.0	27.5	۱×	281		1.2			
64	ML	I K	- 33,7	27.9	₩	J40		(4.7)			
65a	ML	וי	+ 35,1	* 29.0	W .	333-W	1	<+>			
66	ML	R	30.4	26.7		269 7	1	(3.8)			
67	ML	н		* 25.8	(w)	245	1	4.9			
68	ML	R	30.2	24.9	w	323-BW	1	<+>			
69	MV	-	-	- 1	f.	111	2				
70	ML		-	* 28.5	(w)	312	1	3.5			
71	TP	-	-	-	f	323					
72	ML	R	* 30.3	24.5	w	-	2	2			
73	TP	R	26.9	19.5	w	82	1				
74a	ML	L	30.1	25.6	w	w	2	/	25.0		
75	ML	L	-	* 26.7	(w)	231-BW	1	<+>			
76	ML	R	-	-	(1)	-	2	2			
177	ML	L	-	23.2	(w)	279 7	1	(5.3)			
78	ML	L	-	-	6)	333	1	· + ·			
79	ML.	L	27.6	24.1	w	45 ?	2		(22.3)		
80	ML	L	31.0	25.3		-	?	2		1	
81	ML	L	-	-	(1)	-	7		1		
82	ML	R	-	-	(i)	30 7	i	(+)			
83	ML	R	31.4	27.5	w	284-BW(EW?)	l i l	<+>			
84	ML	R	40.0	33.1	~	208 2	2	<+>	(22 6)		
85	ML	ï	28.3	24.7	w	213 7	1	17.8			
86	TP	Ē	-	* 22.6	(w)	W	2				
87	MV	R	* 31.7	28.4		26	2				
88a	MV	Ë.	+ 41.3	37.5	w.	25	5				
89	TP	R	28.2	21.0		30	2				
90	MI	ï	30.8	25.5	w.	51 2	5	1 81 1	(221)		
91.	TP	Ā	* 36.8	27.6		240 - W	5	X 941 7	1 23.17		
92	мi I	l ï l	34.0	28.2		240 W	2		.		
07	MI	6	22.6	201		[77 /]204-BW		~			
04	M	n i	0.0.0	+ 26.2	<i>(</i>)	117 J304 DH					
05	MI	1	_	+ 20.2	(10)	310-011		1			
06	MIL MI	1	22.0		w.	67 179		1			
07	MIL	1	32.0	20.7		143	4		22.1		
31	MIL NO.	L.	÷ 30.5	25.8	W I	96 /		(16,9)			
20L			-		(a)	115 /		(+)			
998	MIL .		32.4	26.8	w	42	2	6.4	24.3		
100a	an ∟	ĸ	31.0	26.7	W	10/[/ 280-BWJ		(16.4)			
101	MIL		-	-		46 7	2	+	+		
102	m-L	к	-	-	(1)	131		+			
103	ตน	R	31.5		W#	31[/253]		+			
104	ML	ĸ	-	₹ 29.6	(w)	W	2	<+>	28.2		
105	ML		32.3	27.6	₩*	103		+			
106a	ML		37.7	31,3	w	269-BW(2607)		<+>			
107	ML	R	44.1	36,9	w	124/304-BW	?	1			
108	ML	R	33.2	27.9	w*	102/258-BW	?	1			
109	ML	R	46.9	39.0	w	119 ?	2	/	(31.1)		
1 1 1 0	ML	L	-	* 41.7	(w)*	248	2	(+)	+		
111	ML	L	-	* 26.0	(w)	234	1	12.3			
112	ML.	L	30.3	25.9	w	120[/273] ?	2	<+>	(20.5)		

表2. (つづき)

No.	Sp.	L/R	SL	SH	W/F seasonality /			sh	ol hight at	wintor ring	*2
1	*		+2	•2	. ≪			WI	W2	WG	W4
113	ML	R	* 26.3	22.2	*	287 ?	1	(5.6]	1		
114	MI	A	30.0	25.0		106.7	1	1 1871			1
116	3.61		-	* 29.3	1.	pn ?		(223)			
116	861	6	22.0	94.7		63 7		(100)	I .		
	1971.e.		20.4	070		22		1 44 5	1		
111	ML	I M	33.2	27.0	· ~ ·	303 /		4.1 1			
	ant.	<u>-</u>	30,8	21.2	(**	243*844(2617)			•		1
119	ML	·L	-32.9	27.4	**	240-BW(311?)		<+>	1		
150	ML	1.	29.3	25.0	w	(98-BW(267?)	0		ì		
121	ML	R	* 47.6	-	f	74 ?	1	(+)	1	ļ	
122	ML	8	30.2	25.8	w	88/289	-	1			
123	ML	L	31.8	27.4	*	101[/243]	1	(19.9)	1		
124	ML	R	30,8	26,1	**	80/287	-				
125	ML	L	-	-	(1)	76/1266+	1	↓			l
1284	ML	A	32.4	21.7	vr	104/1274-BW	5	<+>	ļ		
1271	MI	l ï l	33.6	98.9	ü	134-82 / 1243-RW		(43			
120	b.di	17	717	27 4		357[-RW]		1 12 1	ļ		
130.	1111 ₀ 1.41			****	10	*010 011		145		ł	1
1298	Mic				1.00	¥#	4	(*)			
130	Mit.	K	31.5	20.0	*	135		10.9	1		Į
131	ML		42.3	32.0	₩ *	100	1				
132	ML	R	\$9.3	-		[52/]219	3		(+)		1
133#	ML	R	32.6	27,7	* *	75,/250/250-BW	?				
134	ML.	L	36.1	30.5	*	46	2	3.9	28.3		ļ
135a	ML.	R	43,6	37.4	₩	70	2	(25)	33.1		l
136	ML	R	26.2	25.5	w	252	11	0.3			
137	MV	R	38,9	34.5	w	91 ?	2		1		
138	ML	L L	31.7	26.8	- -	21/263-BW	7				1
139	MC	R	39.4	28.6	*	-	-		1		1
1.4n	MI	n	34.0	29.4	w	73 7	9	1 1.7 3	1 25.3 1		
141	3.71		340	58.4		257-RW	ĩ	(4)			
1.49			20.3	26.6		200		10	1		
146	M		33.4	29.0		200		40 ž			
14,30	101.		33.9	20,0	1	(7.) 200		106			
144	ant,	n n	£3.7	24.0	**	92 		1.0.2			
142	ML.	8	32.Z	21.3	.**.	XA.	3	6./	18.4	21	
146	ML.	1	-	• 43.9	{ 9 ¥}	121	3	22.6	32.9	40	
147	MY	R	34,3	23.8	**	88	1				
148a	ML	L	32.5	27.0	*	3091-3575		(3.3)			
149	ML.	R	32.9	28,4	**	303	1	6.5	1		ĺ
150	I MIL	L	31,6	28.9	- **	260 ?	1	(0.7)			
151	TP	R	* 29.4	23.4		42	2	ł			
152	ML	R	30,9	25.4	*	68/302	2				l
153sL	ML	ーレ	31,4	27.2	w	48/273-BW	7	1			
154	ML	انا	36.4	30,0	w	130	2	<+>	21.9		Í
165R	ML	R	29.2	25.5	w	97/245-8W	2	1		ĺ	1
156	ML	R	25.9	22.7	l w l	65 1291-PW		< + >	1		1
167	M	ß		a 20 K	in	104	1				
154	641		30 a	25.6	12	205 2 1965-89		as l			
150	NIL.			99.0	ادتيا	CERRY 1804 1012		1	l i		
124	1993 3.41	[]		40.0	377	[as zim	1 13	1 1 1 1	1 1 22 3 3		
1008	AUL .		31.1	20.4	*	fxox 18a		1 2.2 /	1 83.8 1		
1016	ML	1	31.4	21.5	¥	136		12.1			
1624	ML.	L	32.6	28.3	*	50	2	10,4	21.4		1
16 3 a	ML,	1	31.2	26.2		16[/64]	2	[6,5]	1, 25.2)		
154a	ML	L	30.7	26.3	W	29 ?	2	(3.8)	(24,1)		
165a	ML	L	31.8	27.7	٧٢	87	2	<+>	21.4		
1664	ML	R	43.4	36.0	*	95	2	<+>	30.1		ł
167a	ML	L	26.5	23.2	w	4 5	2	<+>	21.2		
168a	MI.	L.	32.3	28.8	*	-	7	7			

●1、ML:ハマグリ、MY:シオブキ、TP:アゲリ.
 ●2、():課定的でない、+:あり(位置不明)。--:なし、/:複数後稿あり、<>>:数頂近びに脱落不能な冬輪あり.
 *3、w:売形、(w):玻損(中心接種谷)、():玻損(中心接なし、数頂あり), f:破損(般頂なし)。=:切断線半中心線.

•

No.	SD.	L/R	SL	SH	W/F	seasonality	N. of	<u>che</u>	il hight at .	winter ring	*2
	*1		+2	*2	•3		W.R.	WL	W2	¥73	W4
1690	MI,	Ľ	28.7	24.7	₩	78	2	(45	21.7		
170.	ML,	R	31.3	26.1	*	63	2	<+>	23.1		
171	ML.	L	29.6	25.1		269-BW	1	<>>		ļ	
1724	ML	L	28.4	24.6	w	86/308	7	1			
1734	ML.	1.	30.7	25.8	w	57[/334]	2	<+>	(22.9)		ĺ
174	ML	R	29.2	25.1	*	310 7	1	(4.3)			
175	ML	R	34.6	29.0	·w·	79/334	7	1			
176	ML.	L	34.4	28.1	w	46+[/ W]	2	(1.6)	(26.1)		
177	Mil.	L	* 29.1	25.4	w 1	[59/]311	1	(4.8)			
178	ML.	R	29.9	25.8	w	318 ?	1	(5.9)			
179.	ML,	L	28.1	23.9	w	65 7	2	(22)	(20.8)		
180	ML.	R	29.6	25,7	₩ ,	76	2	13.5	22.7		
1814	ML.	R	34.2	29.2	*	95	2	<+>	24.3		
182	MI,	L	26.1	23.0	*	111[/337]	5	<+>	(16.8)		
183	ML.	L	29,4	24.8	w	105	2	3.7	20.6		
184	ML	L	29.8	* 25.6	** *	105 7	2	(+)	(+)		
185	ML	L	27.7	24.1	w*	100	2	(+)	÷		
186	ML	1.	27.7	- 1	0	274/205-BW	2	1 1			
187L	ML	1.	24.8	21.5	w	54/288(-BW)	7	/ /			
188	₩V	R	33.8	29.5	*	123 9	2				
189a	ML	1 6	35.2		60	60. // 320B W	3	1			
190a	MR.	L	31.9	28.2	11	53	2	(0.7)	25.1		
191	Mi.	R	28.5	25.0	*	57	2	<+>	21.5		
192	MA	R	35.7	32,9		62	2				
193	ML	R	32.3	27.5		124	5	<+>	21.8		
194	Mi,	L	32.2	27.2	*	986	2	1.7	19.9		
195	ML	L .	40.5	- 1	0	\$5	1	+			
196	ML	R	34.9	29,5	w	210 ?	2	2.6	19,8		
197a	ML	R	29.2	24.0	*	262 7		(14)			
108	ML.	1	37.8	31.5	w	-	7				
199	TP	L	* 30.1	* 23.4	(w)	-	?				
200*	ML.	R	* 31,6	27.3	[**	300 ?		3.6			
201	ML	1 15	38.8	32.4	*	350 ?	12	(1.9)	(18.6)		
202	min	ning			-	-	-	1	-		
203	ML	L	27.6	24.6		264 ?		(1.5)			1
204	ML	R		* 27.1) (w)	150	1	18,4	!		
205	ML	R	31,8	27.0	1 W	118 7	2		{ 21.4 }		1
206	ML	L	l ‴		0	228-8W		(+)			
207	ML	8		# 29.2	[(w)	118	2	1.9	22.9	*	
208	ML	R	28.9	24.9	*	167 213	1 1				
209	C J						2		1		
210	ML		30.6	25.2	I **	120[250]		\$\$>	(18.4)		
211		R	34.8	29,3	*	F3[/ 280]		1	1 25.0)		
212	ML		31.9	27.1	1	185 7	1 2	\$+7	(15,9)		l
213	ML	K	30.7		[⁽¹⁰⁾	269			1000		
214	ML	I۳.	30.8	20.9	1.5	8月/285-U¥約		1	1 212]		
210	MV.	Гĸ.		- JZ Z		245.2		1000	1		1
212		I R	= 37.5	≠ 31.8	1.007	44(/ 226)	1 3	116.0	(30,4) (30,7)		I
217		i n.		# 32.2	1997	1 44[x 203] 00[x+407	2	14.07			I
210	NGL.		36,9	31.3	W.	201/ [00]	ž	1110.1	1 29.3]		
419	140			# 30.8	1 (362	541.7 240}		1 14.93	1 20.3)	40	
2218	NAL.	l Ki		44.0		109	3	17.4	20.0	40	ł
221	1 MIL. 1 441			1 JI.0	1 (W)	40		14.4	C3,4		
2220	NAL.	n n	34.0	21.0	1	00°245		1 11 1	1 9051		l
22.5	1051 1881		37.0	31.4		31		(14.3)	1 20.0 1		l
2240	1 MIL		34.9	1	1.00	210		1 144 61	1 451 1	1 99 1	1 55 1
09.4	1 PH1		1 4U.D	33.0	170	(and all a		1.10.97	1 6341 /	3 49 7	1 20 8
2274	MI		333	+ 97 4	12	1160 / 1300-W		(+3	(215)	(25.8)	1

,

死亡季節分布と貝層の堆積季節

各試料の計測値、死亡季節、冬輪殼高を表2に示した。区画A全試料の合計による季節分布 (図6)を見ると、死亡季節は周年に及ぶが、特に春~夏前半(3~6月)および秋後半~冬 前半(10~11月)に採取された貝が多く、夏後半~秋前半(7~9月)の貝は少ない。区画A 内部での変化を見ると、下部(28層以下)では夏と冬に低下があるものの周年にわたって比較 的安定した分布を示すが、中部(27~14層)では夏の貝が大きく減少して春・秋の双峰分布が 明瞭となり、上部(13層以上)では春のビークも消滅する。

図7は貝層断面図上に試料の採取位置と試料番号、推定死亡季節をプロットしたもの、図8 は季節層の層位分布を示したものである。以下、各層における死亡季節の分布状況とそこから 推定される堆積季節を、下位の層から順に記載する。

33層(混土貝層。ハマグリなどの二枚貝主体):推定死亡時期3~5月の貝(以下、単に 「3~5月の貝」のように呼ぶ)が薄い季節層を成し、その上下に秋・冬の貝が散在する。春 を中心に、前後の秋・冬を混じえる堆積層と推定される。

32層(混貝土層。イボキサゴ・二枚貝混合):上部に5~8月の貝が集中しており、この時 期およびその直前に堆積した層と推定される。

31層(混土貝層。ハマグリ主体)・30層(混土貝層。ヤマトシジミ主体)・29層(混土貝層。 ヤマトシジミ・ハマグリ主体):31層右端下部に見られる夏後半の貝2点(Na194・212)は32 層に後続する可能性が強い。31層左側には9月~12月の貝がやや混合した状態で堆積している。 この季節に廃棄された貝が二次的に混合した可能性が強いが、複数年の堆積物が複合している 可能性もある。死亡季節の推移状況から見て、32層からの継続的な堆積の可能性も考えられる。 30層は31層を覆うヤマトシジミの薄層で、ここからは試料が得られていないが、上面(28層下 面)に5月の貝があり、冬から春の間に堆積した可能性がある。29層でも中央に冬、上面に春 後半の貝2点があり、またヤマトシジミを含むことから見て、30層と同時並行の堆積層である 可能性が高い。

28層(土層):5月、6月の貝が1点づつ得られているが(Na188・192)、土層中に混在する 試料であり、これが土層そのものの堆積季節を示すかどうかは判然としない。

27層(灰層)・26層(混土灰層。ハマグリ・シオフキ混じる)・25層(ハマグリ純貝層。シオ フキ・ヤマトシジミ混じる):27層上部から26・25層の下部にかけて4~6月の貝による明瞭 な季節層があり、この部分が春から初夏の短期間に堆積したことを示す。特に灰層(27層)中 には4月の貝のみが見られることから、灰はこの時期ないしはその直前に廃棄され、二次的に 26層へと拡散したものと推定される(したがって26層と25層の貝は一連の廃棄単位と考えられ る)。また、26・25層の上部には少数ながら12月末~1月初旬の貝が見られることから、これ らの層は夏~秋の中断をはさんで春と冬の堆積物から構成されているものと推定される。

24層(土層。マガキを含む):5月の貝2点が見られるが、28層と同様に、これが層全体の

-17-

図7.加曽利北貝塚区画A(I層)における死亡季節の層位分布(数字は試料番号)

図8.加曽利北貝塚区画A(I層)における季節層の分布 1:春を中心とした季節層 2:夏を中心とした季節層 3:秋を中心とした季節層 4:冬を中心とした季節層

堆積季節を示すかどうかは不明である。

23層(イボキサゴ純貝層): 3 点の試料があるのみで堆積季節は判然としないが、下面に 7 月、上部に秋・冬の貝があり、この間に堆積した可能性もある。

22層(ハマグリ純貝層。上面にヤマトシジミ薄層あり):4~6月の貝、および11~12月の 貝を含み、後者が上位に分布する傾向がある。25層と同様に、夏~秋の中断をはさんで春と冬 の堆積物から構成されているものと推定される。

21層(混土貝層。ハマグリ主体。灰を多量に含む):2~5月の明瞭な季節層があり、この 時期を中心とした堆積層である。層位的な季節推移から見て、22層からの継続的な堆積と考え られる。22層上面のヤマトシジミは12月と4月に挟まれており、この間に廃棄されたものと推 定される。区画左半の下部には秋の貝が1点あるが、下層からの混じり込みかと思われる。

20層(ハマグリ純貝層。ヤマトシジミ含む):下部に秋~冬後半の貝、上部に9~12月の貝 が分布し、区画右側では両者の間に5月末の貝が介在する。さらに左側上部には5~6月頃の 貝が散見される。したがって、本層の堆積期間は、秋~冬→5月末→9~12月→5~6月の1 年半と推定される。上部の5~6月の貝は17・19層の下部と一連の堆積層を構成するものと推 定される。

19層(ハマグリ純貝層):下部には5月末~6月の貝があり、20層左上部と一連の堆積物と 思われる。中部には10月の貝も混じることから、上半部は秋以降の堆積物の可能性もある。

18層(イボキサゴ純貝層)・17層(混土貝層。イボキサゴ主体、マガキなどを含む):17層下 部には6月の貝があり、20層上部~19層下部に後続するものと考えられる。したがって、18層 (イボキサゴ層のため試料なし)もこの時期の堆積と推定される。また、17層は上部に冬~5 月の貝による明瞭な季節層をもつので、春から翌春までの堆積物と考えられる。

16層(混貝土層。イボキサゴ主体、マガキ・灰を含む):下部に冬前半、上部に4~6月の 貝を含む。17層上部と季節が一致し、層の内容も近似することから、これと一連の堆積物であ る可能性が高い。したがって、20層上部から16層に至る一連の貝層の堆積季節は、20層上部~ 17・19層下部 [5月末~6月]→19層上部 [10月~]→16層・17層上部 [冬~6月]と推移し たものと推定される。

15層(混貝土層。シオフキ・アサリの破砕貝主体):9月~冬の貝を3月の貝が覆っており、 この時期の堆積と推定される。16・17層上部からの継続的な堆積であろう。

14層(混土貝層。イボキサゴ破砕貝主体):下面(=15~16層上面)にハマグリの薄層があ り、これらは11~2月の季節性を示す。14層のイボキサゴ破砕貝そのものの堆積季節について は明らかでないが、上面に5月の貝が1点あることから、冬~春の間に堆積した可能性も考え られる。

13層(イボキサゴ純貝層。ハマグリ・アサリ等を含む):中心部に11~1月の貝が分布し、 その上に5~7月の貝が散在する。秋~冬を主体に、翌年の春~夏に及ぶ堆積と推定される。 下面に5月の貝が1点あることから、堆積開始時期は前の春まで遡る可能性もある。

12層(混土貝層。イボキサゴ破砕貝主体。下面に灰層あり)・11層(イボキサゴ破砕貝の純 貝層)・10層(イボキサゴ薄層)・9層(ヤマトシジミ薄層)・8層(イボキサゴ破砕貝の薄層): 12層と11~8層の層位的関係が不明であり、また明確な推定値の得られた試料数が少ないため、 堆積季節の推定は難しいが、各層に10~12月の貝が見られることから、この季節を中心とした 堆積の可能性がある。

7 層(混土貝層。ハマグリ主体):下半に12~5月の貝が分布し、その上に9~10月の貝が 散在する。冬~春から、夏の中断を経て秋に至る堆積と推定される。

6 層(混土灰層): 試料なし。上下の層の連続堆積を仮定すれば、11月頃の堆積の可能性も 考えられる。

5層(イボキサゴ破砕貝の純貝層):イボキサゴ破砕貝層の中に11月~冬の貝が散在する。 この季節を挟む前後の期間の堆積物の可能性がある。

4 麅(イボキサゴ純貝層、ハマグリを若干含む): 下部に冬、上部に10月下旬〜11月上旬の 貝があり、この期間内の堆積層である可能性が高い。

3層(ハマグリ純貝層。上部にヤマトシジミ多い):10月~冬前半(冬輪形成前)の貝が厚 く堆積し、上面付近に春の貝が散在する。秋~冬を主体とし、春に至る連続堆積層と思われる。 4層からの連続的な堆積物である可能性が強い(下面に見られる夏の貝はおそらく混入であろう)。

2 層 (イボキサゴ破砕貝の純貝層): 試料なし。

1 層(純貝層。イボキサゴ・ハマグリ混合):春~秋の貝がある。試料数が少ないため、季 節層の有無は不明だが、下部から上部に春-夏-秋の順に並んでおり、連続堆積の可能性もあ る。

貝層の保存状態

I層中の死亡季節分布は、死亡時期の近接した貝が薄い層を成してまとまる傾向を示してお り、全般に廃棄単位の保存状況は良好と判断できる。特に下部の層準では、33層、25~26層、 21層のように春の貝が集中的な分布を示す傾向があり、これは灰層(27層・21層)の付近で特 に明瞭に認められる。これに対し、上部では、3層で秋の貝が比較的大きなまとまりを成すも のの、季節分布は概して散漫である。これは、貝層の発達に伴って堆積面が不安定化したこと、 あるいは春の採貝が衰退し、集中的な季節層が形成されにくくなったことなどによるものと推 測される。

貝層の堆積に要した年数

図9は各層準ごとの死亡季節の分布とその推移を示したものである。試料の配列は、細別層 の堆積序列や試料間の上下関係と矛盾しない範囲内で、季節の推移が連続的になるよう調整し てある。ここでは、この図から読みとれる堆積季節の層位的変遷をもとに、貝膚の堆積速度に

Layer	No.	sp.	Number of Gro	wth-Line: 4 90	s from La.	st Winter Ring 80 270	W Layer	No.	sp,	Number of G	rowth-Line W 9	from Lag	st Winter	Ring 70 W
1 1 1 1	41 3a 1 2a	ML ML ML ML	2697 164 161 437	ō	°	¢	13 13 13 13	62 69 60 65a	ML MV TP ML	159? 111 74 333-W	0	° °		
ຒ ຒຒ ຒຒ ຒ	22 23 11a 15 8L 21 9a 19	<u>써 봐서 봐서 봐서 해</u>	270-BW(EW?) 39 357 267 22/98 331? 253-BW(310?) 259-BW(310?) 259-BW(210?)	000	o		13 13 13 13 13 13 13 13 13 13	59 69 70 63 66 73	MLP MMLP MMLLP MMLLP	340 323-BW 323-BW 323 312 281 142/280 2697 82	0	0	c	°°'
	13 20a 18 24 14	ML ML ML ML	273-BW (289?) 243-BW 89/240-BW 282[-BW] 2637	c			14 14 14 14 14	74 a 78 77 75	ML ML ML ML	W 333 2797 231-8W	0			<u>o · </u>
3333	12 16 6a 7	ML ML ML ML	224-BW(259?) 240-BW(250?) 235? 123?		o	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	15 15 15 15	82 88a 89 87 86	ML MV TP MV TP	307 25 30 26 W	0000	•		
44444	25 26L 30a 29 27 28	ML ML ML TP	205-BW 257? 246 244? W C			0 0 0	15 15 15 15 0 16 0	83 85 84 96	ML ML ML ML	284-BW(EW?) 2137 2087 123 107(/280-BW)		<u> </u>	°	
5 5 5 5 5 5	32 34 33a 35 31	ML ML ML ML ML	1907/W 6 W 27-BW 6 87/296 258	2		°	17 9 16 17 16 17 17 17	97 90 101 79 99a 103	MMMMM	96? 51? 46? 45? 42 31[/253]	0000	໑ັ	٥	
777777777777777777777777777777777777777	38 36 49 418 39 414 438 47 45 45 45 45 42 42 46	<u>서</u>	76/202-BW 193-BW 258[-BW] 242 277[-BW] 197? 101 101 97 20 3307 297/324-BW 271-BW(3107)	0	0000	· · · · · · · · · · · · · · · · · · ·	1/6 16 16 19 19 19 17 17 19 19	104 95 94 93 108 111 102 107 105 105 109	ĸ₩₩₩₩₽₩₩₩₩₩₩₩₩₩₩	202/W 179/W 316-BW 240-W 102/258-BW 248 234 131 1157 124/304-BW 1207 103 1197	9 9	• • • • • •	• •	
12 12 12 12 12 12 12 12 10 12 11	53 52 51a 50 54 55 67 56	ML ML ML ML ML ML	(25/)137 97/279 87/277 (43/)314 [58/)234 234(-BW] 245 242[-BW]	0 0	0	0 0 0 0 0	19 20 20	123 130 131	ML ML ML	101 135 100		0		

図9.加曽利北貝塚区画A(I層)における死亡季節の層位変化を示すダイアグラム

W:冬輪形成中、BW:冬輪形成前、EW:冬輪形成直前。大きな円は確実または可能性 の高い推定値、小さな円は1 試料で複数の推定値が得られているもの、横線は推定値に幅 のあるものを示す。

- 22 --

•

Layer	No.	ap	Number of Gru	wth-Line W 9	e from 1 0	Last W 180	inter 21	Ring 70 W
20 20 20 20 20 20 20 20 20 20 20 20 20 2	119 117 122 113 127 125 106a 120 132 1314 129a 126a 129a 126a 133a 142 133a 142 128 132a 142 128	MEMORY MERONAL MER	240-2W(3112) 3032 88/289 2877 [34-02/1243-BW 269-1243-BW 269-1243-BW 269-1243-BW 196-1245 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1067 1075/250-BW 257-BW 2590-BW 290, 2871-BW 2871-BW 2877 243-BW(2877)		000 0			°°
21 21 21 21 21 21 21 21 21 21 21 21 21 2	134 146 144 137 143a 121 135a 162a 162a 164a 163a 145 138 138	MLLVLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	46 121 907 87 742 732 732 70 50 29 16[/236] W 21/236] W 252	0 0 0 0 0	0		°.	
22 22 22 22 22 22 22 22 22 22 22 22 22	148a 149 152 150 154 157 155R 147 160a 153aL 151	MLL MLL MLL MLL MLL MLL TP	309[-357] 303 68/302 260 130 97/245-BW 88 20-89 48/273-BW 42	,,,,,,,,	0		0	0 0
23 23 23	158 156a 161a	ML ML ML	(205/)290-BW (65/)251-BW 136	۰	<u> </u>	•	_	
24 24	166a 165a	ML ML	95 87	c	b 			
26 26 25 25 25 25 25 25 25 25 25 25 25 25 25	183 1784 177 174 171 182 1814 1724 175 1698 1794 1794 1794 1704 176 1674	MMMMMMMMMMMM MMM	105 3187 (59/1311 3107 269-BW 111(/337] 95 45/308 76 78 78 78 78 76 657 637 657 637 637 637 637 634 45	° 1° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0		•	° °
27 27 27	189a 191 190a	ML ML ML	601/320-BW) 57 53	000				

.

Layer	No.	ep.	Number of Gre	wth-Lines W _ 90) from I	ast 180	Winter 23	Ring 0 1
28	188 192	NV MV	83+(40?) 82	0	-			
29 29 29 29	184 185 187L 186	ML ML ML ML	1057 100 54/288-BW 274/305-BW		00			·····
31 31 31 31 31 31 31 31 31 31 31	200a 203 197a 206 196 201 195 193 212 194	MANNA MANA	219-BW(300?) 264? 228-BW 210? 300? 85/300 124 185? 180	•	0	00	0	 0
32 32 32 32 32 32 32 32	208 204 210 205 207 211	ML ML ML ML ML ML	16/213 150 120[/250] 118? 118 73[/280]	• 0	0 0 0		a o	0
33333333333333333333333333333333333333	2224a 2224a 2214 2215 2217 2217 2217 2218 2223 2218 2223 2218 2225 2213 2213	ML MLL MLL MLL MLL MLL MLL MLL MLL MLL	333-BW 210 109 87[/209(-BW)] gpring7 50[/20] 44[/224] 44[/224] 37 201/160] (160/1300-W 222-W7 269	00000	•		°	

.

図 9. (つづき)

ついて検討する。ただし、I 層中には土層、イボキサゴ層やその破砕貝層など、堆積季節を直 接推定しにくい層が多数介在しているため、貝層全体の堆積速度を推定することは難しい。こ こでは季節の連続的な推移が認められた部分について、個別に堆積期間を推定するにとどめる。

33層~28層:秋~冬→春~夏のサイクルが3回(33層下部~中部、同上部~32層、31層~29・ 30層)認められる。堆積期間は最低で約3年間である。28層は土層であり、堆積中断の可能性 がある。

27~14層:夏(7~8月)の貝が欠けるようになるため、春から一気に秋へと移行する特徴 的な季節推移のパターンが見られるようになる。25~26層ではこのパターンが典型的に認めら れ、春から冬の約1年間の堆積物と推定される。24層は土層であり、堆積中断の可能性がある。 23~14層では、秋・冬→春のサイクルが最低で7サイクル見られることから、堆積に要した期 間は7年以上と見積られる。この部分は堆積状況に明らかな中断の痕跡がないことからみて、 実際の堆積期間もこの値を大きく上回ることはないと推測される。

13層~1層:春の貝が減少し、季節組成が秋~冬に偏るため、季節推移は不明瞭になる。秋 →冬~春のサイクルが少なくとも4回(13層下部→上部、12~8層→7層下部、7層上部→4 層下部、4層上部→3層)にわたって出現しているので、堆積に最低でも4年を要しているこ とは間違いない。ただし、12~8層では堆積状況が錯綜しているので、複数年にわたる貝が含 まれている可能性が強い。

以上を通算すると、I層の形成には最低でも15年を要したと推定される。

貝層の構成要素と堆積季節の関係

図10は、細別層をその構成要素(貝類組成や灰など)の特徴によって分類し、上記の検討から推定されたそれぞれの堆積季節と併せて示したものである。この図に沿って貝層の構成要素と堆積季節の関連を見ると、ハマグリ主体層・イボキサゴ(完形)主体層の場合、堆積季節は層によって様々であり、とくに傾向性は認められない。また、個々の層の堆積期間は半年~1 年以上と長く、単一季節内に形成された層は意外に少ない。このように、貝種と季節性との間に周期的な対応関係は見出せない。

これに対し、イボキサゴ破砕貝層は14層・12~8層・5層のいずれもが秋~春の期間内に偏 りを見せ、なおかつ堆積期間が比較的短いという特徴がある。ただしこれは、これらの層準を 含む中~上部層準において、二枚貝類の死亡季節が秋~春に偏っているために生じた見かけ上 の現象と考えられなくもない。

その他では、ヤマトシジミを含む層は秋ないしは冬~春に、灰を含む層は春に偏る傾向があ る。マガキを含む層については、とくに傾向は見られない。 二枚貝唇

層No.	<u>混土</u> 率	貝類組成	灰	 季節	1	2	3	4	5	6	7	8	9	10	11	12	
3	純貝層	W1 (+Wv·Cj)	-	Oct-Jan/War	_		_										
7	混土貝層	Ml (+Tp·Nv)	-	Dec-May/Sep-Oct			-		a.					_	•	_	
15	混土貝層	Tp·Nv	-	Sep-Mar	<u> </u>	_	_								_		
19	純貝層	W 1	-	Jun(/Oct)											•		
20	純貝層	₩1 +Cj (+¥v)	-	Dec-Feb/May/Sep-Dec/May-Jun						_	·····					_	
21	混土貝層	M1 +Mv	++	Feb-May				_									
22	純貝層	₩1 +Cj	-	Apr-Jun/Nov-Dec									•••••••••	[—		
25/26	混土貝層	¥l +¥v∙Cj	-	Apr-Jun/Dec												—	
31	混土貝層	11 (+Cg)	-	Aug-Dec								-				—	
33	混貝土層	Bv	-	Nov/Mar-May/Sep-Jan									-	_		_	

------ 堆積した期間, ------ 堆積した可能性のある期間, ------- 中断期間

完形イボキサゴ層

層No.	混土率	貝類組成	灰	季節	1	2	3	4	5	6	7	8	9	10	11	12
4	純貝層	Um (+N1)	_	-Feb-Nov-												
10	純貝層	Um	-	Oct											•	
13	純貝層	Ua t∦l·∦v·Tp	_	(May)-Nov-Jan-(Jul)												
16	混貝土層	Ūm (+∦1•Cg)	+	(Oct)-Jun												
17	混土貝層	Ua +Cg ·Bv	-	(Jun-)Feb-May						•••	·					
18	純貝層	Ŭm	_	May-Jun					-							
23	純貝層	Մո	_	Jul-EW												
32	混貝土炤	Ŭm ∔Bv	-	-Yay-Aug						••••						

・・・・・・ 堆積期間の範囲(この期間内のある時期に堆積した可能性が強い)

破砕イボキサゴ層

唇No.	混土率	貝類組成	灰	季節	1	2	3	4	5	6	7	8	9	10	11	12	
5 8-12	純貝層 純貝層	Umbr Umbr	-	-Nov-Feb- [-Oct-Dec-(Jul)]				-					-		••••		
14	純貝層	Umbr	-	Feb-(May)				• • • •	-								

ヤマトシジミ主体層・ヤマトシジミを含む層

•

層No.	混土率	貝類組成	灰	季節	1	2	3	4	5	6	7	8	9	10	11	12	
9 22上面 29-30	純貝層 純貝層 純貝層	Cj Cj Cj	-	(Oct) Dec-Apr (Dec-May)								-					

図10.加曽利北貝塚区画A(I層)における貝層構成要素と堆積季節の関係

マガキ主体局・マガキを含む層

BN	2. 龙士率	貝類組成	K	手箴		İ	Ž	3	4	6	6	7	8	9	10	11	12	
16	浅貝土膏	Us (HILL-Cg)	+	(Oct)-Jun	ding dini man			***	****	***	• • *							1111111111
17	湖土貿易	Øs: ∔Cg+Bv	****	(Jun)-Feb-May	ł				****	* *	••				***			-
24	級土員曆	¢g.		(Hay-Jun)	agameter.					***	• • •							
31	混土以附	#1 (+Cg)		Nay-Dec	1991 Mediane			000000000000000000000000000000000000000	•	***				***	***	***	** = *	b 47 Martin Barro

灰層・灰を含む層

kino,	混土率	員類起成	Æ	季節	1	2	3	4	5	6	7	8	9	10	п	12	
6 16上部 21	土居 混員土居 淞倉十月	₩ (+¥i+€g) ¥i +¥v	++ ÷	(Oct) Apr-Jun -Feb-Hay-		* 14 + +	and the state of t	****	+ n = :					• • •			
27	土野		ŧł	Apr			1.101										

凡例:

貝類組成: Bv 二枚見、 Cg マガキ、 Cj ヤマトシジミ、 LL ハマグリ、 La シオフキ、 7p アサリ、 La イボキサゴ、 Indur イボキサゴ粉発見、A 4B (HC) A主体、B参い、C含む、 灰: ++ 多量に含まれる。+ 含まれる。- 含まれない、 季節: ()は不明確なもの。

図10 (つづき)

(2) 区画 D(住居跡内貝層)

貝層の堆積状況

図11に区画Dにおける貝層の堆積状況を示す。本区画における貝層は、廃絶された竪穴住居 が次第に埋没し浅い窪みとなった段階で、ここに貝が廃棄され堆積したものである。住居跡は 環状貝塚の内側寄りに位置し、I層の東端に隣接している。住居自体の構築とI層の堆積の前 後関係は不明だが、住居跡覆土はI層の裾野を覆い、II層に覆われる。

住居床面から約30~40cmほど貝を含まない土層が堆積した後、貝層の形成が始まる。貝層の 堆積は傾向として東から西(集落の内側から外側)へと進んでいる。貝層の最大厚は約50cm。 内部には、ハマグリを主とする二枚貝の層、完形のイボキサゴ層、イボキサゴ破砕貝の層が複 雑に重なっており、部分的にヤマトシジミの薄層、マガキのブロック、土・灰のレンズが含ま れる (図版1-4)。これらの層の多くは、厚さ数cmから10cm程度のレンズ状を呈している。 こうした状況は基本的に1層(特にその上部)に類似している。

死亡季節分布と貝層の堆積季節

各試料の計測値、死亡季節、冬輪殻高を表4に示した。区画D全試料の合計による季節分布 (図12)を見ると、死亡季節は周年にわたっているが、春~夏の貝が目立ち、冬(12~2月頃) の貝が少ない。

区画Aと同様に、試料の採取位置と試料番号、推定死亡季節の分布を図13に、またそこから 想定される季節層の層位分布を図14に示した。以下、各細別層ごとに死亡季節分布、堆積季節 を記載する。

19b 層(ハマグリ主体、混土貝層):死亡季節を確定できた試料(以下、単に「確定試料」と する)2点はともに秋(10~11月)の死亡。他の2点も同様の可能性がある。この層は破砕イ ボキサゴ層中に介在するハマグリの薄いレンズであり、おそらくこの季節における短期間の堆 積物と考えられる。

19a 層(ハマグリ主体、混土貝層):1月前後の貝が2点、3月が4点、6月が1点ある。冬から春先を中心に、初夏まで続く堆積と推定される。

18層(イボキサゴ純貝層)・17層(破砕イボキサゴ純貝層):冬の貝1点、7~8月の貝4点 がイボキサゴ層中に介在している(前者は19a層と一連の可能性がある)。この季節を含む前後 の期間に堆積した層と思われる。No.83とNo.116は、死亡季節と層準との関係に矛盾があるが、 死亡季節はきわめて近接していることから、推定誤差によるものと思われる。

16層(ハマグリ主体、混土貝層):上下を破砕イボキサゴ層に挟まれたハマグリの薄いレン ズである。a~cの3層に細分されるが、堆積状況・層内容から見て、一連の堆積物と判断でき る。16a層では冬~春先と夏の貝が混在している。右下に7~9月の貝3点があり、19a層か ら連続する可能性が高い。左側には12~1月の貝3点、3~5月の貝2点があり、さらに14層 の下に8~9月の貝が2点ある。16b層では擬冬輪をもつ試料が多かったため、死亡季節を確 定できた試料が少ないが、春(3~4月)の貝が2点あるほか、擬冬輪をもつ試料4点につい てもこの季節の死亡として矛盾はない。16c層では夏(6~7月)の貝が2点ある。16a~c層 間の層位的な上下関係は不明だが、季節の連続推移を仮定すれば、16a層右(夏~秋)→16a 層左・16b層(冬~春)→16c層(夏前半)→16a層(夏後半)という流れが考えられる。

15層(イボキサゴ破砕貝主体、混貝土層): a・bの2層に細分されるが、堆積状況・層内容 から見て、一連の堆積物と判断できる。確定試料としては、15b層の右隅に11月の貝1点、2 ~4月の貝3点(No.75は位置・死亡季節から見て16b層からの混じり込みの可能性あり)が あるが、試料が狭い範囲内にかたまっているので、これらが15層全体の堆積季節を示している とは限らない。本層は混土率が高く、間層(貝の廃棄の断絶期を示す層)の可能性もある。

図11.加曽利北貝塚区画D(住居跡内貝層)の貝層断面(凡例は図5、各層の記載は表3を参照)

表3.加曽利北貝塚区画D(住居跡内貝屬)における貝層の層相(図11参照)

國番号	混士率	土色	員類組成/その他の構成物	備考
1	土裔	黑褐色	二枚貝をわずかに含む	
2a	混目土团	错得色	二枚貝(風化強い)	
. b			ハマグリ (小型) ・イボキサゴ (破砕)	
c			ハマグリ(小〜中型)主体、イボキサゴ多い	
3	1.M	茶褐色	灰を多く含む(とくに上面)	
4	純貝图		イボキサゴ(破砕)主体、下面にマガキの薄層。	
5	土稻	暗褐色		
6	混員土図	暗褐色	イボキサゴ	
7	强士自恐	暗褐色	ハマグリ(小ー中型)主体、イボキサゴ多い、	下面にヤマトシジミ層.
			ツメタガイ混じる.	
8	混士貝層	褐色	ハマグリ(小~中型)主体、イボキサゴ(破砕)多い、	
			イボキサゴ (完彩) 混じる.	
9	混土貿易	褐色	イボキサゴ(破砕)主体	9階は表面にかぶっているのみで
				実際には8層=10層の可能性あり
10	混目土图	暗褐色	ハマグリ主体、一部ヤマトシジミのブロックあり.	
11	湿土貝類	暗褐色	イボキサゴ(破砕・完形の混合)主体	下面にヤマトシジミ麿
12	混土貝稻	時褐色	イボキサゴ(破砕・完形の混合)主体	
13	混土貝尼	睡褐色	イボキサゴ(破砕・完形の混合)主体	
14	土圈	證据色	灰を多く含む	
15a	湿貝土的	EAK) (*	イボキサゴ(敬砕)	
Ь	混員土蟒	暗褐色	イボキサゴ(破砕)	
16a	混土貝质	歸褐色	ハマグリ(小〜中型)主体、イボキサゴ混じる。	
Lь	混土貝茵	翦揭色	ハマグリ(小~中型)・イボキサゴ主体	
c	渥土貞冏	暗褐色	ハマグリ (小~中型) 主体	
17	純貝層		イボキサゴ(破砕)主体、ハマグリ混じる。	
18	純貝屬		イボキサゴ(完形)主体、イボキサゴ(破砕)多い	
19a	混土貝層	暗褐色	ハマグリ (中〜大型) 主体	
j b	混土貝層	暗褐色	ハマグリ(小~中型)主体	
20	出版	暗褐色		······································

図12. 加曽利北貝塚区画D(住居跡内貝層)における二枚貝類の死亡季節組成
表4.加曽利北貝塚区画D(住居跡内貝層)における貝殻成長線分析試料と分析結果

seasonality

251-BW

140-BW

100/262

152-188/352

108/263-BW

157/246/281-BW

183 ` 171[/EW]

260

253

73-93

30/152

50/207

58/220

70/248

67/213

250-BW

[68/142]?

211[/72]

74[/197]

193[/322]

257

290

136

45/205

94/248

282 52-76

40 42/182

42[/220]

125[/300]

266[/87]

W/148

169[/W]

83[/197]

70[/250]

8[/285-BW]

102/285-BW

L/R

R

R

R

R

R

L

missing

L

R

L

sp. *1

M

ML, R

ML.

TP R

ML R

No.

1

2 ML,

3

4 ML

5 ML R

6 ML. R

7 ML

8 MI. L

9 ML L

10 ML R

11

12 ML L *

13

14 ML L

15 MV L

16 ML R

17 ML L

18

19 M1. L

20 ML L

21 ML.

22 MI. L

23 ML L

24 ML L

25 ML R

26

27 ML L

28 ML R

29 ML

30 M1 L

31 ΤР L

32 ML L

33 MI

34 ML -

35 ML L

36

37 ML

38 ML R

39 ML R

40 ML. L

41 ML -

42 ML, L

43 ML R

44

45 ML L

46 ML R

47 ML Ļ

48

49

50 ML. R

51 ML. R

52 ML. R

53 ML L

54 ML R

55

56

57 ML L

58 ML R

59 ML R

60 ML

61 ML R

62 ML R

ML R

ML R

ML L

M1

ML

ML

L

R

R

L

SL

*2

38.5

30.5 * 26.5 (w)*

28.5

28.5

26.5

33.7

32.7

29.4

29.0

29.5

33.5

31.8

43.1

29.7

_

34.5

33.0

32.7

29.5

31.3

--

33.4

31.5

23.8

36.2

31.4

29.2

27.8

30.8

36.4

37.5

35.5

_

32.5

35.5

37.3

29,5

29.2

27.7

34.4

37.4

35.5

26.2

32.1

35.0

31.2

30.1

32.6

±

*

SH W/F

+2 #3

32.0

26.5 (w)

23.8

24.9 w

22.1

28.0

27.6 w

25.3 w

24.5 w

25.6

24.8 w

25.1

27.3

38.8 W

25.6 w

23.8 (w)

27.4

27.6 w

27.2

27.6

25.6 w

26.2

27.2 w

26.5 (w)

20.9

293 w

23.4

23.7

25.1

29.7 w

29.9

30.2 (w)

27.0

29.0 (w)

29.3

27.8 (w)

31.3

24.6 w

26.0 w#

34.5 (w)

24.5

31.0

28.5

22.0

27.0 w

27.0 w

25.1 W

27.5

* 25.8 (w)

÷ 29.5 (w)*

*

±

*

*

* 23.5 (w)*

w

w

w

₩

(w)

w

w

(w)

w

w

w **(f)**

w

w 31.4

(w)

(w)*

f

W

w 29.0

(w)

w

(f)

f

f

w

w

w

w 28.8

₩

₩

w

w

w

ality		No.	sp.	L/R	SL	SH	W/F	seasonality
974 1	1	<u> </u>	*1	Ļ	+2	#2	* 3	100
-BW	ı İ	64	ML	<u> </u>	28.7	24.8	<u>"</u>	195 76/210
-BW	ı İ	65	MI	۱ ۴ I	35.4	30.4	"	307-BWI/96-137]
306	ı İ	66	MI	וזי	33.1	27.9	w	123/234
/352	ı İ	67	ML	וזי	25.9	22.4	w	105/193-BW
262	ı İ	68	ML	R	27.1	23.4	w	129
175	1	69	ML	۱ċ۱	32.8	27.2	w	115 ?
183	۱ I	70	ML	ונו	31.7	26.3	· w	45/268
EW]	I I	71	ML	1 L I	32.2	26.6	w	182/328
-	I I	72	mis	sing	-	-		-
-BM	I I	73	ML,	R	1 - 1	-	6)	138/277
-DW	ı İ	74	ML	R	-	-	θ	W to f to pol
100	ļ İ	75	ML]	1	+ 27.5	(w)	49[/299]
000 260	1	16	ML	Ц <mark>К</mark>	- 32.5	26.9	(21 126
180.2	1	11	ML		25.0	20.2 91 7	, 1777 ₩	191[/348]
198 2	1	70	ns⊑ Mt	ון	20.0	24.0	Ŵ	195 7
253	1	80	M			28.4	(w)	115
BW]	1	81	ML		_ İ		(ff)	150 ?
-	1	82	ML	ī	į i	27.2	(w)	120
8-93	!	83	ML	R	33.0	28.5	w	166
152	ſ	84	ML	R	* 31.5	-	Ð	53[/203]
-BW	ł	85	ML		* 3 3.0	-	(f)	269[/28]
207	1	86	ML		31.4	26.3	w	27/183
200]	1	87	ML	<u> </u>	34.1	28.9	.	29
-	1	88	ML	-			υÐ	53/265
220	1	89	ML		36.6	30.3	[<u>%</u>]	04/2 / 0 20/103
240 84	1	90		^K		20.0	w	33/131
257	1	91	MIL MI	ᆝᇣᆝ	31.4 * AFF	37.5	.	25[/203]
106	ļ	02	M		+ 205	25.0	(w)	165/300-W
67	1	94	M		45 7	37.2		172
213	1	95	M	คิ	35.9	28.9		192-205
173	1	96	MI	ï	32.5	26.5	w	257[/161]
BW	1	97	ML	R	* 38.8	31.5	w	184/325
42]?	1	98	ML	L L	* 33.1	28.0	w	26/298[/173]
127	1	99	ML	L	-	-	(f)	316
/72]	1	100	ML	L L	-	-	60	338[/210]
197]	1	101	ML	R	33.0	26.6	"	294[/17/159]
290 200 ¹	1	102	ML	<u>L</u>	27.5	24.0	 "	- 78
120	ļ	103	ML		28.8	24.6	<u>*</u>	14/
130	1	104	ML		31.0	20.5	w w	138 223[/100]
1971	1	105	ML.		30.0	24.0	""	
248	1	100	NU NU		55.0	43.0	"	25
275	1	107	M1	$ \hat{1} $	55 A	44.9	[‴]	26[/233]
282	1	109	M	ī	* 32.2	26.5	w	133
-76	ļ	110	ML	R	* 51.5	40.7	w	322
45	1	111	ML	ΙĽ.	44.0	36,5	w	16[/181]
90	ļ	112	ML	L	56.3	45.5	w	15/207
220]	ļ	113	ML	L	* 55.0	43.0	•	155[/10]
132	ļ	114	TP	I L	28.3	23.0	۳	290-W
252	ļ	115	^{ML}	R	57.4	44.9	^{w*}	W/185
200	ł	116	ML.		32.2	27.3		1/8[/10]
10.0	ļ	117	I ML	R	29.1	25.6	, Å	8/225 951[/02]
16 ? 40	ļ	118	#L	11		* 25.0	(m) (201(/93] W/969
40 (182	ļ	119	112		330	20.2	1	58/97A
/871	ļ	120	MIL MIL	^{rt}	33.3	20.0		288
92	ļ	121	MI		33.6	28.3	w	174
	1	144		<u> </u>	<u> </u>	<u> </u>		

+2.():確定的でない、+:あり(位置不明)、-:なし、/:複数候補あり、

*3. w: 完形, (w): 破損(中心線残存), (f): 破損(中心線なし, 殻頂あり), f: 破損(殻頂なし), *: 切断線 ギ中心線

14層(灰混じり土層)・13層(イボキサゴ主体、混土貝層): 試料なし。

12層(イボキサゴ主体、混土貝層):4~8月の貝が5点あり、明瞭な季節層を成す。この 季節を中心とする堆積層と推定される。

11層(イボキサゴ主体、混土貝層):確定試料なし。上面に7月または11月の貝が1点ある。 上下の層が連続的に堆積したと仮定すれば、秋~冬の期間内の堆積である可能性も考えられる。

10層(ハマグリ主体、混貝土層):下部に夏~冬(8~12月頃)の貝が3点、上部に夏(6~ 8月)の貝が3点ある。試料が少ないが、夏~翌年夏の堆積層である可能性もある。

9 層(破砕イボキサゴ主体、混土貝層): 試料なし。断面の観察結果からみて、本層は断面 の表面にうすく貼り付いているだけであり、10層と8層は一連の層である可能性が強い。

8層(ハマグリ主体、混土貝層):下部に3月の貝2点、中部に9~11月の貝4点、上部に 3~8月の貝6点がやや混在して分布している。これらは連続的な季節推移を示している可能 性が強く、春から翌年の夏までの1年半にわたって堆積した層と推定される。

12層、10層、8層の層位的な前後関係は明らかでない。8層の死亡季節分布パターンは、下部の春の貝を除き、10層のそれとよく似ていることから、これらが同一の層である可能性も考えられる。12層は上位の11層と同内容をもつことから、10・8層よりも新しい可能性があるが、死亡季節は8層の上部と一致しており、これと同時堆積の可能性も考えられる。

7 層(ハマグリ主体、混土貝層):下部に4~8月の貝が5点、中部に9~12月頃の貝が4 点ある。春から秋への連続的な堆積層と推定される。また、上面に4月の貝が1点あることか ら、翌年春まで堆積が続いていた可能性もある。

6層(イボキサゴ主体、混貝土層):4点の確定試料があるが、死亡季節は2~10月に分散 している。二次堆積の可能性もあり、堆積季節は明らかでない。

4層(イボキサゴ純貝層))・3層(灰混じり土層)):確定試料なし。

2層(ハマグリ主体、混貝土層):a~cの3層に細分しているが、層相に決定的な差はなく、 同一層とみてよい。2a層からは試料が得られていない。2b層の最下部に小型ハマグリのや や集中した部分があるが、ここからは8月の貝が2点得られており、この季節を中心とした堆 積の可能性がある。その他の部分については、死亡季節は5~12月に分散している。また2c 層では各季節が混在した分布状況を示している。試料が少ないため断定はできないが、これら の貝は撹乱を受けている可能性が強く、堆積季節の推定は困難である。

1層(土層):土層中に混在する試料であり、当初は二次堆積の貝で死亡季節はばらつくと 予想したが、結果は確定試料2点が12月前後で一致し、他の1点も同時期の可能性を示した。 偶然の一致とも思えるが、これらの試料が同一レベル上に並んでいることから見ると、土層の 堆積過程で一時的に少量のハマグリが廃棄された可能性も考えられる。

図13.加曽利北貝塚区画D(住居跡内貝層)における死亡季節の層位分布(数字は試料番号、凡例は図7を参照)

- 32 -

図14.加曽利北貝塚区画D(住居跡内貝層)における季節層の分布(凡例は図8を参照)

貝層の保存状態

19~7 層では死亡時期の近接した貝が薄い層を成してまとまるケースが見られる。典型的な 例としては、19a 層(冬~春)、12層(春~夏),8層(下層=冬、中層=秋、上層=春~夏)、7 層(下層=春、上層=夏~秋)があり、その他、19b、17~18、16a~16cの各層でも同様の傾向 が認められる。したがって、この層準においては、全般に廃棄単位が比較的良い状態で保存さ れているものと推測される。

6 層以上では試料が充分に得られなかったため、季節層の分布状況は判然としないが、6 層 や2 層では死亡季節が分散・混合した分布状況を呈しており、これらの層の貝が二次堆積によっ て別の場所からもたらされたか、あるいは廃棄後に攪乱作用を被った可能性を示唆している。

貝層の堆積に要した年数

図15に各層準ごとの死亡季節の分布とその推移を示した。廃棄単位の保存が比較的良好と推 定される7層以下の層準について、貝層の連続堆積を仮定した場合の堆積所要期間を推定する。 6層以上は堆積季節が不明確なので、堆積速度の推定は困難である。

19層~15層:最短期間での堆積を想定すると、19b層(秋)→19a層(冬~春)→18~17層・ 16a層右(夏)→16a層左・16b層(冬~春)→16c層(夏前半)→16a層の一部(夏後半)→15 b層(秋~春)となり、約2年強となる。ただし15層では、前述のように1年以上にわたる貝 層形成の断絶が介在する可能性もある。

14層・13層: 堆積期間は不明である。

12~7層:8・10・12層が同時並行とすると、考えられる最短のケースは、8層最下部(春) →10~8層下部(秋)→12層・10~8層上部(春~夏)→7層(春~秋)であり、堆積期間は 約2年半となる。一方、10層→8層→12層の順に堆積したと考えた場合は、6回の夏(10層下 部・上部、8層下部・上部、12層、7層)を経過したことになり、堆積期間は約5年以上と見 積られるが、その可能性は低いと思われる。

以上から、この住居跡内貝層下半部(7 層以下)の堆積には最低でも約5年を要していると 推定できる。なお、15層を除き堆積物に貝殻の廃棄の中断を示すような特徴は認められないの で、実際の所要時間もこの値を大きく上回ることはないと推測される。

貝層の構成要素と堆積季節の関係(図16)

ハマグリ主体層・イボキサゴ(完形)主体層では、個々の層がそれぞれ異なった死亡季節分 布を示しており、規則的なパターンは見られない。堆積に要した時間幅もほぼ単一季節の層か ら1年に及ぶものまで様々である。これに対し、イボキサゴ破砕貝層・ヤマトシジミ層では冬 ~春を中心とした季節性が認められる。

Layer	No.	ap.	Number of Gr	wth-Ling	e Éron Da 0 1	at Wint 60	Lor Rin 270	ad M	Layer	No.	ap.	Number of Gr	wih-line 9	roa Las	t Winter g 2)	hirg w
1	1 2 3	ML ML ML	2747 251-88 140-88			1	<u>¢</u>		10 10 10	8389 889	ML Hi HL	195 125 1157		å	Q	1) H H H H H
00000000000000000000000000000000000000	9 115 15 14 14	NELVLYLLYLLYLLYL	171(/2W1 108/263-BW 260 1807 100 266 266 266		0 0	0			10 10 10 10 10 10 10 10 10			75/213 307-DW1/35-137 2551/871 123/334 42/162 159[/W] W/140	0 0		5 5	
26 25 26	12	nl Nl NL	175 152-186/352 160/262 157/246/281-8W				\$	27 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -	0.5 #.5.6 00000000	45053	ML ML ML	56/207 49(/299) 45/288 31 W	° °		4 0	0 0
3/4	33	ML. ML	102/285-9W 30/152	0	q	0	**	**	156	. <u>\$5</u>	NI.	2691/28)		×***	Ċ	
6 6	18 17 21	MI, ML ML	253 1987 73-93			o	a		158 168 168	94 94 93	NL NL	172-205 172 165/300-W	****	•	-	********
******		ML	8[/205-BW]			•	, , , , , , , , , , , , , , , , , , ,		160 160	81 82	nl.	1507 120] 0		
そうかとなったったったった	13050841 3430841		67/213 290 250-BW 257 211[/72] 172 168/142]2	4 6		°	0		16b 16b 16b 16b 16b 16b 16b	83 84 89 87 86	nt ML ML ML ML ML	54/275 53(/273) 53/265 39/197 29 27/183	d G Q Q		d d uses disc reasons	
	3133347	MLP MLL MLL ML	127 106 04 74[/197] 70/240 58/220	C C	0	¢	Landerskinner og som som som som som som som som som som		1588 1588 1668 1668	19982079	HL MAL	78 37/233 26/298(/173) 25(/203) 338(/210) 184/325 336	0 0		4 9 9	م م
	73	ML	138/27?	*******	0		6	******	15a 15a	101 105	NX HL	223 /17/1591	٥	9 0	5	a
32 12 12 12	701 771 780		1957 182/328 136 121[/348] 15		0	0		44	164 158 17 17	103 104 83	ML ML ML ML	147 138 166 W/185	•	0	Ö	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
12 3	25 41 42	ME ML ML	70[/250] 193[/322] 136	€? 		¢	*	1990-1990-1990-1990 1990-1990-1990-1990-	17 17 17			178[/10] 174 165(/10] W/263	令(後))) (((0	a a	
and a set and a set and a set and a set and a set and a set and a set and a set and a set and a set and a set a	xx010948176353470	In the second se	132 126[/300] 93 45 45 52-76 93[/1971 52-76 52-7	°°	¢ ¢	\$ \$ \$	°⇔ 00	n a marine na summing any strategy same (c. c	194 184 194 194 194 194 194 194 194 194 195 195 195	105 105 107 112 112 112 121 121 121 121 121 121 12	NL NL NL NL NL NL NL NL	133 41 26//2331 25//2331 15/, 1813 15/207 322 290-W 280 280-W 280 56/274 257//533 8/225	0 0 2 2 2 2 2 2 2 2 2		0 2 2	5 7

図15. 加曽利北貝塚区画D(住居跡内貝層)における死亡季節の層位変化を示すダイアグラム

(凡例は図9を参照)

.

- 35 --

二枚貝層

層No.	混土率	貝類組成	灰	季節	1	2	3	4	5	6	7	8	9	10	11	12	
2下部 7 8 10 16 19	混土貝屬 混土貝屬 混土貝層 混貝土图 混土貝層 混土貝層	NI NI +Um (+Gd) NI +Umbr (+Um) NI (+Cj) NI +Um NI	- - - -	Aug Apr-Dec(/Apr) War/Sep-Nov/War-Aug Aug-Dec/Jun-Aug JuI-Sep/Dec-Sep Oct-War(/Jun)													

完形イボキサゴ層

-																		
	囨No.	混土率	貝類組成	灰	季節	1	2	3	4	5	6	1	8	9	10	11	12	
	11	混土目唇	Um•Umbr	_	(Aug-Apr)	 												
	~~				CB			- 1			- 1							
	12	混土貝層	Um•Umbr	-	Apr-Aug-				• • • •		•••	•••			•			
	18	幼日園	Im +Ilmbr	_	Tul-Ang			- 1										
	10	PERCE			Jar weg													

粉砕イボキサゴ層

熖No.	混土率	貝類組成	灰	季節	1	2	3	4	5	6	7	8	9	10	11	12	
15 17 b tr	混貝土層	Unbr	-	(-Nov-Apr-)							_			•••			
17上部 17中部	純貝層	Umbr (+M1) Umbr (+M1)	_	(Nov-Jul)													

ヤマトシジミ層・ヤマトシジミを含む層

層No.	混土率	貝類組成	灰	季節	1	2	3	4	5	6	7	8	9	10	11	12	_
1下面	混土貝層	Cj	-	(Aug-Apr)													

図16.加曽利北貝塚区画D(住居跡内貝層)における貝層構成要素と堆積季節の関係 (凡例は図10を参照)

(3) 区画 B (Ⅱ 層)

貝層の堆積状況

図17に区画Bにおける貝層の堆積状況を示す。25層以上がII層に、26層以下は住居跡内貝層 に相当する。本区画で分析対象とするのはII層のみである。

Ⅱ 層は全体にイボキサゴが多く、完形貝の層と粉砕された貝の層とが交互に出現するパター ンを示す。二枚貝は少なく、イボキサゴ層の中にレンズ状の薄層を成して介在している。層相 により下部層(25~20層)、中部層(19~13層)および上部層(12~1層)に分けられる。下部 層では厚さ10cm程度の破砕イボキサゴ層と二枚貝層が互層を成す。中部層は分厚いイボキサゴ 層を特徴とし、この中にイボキサゴ破砕貝や二枚貝の薄いレンズが介在する(図版1-3)。 上部層は下部層に類似したイボキサゴ層・破砕イボキサゴ層・二枚貝層の互屬から成り、下半 (12~8 層)では破砕イボキサゴ層がやや厚く発達する。

死亡季節分布と貝層の堆積季節

各試料の計測値・推定死亡季節・冬輪殻高の一覧を表6に示す。区画B全試料の合計による 季節分布(図18)を見ると、確定試料に関してはすべて1月~9月の死亡となっており、中で も2~7月の貝が目立つ。確実に10~12月死亡と推定される貝は見られなかった。4月頃の貝 が少ないが、Ⅱ層における季節組成はおおむね春~初夏中心型の分布といえる。

以下、各層における死亡季節分布・堆積季節について記載する(図17・図19)。ただし、Ⅱ 層では全体にイボキサゴまたはその破砕殻を主体とした層が優勢で、ハマグリなどの二枚貝が 少なく、充分な数の試料が得られなかったうえ、擬冬輪をもつ試料も多かった。これらの原因 により、堆積季節に関しては満足な結果を得ることができなかった。

26層(土層)・25層(破砕イボキサゴ層):25層下面に11月以降冬輪形成前の貝、26層最上部 に2月末の貝が、それぞれ1点づつ見られる。両層の上下関係が明確でなく、また、試料も少 ないため堆積季節の判定は難しいが、両層を併せて秋~春先の堆積である可能性も考えられる。

24層(ハマグリ主体、純貝層~混土貝層):24L層と24R層に分かれる。確定試料は、24L層 では3月と7月が各1点、24R層では6月~8月初旬の貝3点である。両層は内容もほぼ同一 なことから、この季節に堆積した一連の層と推定される。

23層・22層(ともに破砕イボキサゴ主体層):試料なし。

21層 (ハマグリ純貝層):確定試料5点は、すべて2~3月の死亡であり、おもにこの季節 の堆積層と見られる。ただし、層のやや上部に擬冬輪をもつ試料が2点(ともに春または秋の 死亡)あり、これらについては確定試料との層位関係から見て秋(9月)の可能性がある。

20層(破砕イボキサゴ層):3点の試料はすべて冬輪形成中(2月前後)の貝である。いず れも破砕イボキサゴ層中に混在する貝であり、この季節がそのままこの層全体の堆積期間を示 すことにはならないが、少なくともこの層が2月頃を挟む前後の季節に堆積したと見なすこと はできるだろう。

19°層(ハマグリ純貝層): ハマグリ主体の小ブロックだが、死亡季節は下面で3月、上面で 7月と大きな開きを示した。堆積期間が実際にこれだけの広がりをもっていたとする見方もで きるが、再堆積層の可能性も考えられる。

18層(イボキサゴ純貝層)・19層(ハマグリの小レンズ):3点の試料はイボキサゴ層中に介 在するハマグリ殻。確定試料2点はともに9月前半の貝で、残りの1点も同様の可能性がある。 試料が少ないので何ともいえないが、死亡季節が近接していることから見て、この層が9月頃 を挟む前後の季節に堆積した層である可能性は高い。なお、20層~18・19層への季節変化は、 2月から9月へと連続的に変化しているようにも見える。

(数字は試料番号、凡例は図5・図7、各層の記載は表5を参照)

表	5.	加曾利北貝塚区画日	(11層)	における貝層の層相	(図17参照)
---	----	-----------	-------	-----------	---------

搬番号	混土率	貝類組成/その他の構成物	御考
1	純貝恩	イボキサゴ(破砕)主体	\$************************************
2	純貝層	ハマダリ(小型)・オキシジミ・ヤマトシジミ主体	**************************************
3	純貝屬	イボキサゴ(破砕)主体	
4	纯貝層	イポキサゴ(破砕) 主体	3層と同一周
5	純貝眉	ハマグリ(中望)主体、一部アサリ主体。	
5	混土貝瓜	ハマグリ主体。	
Ĝ	純貝層	イボキサゴ (破砕) 主体	
7	純貝類	イボキサゴ主体	
8	純貝炤	イボキサゴ(破砕)主体、上面にハマグリが散在	
9	强士貝凶	イポキサゴ (破砕) 主体、ハマグリ合む	
10	混土貝塔	イボキサゴ (戦砕) 主体	······································
11	乾貝恩	ハマグリ(中型)主体、ツメタガイ多い	
12	混土貝層	イポキサゴ(破砕)主体	
13	純貝尼	イボキサゴ・ハマグリ(中電)主体、マガキあり、	17層との境界付近は、招乱のため
	(やや土泥じり)	上部にハマグリ(小型)のブロックあり.	堆積に乱れあり
14	純貝図	イボキサゴ主体	
15	義員题	イボキサゴ(歳砕)主体	
16	Man	イボキサゴ・ハマグリ主体。	
	(やや土混じり)	イボキサゴ(破砕)混じる	
17	純貝層	イボキサゴ主体、イボキサゴ(敬砕)混じる	
	(やや土混じり)	灰を含む.	
18	教員超	イボキサゴ主体	
19	耗且過	ハマグリ(小型)の小ブロック	
19	純貝腳	ハマグリ (小型) ・シオフキの小ブロック	
20	純貝哈	イボキサゴ(弦砕)・マガキ主体	
21	精贯回	ハマグリ (小型) 主体	*
<u> </u>	(やや土泥じり)		
22	韩凤唇	イボキサゴ (敵砕) 主体	······································
23	君士貝紹	ハマグリ(小ー中型)・イボキサゴ(厳砕)主体。	
ļ	L	オキシジミ・ヤマトシジミ含む.	
24 L	转良燈	ハマグリ(小〜中部)・シオフキ主体	
<u>R</u>	混土員局	- ハマグリ (小ー中翼?) 主体	
25	純貝園	(イボキサゴ(後砕)主体	これより上、耳層(大別層)相当
28	土尼(褐色)		
- 27	混乱土的		
28	凝土貝 戶	イボチサゴ王体、決を含む。	
<u> </u>	(PP±\$1)		
29	10	二枚貝(嵌幹), 伏を多量に含む,	
30		- B.H 1 Me a (167)	He BETOS MALL STOP IN IN AN PRO-
1 31L	編員工校		
	AN ET J. SA		
20		コッサアゴ (銀好) 土地 二次員死しる	
22	治日十四	<i>▲ - 本</i> (金) →	
-04	現現工程	ብ ባተፋ እ.ግ. «እንዲጂ ስ	
24	<u>(エッソ)</u> 手朗		
	通用・開		1 [23] (-1-24)[33] (23)
36	キャーム		in contract million finde
1 200	1 - Locher 3 mr make	1	raakes

•

表6.加曽利北貝塚区画B(II層)における貝殻成長線分析試料と分析結果

• - - - - - - WB WI WZ W3 W4 W5 2 ML R 308 212 i 93/308 ? / -	No.	sp.	L/R	SL	SH	W/F	seasonality	N, of		shell high	t at winte	r ring #2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		*1		*2	*2	*3		WR.	W1	W2	W3	W4	W5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	ML	R	* 36.8	-	(1)	127	1	4				
3 MVV L - + 34.5 (w) 55 2 + + + + + + + + + + + + + + + + +	2	ML	R	32.A	272		93/309	1					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a	MV	i i	-	* 145	6	507 666		1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		MT		24.0	* ***.*	6	82		L .		L .		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1915 1619	1	39.7	07 0		5101 × 1001		(4	1 10 4 1	-¥.		
b mu k k $- * 2283$ (w) 340 1 2.4 6 Mu L $- * 3026$ (w) 13(224) 2 (138) (201) 6 Mu L $- * 3035$ (w) 55(228] 2 / (222) 10 Mu L 1 335 $- 6$ (f) 114 1 $+$ (222) 11 Mu R 362 220 100 7 3 (+) (218) (26) 12 ML R 362 220 100 7 3 (+) (218) (26) 13 mis, 14 TP L $* 228$ 16.4 w $$ (218) (26) 16 Mu L $* 520$ 39.5 w $- 4$ 18.7 28.8 33 37 17 Mu L 520 39.5 w $- 4$ 18.7 28.8 33 37 17 Mu L 520 39.5 w $- 2$ 4 18.7 28.8 33 37 17 Mu L 520 39.5 w $- 2$ 4 18.7 28.8 33 37 18 Mu L 3663 30.6 w W 2 2 + + + 18 Mu R 61.7 46.9 w* $- 7$ / (21.8) (26) 10 Mu L $+ 32.7$ 27.6 w* 185 1 + + 21 Mu L 3268 30.0 w W 2 2 + + + 22 Mu L $* 32.7$ 7 30.2 20 Mu $ f$ (1304-3W 2 + + + 24 Mu R $- * 28.5$ (w) W/221 ? / (21.6) 23 Mu R $- * 28.5$ (w) W/221 ? / (21.6) 23 Mu R $- * 28.5$ (w) W/221 ? / (21.6) 24 Mu R $- * 28.5$ (w) W/221 ? / (21.6) 25 Mu L $8.32.7$ w 116 ? 2 (3.3) (23.8) 27 Mu R 35.4 29.4 w 142 ? 2 (+) (21.6) 28 Mu R $- * 35.4$ 29.4 w 142 ? 2 (+) (21.6) 29 Mu L $ 5$ (f) 97.132 2 (4) (21.6) 29 Mu L $ 5$ (f) 97.132 (2 (+) (21.6) 20 Mu R $- * 28.5$ (w) 30.2 (21.2) (23.8) 21 Mu R $- * 35.4$ (w) 30.5 (21.2) (23.8) 21 Mu R $- * 35.4$ (w) 30.5 (21.2) (2 (2.6) 23 Mu R $- * 35.4$ (w) 30.5 (w) 32.5 (2.2.5) 33 Mu L $- 30.8$ (w) 32.5 (2.2.7) (2 (21.6) 34 Mu R $- * 28.5$ (w) 33.32 (21.2) (2 (+) (+) 35 Mu L $- 30.8$ (w) 32.5 (22.5) (11.9) 36 Mu R 33.2 27.7 w 205.5 (21.8) (31.) (36.) (41.) 37 Mu L 33.3 27.7 w 205.5 (22.5) (17.9) 38 Mu R 32.2 28.9 w 10 7 (4.1) 39 Mu L $ 83.25$ (w) W 2 (2.5) (2.5) (17.9) 39 Mu L $ 83.25$ (w) W 2 (2.5) (2.5) (17.9) 30 Mu R $ 2.36.4$ (w) 24.1 2.50 31 Mu R $ 2.64.4$ (w) 24.1 2.50 33 Mu R $ 2.26.4$ (w) 43.2 (2.5) (22.5) (17.9) 34 Mu R $- 2.23.8$ (w) $12.24.7$ W 2 (4) (4) 35 Mu R $- 2.23.8$ (w) $12.24.7$ (2.6) (2.6) (31.) (36.) (41.) 35 Mu R $- 2.26.4$ (w) 22.5 28.8 36 Mu R $- 2.26.4$ (w) 22.5 28.8 37 Mu R $- 2.26.4$ (w) $12.24.7$ W 2 (4) (4) 38 Mu R $- 2.26.4$ (w) $12.24.7$ (2.6) (31.) (36.) (41.) 37	a	984.		33,1	27.0	W.		2	1.8)	1 18.4 1		i .	
7 $ ML R - * 30.8 (w) 13[-224] 2 (13.8) (22.1) (27.2) (3.3.3) (3.3.3) (27.5) (3.3.3) (27.5)$	6	ML	к	-	* 28.9	(w)	340		2.4				
	17	ML	R	-	* 44.8	(w)	98	3	18.6	32.9	40		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	ML	L		* 30.8	(w)	13[/224]	2	(13.8)	(29.1)			
10 ML L 335 - 6 (f) 114 1 + + (18.9) (33.3) 12 ML R 362 290 (100? 3 /) (21.8) (26) 13 miz (19.9) (33.3) 14 TP L *228 16.4 w (19.9) (33.3) 15 ML L 46.7 38.1 w 130 3 // 26.9 34 16 ML L *520 355 w 4 16.7 28.8 33 37 17 ML L 6 (19.9) (28.8 33 37 17 ML L 36.8 30.8 w 7 // 4 18 ML R 61.7 46.9 w* 7 // 4 18 ML R 36.8 7 46.9 w* - 4 15.7 30.2 20 ML 6 (15.293-BW ?) / 4 11 ML R - * 27.6 w* 15/293-BW ? / 21 ML L 6 (15.293-BW ?) / 4 18 ML R * 35.4 29.4 w 142 ? 2 (4) (21.6) 22 ML R * 35.4 29.4 w 142 ? 2 (4) (21.6) 23 ML R - * 27.5 (w* 166 /27.3 1 (16.5) 24 ML R * 35.4 29.4 w 142 ? 2 (4) (21.6) 25 ML R * 35.4 29.4 w 166 /27.3 1 (16.5) 26 ML R * 35.4 29.4 w 166 /27.3 1 (16.5) 27 ML R - * 28.8 (w) 217 224 ? / 30 ML R - * 28.8 (w) 23 / 28.8 3 31 ML R - * 28.8 (w) 26 /27.3 1 (16.5) 32 ML R - * 28.8 (w) 25 /27.2 (21.6) 33 ML L (6) 219 ? 1 (4) 30 ML R - * 28.8 (w) 35 /2204 ? / 31 ML R - * 28.8 (w) 25 /2204 ? / 31 ML R - * 28.8 (w) 25 /2204 ? / 33 ML L - 00.8 (w) 35 /2204 ? / 33 ML L - 30.0 (w) 35 /2204 ? / 34 ML R * 33.1 33.0 w 35 /2204 ? / 35 ML L 33.9 29.0 w [9/150 ? 2 (4) (21.1) 36 ML R * 33.4 27.7 w 205 /21-EW ? 1 (4.1) 37 ML L 33.3 27.7 w 205 /21-EW ? 1 (4.1) 38 ML L 53.7 43.2 w - 5 (4) (21.8) (31) (36) (41) 40 MV R - * * 32.6 (w) W 2 / 41 ML R * 26.9 w 20 / 22.5 (22.5) (17.9) 39 ML L 53.7 43.2 w - 5 (4) (21.8) (31) (36) (41) 41 ML R * 26.9 w 19/150 ? 2 (25.) (17.9) 41 ML R 27.0 22.6 w 158 ? 2 (25.) (17.9) 42 ML R 27.0 22.6 w 158 ? 2 (25.) (17.9) 43 ML R 27.0 22.6 w 19/27-EW ? / 44 ML R - * 26.9 w 20 / 22.5 28.8 47 ML R 27.0 22.6 w 158 ? 2 (25.) (17.9) 48 ML R 2.7 / 92.6 w 147 2 (4) (4) 49 ML R 2.7 / 92.6 w 148 ? 2 (22.) (23.1) 50 ML L 36.6 30.0 w 145 ? 2 (22.) (23.1) 51 ML R 2.44 * 27.7 (6) 14 2 2 (4) (4) 51 ML R 2.55 (21.7) w* (224/]W 2 (4) (4) 51 ML R 2.56 (21.7) w* (224/]W 2 (4) (4) 51 ML R 2.57 93.0 w 145 ? 2 (25.) (25.5) 51 ML R 2.44 * 27.7 (6) 14 2 2 (4) (4) 51 ML R 2.54 (27.9 (29.0 w) 12 (24.7) W 2 (25.) (25.) 51 ML R 2.44 * 27.	9	ML	L		* 30.5	(w)	55[/263]	2	1	(27.2)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	ML	L	33.5	-	(1)	114	1	+				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11	ML	R	*	* 37.5	(w)	120 ?	3	< + >	(18.9)	(33.3)		
13 miz - - - - - 14 TP L * 22.8 16.4 w - - - - - 16 ML L * 22.8 16.4 w - - 4 16.7 28.8 33 37 16 ML - - (0) W 2 +	12	ML	R	36.2	29.0		100 ?	3	1	(21,8)	(26)		
14 TP L * 22.8 16.4 w	13	mis.					-						
16 ML L 46.7 38.1 w 130 3 // 26.9 34 16 ML L * \$20.39.5 w 4 16.7 28.8 33 37 17 ML L - - (f) W 2 + + 18 ML R 81.7 46.3 w* ? / 19 ML L 36.8 30.8 w W 2 3.7 30.2 20 ML - - - (f) 155 1 + + 21 ML L - - * 21.5 (w) W/21 ? / 22 ML R - * 35.4 (w) 162 2 (23.3) (23.6) 25 ML R - * 26.6 (w)* 217.724 ? / 29 ML R - - 60 22.0 ? (24.5) <td>14</td> <td>TP</td> <td>L</td> <td>* 22.8</td> <td>164</td> <td>w</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	14	TP	L	* 22.8	164	w	_						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	M	1	46 7	38.1		130	3	1	26.9	34		
13 1 1 - - - 10 W 2 1.1 <	te	MI	1	* 52.0	305	UN	-	à	167	28.8	33	37	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+7	MI	1	- 02.0		(A)	is.	1	10.7	£0.0			
10 mil. R = 10.1 4.3 yr =	10	1111L	5	21 7	454		**	2	7	T			1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1991L	ĸ	01.f	40,9	W.			07	000			
20 ML $ -$	19	MIL.	L.	30.8	30.8		V¥ Frank Jus	Z	J.1	30.Z			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	ML	~	-	-	1	[304~]W	2	*	+			
22 ML L * 32.7 * 27.6 *** 165 1 + + 23 ML R - * 22.5 (** W 22 + + 44 ML R * 35.4 29.4 * 142 ? 2 (*) (21.6) 25 ML R * 35.4 29.4 * 142 ? 2 (*) (21.6) 26 ML R 34.9 28.7 * 116 ? 2 (3.3) (23.8) 27 ML R 36.7 31.1 * 151 2 (*) 23.3 28 ML R - * 25.4 (*) [62/1273 1 (16.5) 29 ML L (f) 94 ? 2 (*) (+) 30 ML R - * 26.8 (** 217/324 ? / 31 ML R * 26.8 (** 217/324 ? (*) 33 ML L - 30.8 (** 24 2 (*) 28.5 34 ML R * 33.1 33.0 * 93.7348 ? (*) 35 ML L - 30.8 (**) 35[/220+] ? 2 (*) (21.1) 36 ML R 33.5 22.1 * W/210 ? (*) 37 ML L 53.7 43.2 * - 5 (*) (21.8) (31) (36) (41) 40 MV R - * 32.6 (**) W 210 1 10.5 38 ML R 32.6 28.1 * W/210 ? (*) 41 ML R * 27.0 23.6 * 158 ? 2 (2.5) (17.9) 44 ML R 27.7 19.1 * 66/224 ? (*) 43 ML R 27.0 23.6 * 158 ? 2 (2.5) (17.9) 44 ML R - * 26.9 - (f) W 1 + + 45 ML R - * 26.4 (*) 24 1 25.0 44 ML R - * 21.9 (*) W 1 20.4 45 ML R 34.5 29.0 * W 24 (1 25.0 45 ML R 34.5 29.0 * W 24 (1 25.0 46 ML R 34.5 29.0 * W 24 (1 25.0 47 ML R - * 21.9 (*) W 1 1 (*) (*) 48 ML R 24.4 21.7 (f) 14 2 (*) (*) (*) 48 ML R 24.4 21.7 (f) 14 2 (*) (*) (*) 48 ML R 24.4 21.7 (f) 14 2 (*) (*) (*) 48 ML R 24.4 21.7 (f) 14 2 (*) (*) (*) 48 ML R 24.4 21.7 (f) 14 2 (*) (*) (*) 48 ML R 34.5 29.0 * 11 2 1.3 27.0 50 ML R 34.5 29.0 * 11 2 1.3 27.0 51 ML L 36.6 31.9 * 43[/257]? 2 (3.5) (29.5) 52 ML L 36.8 31.9 * 43[/257]? 2 (3.5) (29.5) 53 ML L 36.8 31.9 * 43[/257]? 2 (3.5) (29.5) 53 ML L 36.8 31.9 * 43[/257]? 2 (3.5) (29.5) 53 ML R - * 21.9 (*) [W/ W1 1 52 53 ML R 4.7 37.5 * 35.4 * 35.7 98 ? (-) 54 ML R 7 - 21.9 (*) [239/1276-BW? 0 (-) 55 ML R - 21.9 (*) [239/1276-BW? 0 (-) 56 ML L 29.6 24.6 * 147 1 152 57 ML R 4.3 73.5 * 35.7 98 ? (-) 58 ML L 29.6 24.6 * 147 1 152 59 ML L 30.4 26.6 * 331/2 * 132 (0.9) 50 ML R 37.4 (*) 33.7 (*) (239/1276-BW? 0 (-) 56 ML L 29.6 24.6 * 131/2 * 132 (0.9) 57 ML R 4.3 73.5 * 147 1 152 59 ML L 30.4 26.6 * 331/2 * 132 (0.9) 50 ML L 30.4 26.6 * 331/2 * 132 (0.9) 51 ML L 30.4 26.6 * 331/2 * 132 (0.9) 52 ML L 30.4 26.6 * 331/2 * 132 (0.9) 53 ML L 29.6 24.6 * 331/2	21	ML	L	•••	-	60	15/293-BW	?	1				
23 ML R - * 27.5 (m)* W 2 + + 24 ML R - * 28.5 (m) W/221 ? / 25 ML R * 35.4 (m) 116 ? 2 (3.3) (23.8) 27 ML R - * 25.4 (m) 151 ? 2 (4+) 23.3 28 ML R - * 25.6 (m)* 1 (16.5) 1 29 ML L - - (f) 217/224 ? / 1 30 ML R - * 26.8 (m)* 25[/220+] ? 2 (+) (28.6) 33 ML L - 30.6 m 25[/250+] ? 2 (+) (21.1) 36 ML R 33.6 28.1 m W/210 ? / (21.1) 37 ML L 33.6 28.1 m W/210 ? / (21.1) (31.) (22	ML	L	* 32,7	* 27.6	₩*	165	1	+				
24 ML R - * 28.5 (w) W/221 ? / / 25 ML R *35.4 29.4 w 142 ? 2 (**) (21.6) 26 ML R 36.7 31.1 w 151 2 (**) (23.8) 27 ML R - * 35.4 (w) [68./]273 1 (165.5) 29 ML L - - (f) 94 ? ? / 30 ML R - * 25.8 (w)* 217./324 ? / 31 ML L - - (f) 219 ? 1 (+) 32 ML L - 30.8 (w) 35[/220+] ? 2 <	23	ML,	R		* 27.5	(_W)*	W	2	+	+			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24	ML	R		* 28.5	(w)	W/221	?	1				
26 ML R 34.9 28.7 w 116 ? 2 (3.3) (23.8) 27 ML R - *35.4 (w) [68.7]273 1 (16.5) 29 ML L - *76 94? 2 (+) (+) 30 ML R - *26.8 (w)* 217.7324 ? / 31 ML R - - (f) 219? 1 (+) 32 ML L 30.6 w 24 2 (+) 28.5 33 ML L - 30.8 (w) 35[/220+]? 2 (+) (21.1) 36 ML R 33.9 29.0 w 39[/350? 2 (+) (21.1) 37 ML L 33.3 27.7 w 205[/251-BW]? 1 (41.1) 1 38 ML R 34.2 28.9 w - 5 (+) (21.8) (31.1) (36.) (41.1)	25	ML	R	* 35.4	29.4	w	142 ?	2	< + >	(21.6)			
27 ML R 36.7 31.1 w 151 2 $\langle + \rangle$ 23.3 28 ML R - * 35.4 $\langle w \rangle$ [66/]273 1 (16.5) - 29 ML L - - (f) 94 ? 2 $\langle + \rangle$ (H) 30 ML R - * 26.8 $\langle w \rangle$ 217/324 ? / 31 ML L 36.0 30.6 w 24 2 $\langle + \rangle$ 28.5 33 ML L - 30.8 (w) 35[/220+] ? 2 $\langle + \rangle$ (28.5) 34 ML R 33.6 28.1 w 355[/221-30W] ? 1 (4.1) 36 ML R 33.6 28.7 w 205[/251-8W] ? 1 (4.1) 37 ML L 53.7 43.2 w - 5 $\langle + \rangle$ (21.8) (31.) (36.) (41.) 40 MV R - * 32.6 w <t< td=""><td>26</td><td>ML</td><td>R</td><td>34.9</td><td>28.7</td><td>w</td><td>116 ?</td><td>2</td><td>(3.3)</td><td>(23.8)</td><td></td><td></td><td></td></t<>	26	ML	R	34.9	28.7	w	116 ?	2	(3.3)	(23.8)			
28 ML R - * 33.4 (w) $[68/]273$ 1 (16.5) 29 ML L - - (f) 94 ? 2 (+) (+) 30 ML R - * 268 (w)* 217./324 ? / 31 ML R - * 268 (w)* 213? 1 (+) 32 ML L 36.0 30.6 w 24 2 (+) 28.5 33 ML L - 30.6 (w) 35[/220+] ? 2 (+) (28.6) 34 ML R 33.1 27.0 20 ? / (21.1) 36 ML R 33.3 27.1 w 205[/251-BW] ? 1 (41.1) (31.1) (36.6) (41.1) 38 ML R 34.2 28.9 w - 5 (+) (21.8) (31.1) (36.6) (41.1) 40 MV R 27.1 11 166//224	27	ML	R	36.7	31.1	w	151	2	(+)	23.3			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	ML	R	_	* 35.4	(w)	[68/] 273	1	(165)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	ML		_	-	(m	94.7		641	(+)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	MI	b		* 289	1	217 /224	2	1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	1916			* 200	7.6	2177 024		6				r l
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	1¥11.,	ĸ	40.4	-	10	213 I 03			50 F			
33 ML L - - 30.8 (W) 330 2207 2 (4) (28.57) 34 ML L 33.9 29.0 W [9/150? 2 (4+) (21.1) 36 ML R 33.3 27.7 W 205[/251-6W]? 1 (4.1) 38 ML L 33.3 27.7 W 205[/251-6W]? 1 (4.1) 38 ML K 33.3 27.7 W 205[/251-6W]? 1 (4.1) 39 ML L 53.7 43.2 W - 5 (4+) (21.8) (31.) (36.) (41.) 41 ML R 21.7 19.1 W 56/224 ? / / 43 ML R 27.0 22.6 W 1 25.0 (17.9) 43 ML R - * 21.9 (W) W 1 20.4 46 ML 35.1 30.5 W W 2 2.5 <td>~~</td> <td>IVIL</td> <td>L</td> <td>30.0</td> <td>30.0</td> <td>.₩.</td> <td>24 ຄະເ ເດດຄຸ] ກ</td> <td></td> <td></td> <td>26.3</td> <td></td> <td></td> <td></td>	~~	IVIL	L	30.0	30.0	.₩.	24 ຄະເ ເດດຄຸ] ກ			26.3			
34 ML R * 33.0 W 93/348 ? / 35 ML L 33.9 29.0 W [9/]150? 2 $\langle + \rangle$ (21.1) 36 ML R 33.6 28.1 W W/210? ? / 37 ML L 33.3 27.7 W 205[/251-BW]? 1 (4.1) 38 ML R 34.2 28.9 W 210 1 16.5 39 ML L 53.7 43.2 W - 5 $\langle + \rangle$ (21.8) (31.) (36.) (41.) 40 MV R - * 32.6 W W 2 - - 41 ML R 21.0 23.6 W 158.7 2 (2.5.) (17.9) 43 ML R 21.9 W W 1 20.4 - - 44 ML R - * 21.9 W 1 20.4 - -	33	ML			30.8	(W)	35[/ 220+] 7	Z	<+>	(28,5)			
35 ML L 33.9 29.0 w $[9/150?$ 2 $\langle + \rangle$ (21.1) 36 ML R 33.6 28.1 w $W/210$? / 37 ML L 33.3 27.7 w $205[/251-8W]$? 1 (4.1) 38 ML R 34.2 28.9 w - 5 $\langle + \rangle$ (21.8) $(31.)$ $(36.)$ $(41.)$ 40 MV R - * 32.6 (w) W 2 - - 41 ML R 21.7 19.1 w $56/224$? / - 43 ML R 27.0 23.6 w 158.7 2 $(2.5.)$ (17.9) 43 ML R 27.0 23.6 w 1 20.4 . . 44 ML R 27.7 9.0 W 1 20.4 . . . 45 ML R 27.1 14 2	34	ML	ĸ	* 39.1	33.0	₩	93/348						
36 ML R 33.6 28.1 w W/210 ? / 37 ML L 33.3 27.7 w 205[/251-BW]? 1 (4.1) 38 ML R 34.2 28.9 w 210 1 16.5 39 ML L 53.7 43.2 w - 5 (4+>) (21.8) (31.) (36.) (41.) 40 MV R - * 32.6 (w) W 2 - (41.) 41 ML R *26.9 - (f) W 1 + - 42 ML R 21.7 19.1 w 566/224 ? / - 43 ML R - * 26.4 (w) 24 1 25.0 443 ML R - * 26.4 (w) W 1 20.4 45 ML R - * 21.9 (w) W 1 20.4 46 ML <td>35</td> <td>ML</td> <td>L</td> <td>33,9</td> <td>29.0</td> <td>₩</td> <td>[9/]150 ?</td> <td>2</td> <td><+></td> <td>(21.1)</td> <td></td> <td></td> <td></td>	35	ML	L	33,9	29.0	₩	[9/]150 ?	2	< + >	(21.1)			
37 ML L 33.3 27.7 w 205[/251-BW]? 1 (4.1) 38 ML R 34.2 28.9 w - 5 (4+) (31) (36) (41) 39 ML L 53.7 43.2 w - 5 (4+) (21.8) (31) (36) (41) 40 MV R - * 32.6 (w) W 2 (31) (36) (41) 41 ML R 21.7 19.1 w 566/224 ? / (31) (36) (41) 42 ML R 21.7 19.1 w 566/224 ? / (36) (41) 43 ML R 21.7 19.1 w 566/224 ? / (31) (36) (41) 43 ML R 21.7 19.1 W 1 20.4 8 . . . 44 ML R 21.7 W W 1 20.4	36	ML	R	33.6	28.1	w	W/210	2	1				
38 ML R 342 28.9 w 210 1 16.5 39 ML L 53.7 43.2 w - 5 $\langle + \rangle$ (21.8) (31.) (36.) (41.) 40 MV R - * 32.6 (w) W 2 - - - 5 $\langle + \rangle$ (21.8) (31.) (36.) (41.) 41 ML R 26.9 - (f) W 1 + - 42 ML R 21.7 19.1 w 56/224 ? / - - - - - 66/224 ? / -<	37	ML.	L	33.3	27.7	w	205[/251-8W] ?	11	(4,1)				
39 MI, L 53.7 43.2 w - 5 $\langle + \rangle$ (21.8) (31.1) (36.) (41.1) 40 MV R - * 32.6 (w) W 2 (31.1) (36.1) (41.1) 40 MV R * 26.9 - (f) W 1 + - <td>38</td> <td>ML</td> <td>R</td> <td>34.2</td> <td>28.9</td> <td>**</td> <td>210</td> <td>1</td> <td>16.5</td> <td></td> <td></td> <td></td> <td></td>	38	ML	R	34.2	28.9	**	210	1	16.5				
40 MV R - * 32.6 (w) W 2 41 ML R * 26.9 - (f) W 1 + 42 ML R 21.7 19.1 w 66/224 ? / 43 ML R 27.0 23.6 w 158 ? 2 (2.5.) (17.9) 44 ML R - * 26.4 (w) 24 1 25.0 45 ML R - * 21.9 (w) W 1 20.4 46 ML L 35.1 30.5 w W 2 2.5 28.8 47 ML R - - (f) 14 ? 2 + + 48 ML R 34.5 29.0 w 11 2 1.3 27.0 50 ML R 36.6 30.4 w 27[/250] 2 (2.0.) (28.2) 52 ML L 36.8 31.9	39	ML.	L	53.7	43.2	w	-	5	(+)	(21.8)	(31)	(36)	(41)
41 ML R *26.9 - (f) W 1 + 42 ML R 21.7 19.1 w 566/224 ? / 43 ML R 27.0 23.6 w 158 ? 2 (2.5.) (17.9) 44 ML R - *26.4 (w) 24 1 25.0 45 ML R - *26.4 (w) 24 1 20.4 46 ML L 35.1 30.5 w W 2 2.5 28.8 47 ML R - - (f) 14 ? 2 + + 48 ML R 24.5 29.0 w 11 2 1.3 27.0 50 ML R 34.5 29.0 w 11 2 1.3 27.0 50 ML R 25.6 21.7 w* [224/]W 2 (2.0) (28.2) 51 ML R <td< td=""><td>40</td><td>MY</td><td>R</td><td>-</td><td>* 32.6</td><td>(w)</td><td>W</td><td>2</td><td></td><td></td><td></td><td></td><td></td></td<>	40	MY	R	-	* 32.6	(w)	W	2					
42 ML R 21.7 19.1 w $66/224$? / 43 ML R 27.0 23.6 w 158 ? 2 (2.5) (17.9) 44 ML R - * 26.4 (w) 24 1 25.0 45 ML R - * 21.9 (w) W 1 20.4 46 ML L 35.1 30.5 w W 2 2.5 28.8 47 ML R - - (f) 14 ? 2 + + 48 ML R 24.4 * 21.7 (f) 14 2 + + + 49 ML R 34.5 29.0 w 11 2 1.3 27.0 50 ML R 25.6 21.7 w* [224/]W 2 (+) (+) 51 ML L 36.6 30.4 w 27[/250] 2 (2.0) (28.2) 52 ML </td <td>41</td> <td>ML</td> <td>R</td> <td>* 26.9</td> <td>-</td> <td>Ð</td> <td>W</td> <td>1</td> <td>+</td> <td></td> <td></td> <td></td> <td></td>	41	ML	R	* 26.9	-	Ð	W	1	+				
43 ML R 27.0 23.6 w 158 ? 2 (2.5) (17.9) 44 ML R - * 26.4 (w) 24 1 25.0 45 ML R - * 21.9 (w) W 1 20.4 46 ML L 35.1 30.5 w W 2 2.5 28.8 47 ML R - - (f) 14 ? 2 (+) (+) 48 ML R 34.5 29.0 w 11 2 1.3 27.0 50 ML R 34.5 29.0 w 11 2 1.3 27.0 50 ML R 34.5 29.0 w 11 2 (4) (+) 51 ML L 36.6 30.4 w 27./250] 2 (2.0) (28.2) 52 ML L 36.8 w 145 2 18.2 33.0 54 ML	47	ML	R	21.7	19.1	wr	66/224	2	1				
44 ML R - $*264$ (w) 24 1 250 45 ML R - $*21.9$ (w) W 1 20.4 46 ML L 35.1 30.5 w W 2 2.5 28.8 47 ML R - - (f) 14 2 + + 48 ML R 24.4 $*21.7$ (f) 14 2 + + 49 ML R 34.5 29.0 w 11 2 1.3 27.0 50 ML R 25.6 21.7 w* [224/]W 2 (+) (+) 51 ML R 36.6 30.4 w 27[/250] 2 (20.0) (28.2) 52 ML L 36.6 31.9 w 43[/257]? 2 (3.5) (29.5) 53 ML L 45.9 38.0 w 145 2 18.2 33.0	43	MI	R	27.0	23.6		158 7	2	(25)	(17.9)			
11 1 20.4 1 20.4 45 ML R - * 21.9 W W 1 20.4 46 ML L 35.1 30.5 W W 1 20.4 47 ML R - - (f) 14 ? 2 (+) (+) 48 ML R 24.4 * 21.7 (f) 14 ? 2 (+) (+) 49 ML R 34.5 29.0 w 11 2 1.3 27.0 50 ML R 34.5 29.0 w 11 2 1.3 27.0 50 ML R 34.5 29.0 w 11 2 1.3 27.0 50 ML L 36.6 30.4 w 27[/250] 2 (20.0) (28.2) 33.0 51 ML L 45.9 38.0 w 145 2 18.2 33.0 33.0 35.4 (W/] [W/] [171 ? 2 (8.4.4)	1 11	MI	p		* 26.4	61	24	1,	250				
46 ML L 35.1 30.5 w W 2 2.5 28.8 47 ML R $ (f)$ 14 2 $(+)$ $(+)$ 48 ML R 24.4 21.7 (f) 14 2 $(+)$ $(+)$ 48 ML R 24.4 21.7 (f) 14 2 $+$ $+$ 49 ML R 34.5 29.0 w 11 2 1.3 27.0 50 ML R 25.6 21.7 w^* $[224/2]W$ 2 $(+)$ $(+)$ 51 ML L 36.6 30.4 w $27[/250]$ 2 (28.2) 33.0 53.0 w 145 2 18.2 33.0 53.0 w 145 2 18.2 33.0 53.0 w 145 2 (33.2) 33.0 55.6 ML R $ 27.9$ (w) <t< td=""><td>20</td><td>MI</td><td>P</td><td></td><td>\$ 91 0</td><td>122</td><td>2-4 W</td><td></td><td>204</td><td></td><td></td><td></td><td></td></t<>	20	MI	P		\$ 91 0	122	2-4 W		204				
NL L 25.1 30.5 W N R 2 25.0 47 ML R - - (f) 14 ? 2 (+) (+) 48 ML R 24.4 * 21.7 (f) 14 ? 2 + + 49 ML R 34.5 29.0 w 11 2 1.3 27.0 50 ML R 25.6 21.7 w* [224/]W 2 (+) (+) 51 ML L 36.6 30.4 w 27[/250] 2 (2.0) (28.2) 52 ML L 36.6 31.9 w 43[/257]? 2 (3.5) (29.5) 53 ML L 45.9 38.0 w 145 2 18.2 33.0 54 ML R - 38.4 (w) [W/]171 ? 2 (8.4) (31.2) 55 ML R - 27.9 (w) [239/]276-BW ? 0 (-) 66 56 <td>1 40</td> <td>NGL BBI</td> <td>1</td> <td>251</td> <td>205</td> <td></td> <td>er Jaf</td> <td>6</td> <td>20.4</td> <td>28.8</td> <td></td> <td></td> <td> . </td>	1 40	NGL BBI	1	251	205		er Jaf	6	20.4	28.8			.
1° mL R 24.4 21.7 1° 1 1° 2 1° 7 1° 7 48 ML R 24.4 21.7 1° 1 2 $+$ $+$ 49 ML R 34.5 29.0 w 11 2 1.3 27.0 50 ML R 25.6 21.7 w* $[224/]W$ 2 $(+)$ $(+)$ 51 ML L 36.6 30.4 w $27[/250]$ 2 (2.0) (28.2) 52 ML L 36.6 31.9 w $43[/257]$ 2 (3.5) (29.5) 53 ML L 45.9 38.0 w 145 2 $182.$ 33.0 54 ML R $ 38.4$ (w) $[W/]171$ 2 (8.4) (31.2) 55 ML R $ 27.9$ (w) 108 2 $(+)$ 26.1 57 ML R	10	575L	되		30.3	14	18 1.4 9	2	لابية الكرا	0.02 (1)			
48 ML R 24.4 * 21.7 (7) 14 2 - - - - - 49 ML R 34.5 29.0 w 11 2 1.3 27.0 50 ML R 25.6 21.7 w* [224/]W 2 (4) (+) (+) (+) 51 ML L 36.6 30.4 w 27[/250] 2 (2.0) (28.2) 52 ML L 36.6 31.9 w 43[/257] 2 (3.5) (29.5) 53 ML L 45.9 38.0 w 145 2 18.2 33.0 54 ML R - 38.4 (w) [W/]171 2 (8.4 (31.2) 55 55 ML R - 27.9 (w) [239/]276-BW 0 (-) - 56 ML L - * 36.9 (w) 108 2 <+> 26.1 57 56 ML R 44.7 37.6 w 35/198 ? / 56 52	477	191L.	n n		- 01 7	10	14 1	4	177	47			
49 ML N 34.3 29.0 W 11 2 1.3 27.0 50 ML R 25.6 21.7 w* [224/]W 2 (+) (+) 51 ML L 36.6 30.4 w 27[/250] 2 (2.0) (28.2) 52 ML L 36.8 31.9 w 43[/257] 2 (3.5) (29.5) 53 ML L 45.9 38.0 w 145 2 (8.2) 33.0 54 ML R - 38.4 (w) [W/]171 ? 2 (8.4) (31.2) 55 ML R - 27.9 (w) [239/]276-BW ? 0 (-) 56 ML L - * 36.9 (w) 108 2 <+> 26.1 57 ML R 44.7 37.6 w 35/198 ? / 58 ML L 29.8 24.6 w 147 152 5	45		E I	24.4	▼ %1.4	112	14		7				
50 ML R 25.6 21.7 w* $[224/1W]$ 2 $(+)$ $(+)$ 51 ML L 36.6 30.4 w $27[/250]$ 2 (20) (28.2) 52 ML L 36.8 31.9 w $43[/257]$ 2 (3.5) (29.5) 53 ML L 45.9 38.0 w 145 2 18.2 33.0 54 ML R - 38.4 (w) $[W/]171$ 2 (8.4) (31.2) 55 ML R - 27.9 (w) $[239/]276-BW$? 0 $(-)$ 56 ML L - * 36.9 (w) 108 2 $(+)$ 26.1 57 ML R 44.7 37.6 w $35/$ 198 ? / 58 ML L 29.8 24.6 w 147 152.2 59 ML L 30.4 26.6 w $33[/2$	49	ML	R	34,5	29.0	₩	i ii	2	1.3	27.0			
51 ML L 36.6 30.41 w $27L/250J$ 2 (2.0) (28.2) 52 ML L 36.8 31.9 w $43L/257J$? 2 (3.5) (29.5) 53 ML L 45.9 38.0 w 145 2 18.2 33.0 54 ML R - 38.4 (w) $[W/171?)$? 2 (8.4) (31.2) 55 ML R - 36.9 (w) [239/1276-BW?0 (-) (-) 56 ML L - * 36.9 (w) 108 2 (+) 26.1 57 ML R 44.7 37.6 w 35/198 ? / 58 ML L 29.8 24.6 w 147 1 15.2 59 ML L 30.4 26.6 w 33[/264] 2 (1.2) (24.1) 60 ML L 30.3 31.7 w 13 ? 2 (0.9) (29.4) <td>50</td> <td>ML.</td> <td>R</td> <td>25.6</td> <td>21.7</td> <td>₩¥</td> <td>[224/<u>W</u></td> <td>2</td> <td>(+)</td> <td>(+)</td> <td></td> <td></td> <td></td>	50	ML.	R	25.6	21.7	₩¥	[224/ <u>W</u>	2	(+)	(+)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	ML,	L	36.6	30.4	w	27[/250]	2	(2.0)	(28.2)		-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	52	ML	L	36.8	31,9	W	43[/257] ?	2	(3,5)	(29.5)			
54 ML R - 38.4 (w) $[W/]171$? 2 (8.4) (31.2) 55 ML R - 27.9 (w) $[239/]276$ -BW? 0 (-) 56 ML L - * 36.9 (w) 108 2 $(+)$ 26.1 57 ML R 44.7 37.6 w 35/198 ? / 58 ML L 29.8 24.6 w 147 1 15.2 59 ML L 30.4 26.6 w 33[/264] 2 (1.2) (24.1) 60 M B 37.3 31.7 w 13 ? 2 (0.9) (29.4)	53	ML	L	45.9	38.0		145	2	18.2	33.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	ML	R	~	38.4	(w)	[W/]171 ?	2	(8,4)	(31.2)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	ML	R	****	27.9	(w)	[239/]276-BW ?	0	(-)				
57 ML R 44.7 37.6 w 35/198 ? / 58 ML L 29.6 24.6 w 147 1 15.2 59 ML L 30.4 26.6 w 33[/264] 2 (1.2) (24.1) 60 ML R 37.3 31.7 w 13 ? 2 (0.9) (29.4)	56	ML	1,		* 36.9	(w)	108	2	< + >	26.1			
58 ML L 29.6 24.6 w 147 1 15.2 59 ML L 30.4 26.6 w 33[/264] 2 (1.2) (24.1) 60 ML B 37.3 31.7 w 13.7 2 (0.9) (29.4) 12 (29.4) 12 (29.4) 12 (29.4) 12 (29.4)	57	ML	R	44.7	37.6	w	35/198	2	1				
59 ML L 30.4 26.6 w 33[/264] 2 (1.2) (24.1) 60 ML B 37.3 31.7 w 13.7 2 (0.9) (29.4) 12 (29.4) 12 (26.6) W 13.7 2 (0.9) (29.4) 12 (29.4) 13 (20.1)	58	ML	1	29.A	24.6	w	147	1	15.2				
60 ML R 37.3 31.7 w 1 13.2 2 (0.9) (29.4)	59	M		30.4	26.6	Ŵ	33[/264]	2	(12)	(24.1)			
	60	MI	p	37.3	31.7	- w	13 7		(0.9)	(29.4)			

.

.

*1. ML:ハマグリ、MV:シオフキ、TP:アサリ、 *2、():確定的でない。+:あり(位置不明)。--:なし。/:捜数操稿あり、<+>: 截頂近くに観察不能な冬輪あり、, *3、w:完形、(w): 破損(中心輸現存)、(1): 破損(中心線なし、 殻頂あり)、f: 破損(殻頂なし)、*: 切断線辛中心線

図18. 加曽利北貝塚区画B(II層)における二枚貝類の死亡季節組成

17層(イボキサゴ純貝層):試料なし。

16層(イボキサゴ・ハマグリ混合、純貝層):下面に7月、中部に5月または1月、上面に 3月の貝がある。7月〜翌年3月の堆積の可能性もあるが、はっきりしない。

15層・14層(イボキサゴ層・破砕イボキサゴ層の互層): 試料なし。

13層(イボキサゴ・ハマグリ混合、純貝層): 層下面付近に 3 ~ 5 月の貝が 2 点あり、上面 付近には 9 月の貝およびほぼ同時期の可能性のある貝が 1 点づつ見られる。春~秋にかけての 堆積の可能性がある。

12層(破砕イボキサゴ層):試料なし。

11層(ハマグリのレンズ状薄層):6~7月の試料が3点あり、この季節を主な堆積期間と していたと思われる。他に冬または9月の貝が1点あり、堆積期間がさらに前後に広がる可能 性がある。

10層(破砕イボキサゴ層):試料なし。

9層(ハマグリのレンズ状薄層):中部に12~2月頃の貝が2点あり、この時期を挟む前後の期間の堆積層である。下面に7月の貝が1点あるが、死亡季節からみて11層の形成直後に (薄い破砕イボキサゴ層を挟んで)堆積したものと推測される。したがって,9層は季節性の面から見た場合、11層から連続した層である可能性が高い。

8 層(破砕イボキサゴ層):上面に2月の貝、3月初めまたは12月以降冬輪形成前の貝がそ れぞれ1点ある。堆積季節は不明だが、9 層との関係からみると、2 月頃のきわめて短期間に 一気に堆積した可能性も考えられる。

7層(イボキサゴ層)・6層(破砕イボキサゴ層):試料なし。

5層(ハマグリ主体、純貝層):確定試料6点中5点が5月下旬~6下旬の1ヶ月間に集中 する。おもにこの期間内に堆積した層と推定されるが、上面付近に2月頃の貝が1点あり、最

図19.加曽利北貝塚区画B(II層)における季節層の分布(凡例は図8を参照)

Layer	No.	sp.	Number of G	rowth-Line W 9	s from La 0 1	st Winter 80 2	Ring 70 W
2	6512438	ML ML ML ML MV ML	340 [121/]301 127 93/309 93 58 13[/224]	0	° 0	O	0 0
5	17 15 11 10 12 7 9	ML ML ML ML ML ML ML	W 130 70+(50)? 114 100? 98 55[/263]	0	0 0 0 0	0	Ø
8	21 23	ML ML	15/293-BW W	0 0			0
9/11	19 24 20 22 27 25 26	ML ML ML ML ML ML	W W/221 304-W(W?) 165 151 142? 116?	Q Q	0 0	O	
13	28 31 30 29 32	ML ML ML ML ML	[68/]273 219? 217/324 94? 24	0	0	0	°
16	33 34 35	ML ML ML	35?[/220+] 93/348 [9/]150?	0	° 0	0	0
18/19	36 38 37 43 44	ML ML ML ML ML	W/210 210 205?[/251-BW] 158? 24	0	o	° 0	
20	40 41 45	MV ML ML	W W W	0 0			
21	42 50 52 51 47 48 49 46	ML ML ML ML ML ML ML	66/224 W/224 43?[/257] 27[/250] 14? 14 11 W	° 000000000000000000000000000000000000		0 0 0	
23/24	57 54 58 53 56 59	ML ML ML ML ML ML	35/198 [W/]171? 147 145 108 33[/264]	° °	0 0	0	
26 25	60 55	ML ML	13? [239/]276-BW?	0		0	

図20. 加曽利北貝塚区画B(II層)における死亡季節の層位変化を示すダイアグラム (凡例は図9を参照) 上部ではこの季節の堆積もあった可能性も考えられる。

4層・3層(ともに破砕イボキサゴ層):試料なし。ただし、上下層との連続堆積を仮定す れば、2月の堆積の可能性もある。

2層(ハマグリ主体、純貝層):2~6月の貝4点、および上面付近に12~1月の貝が2点 ある。春から翌年冬までの堆積層の可能性がある。

1層(破砕イボキサゴ層):試料なし。

貝層の保存状態

ある程度の試料数を確保できた下部圏の24層、21層、20層、上部層の11~9層、5層、2層 については、いずれも死亡時期の近接した貝がまとまって分布する傾向が認められた。したがっ て、これらの層準では、廃棄単位は比較的よく保存されているものと判断してよい。

一方、中部層の19~13層ではイボキサゴ層やその破砕貝層が厚く堆積しており、分析試料が 充分に得られなかったため、貝層の保存状態の評価が難しい。ただし、層相自体はイボキサゴ 純貝層中に薄い破砕イボキサゴ層やハマグリ層が介在する比較的明瞭な堆積構造を成しており、 二次堆積の徴候は特に認められない。また、13層の一部を除き、撹乱・混合を受けた痕跡も見 られない。したがって、分析試料を増やせば季節的なまとまりが表れてくる可能性はある。し かしイボキサゴ層中に介在するハマグリ層の19'層や16層は、小規模な堆積単位であるである にもかかわらず、死亡季節にまとまりが見られない。中部層準では、東方向に傾斜する層(断 面図で左下がりの層)と西側に傾斜する層が入り組んでおり、こうした複雑かつ不安定な堆積 状況のために、二次堆積や廃棄単位の混合が上下の層準よりも起こりやすかった可能性も考え られる。

貝層の堆積に要した年数(図20)

26層~20層:堆積がもっとも速く進行したケースを想定すると、25・26層(秋~冬)→24層 (春~夏)→21層(冬~春)→20層(冬)となり、堆積期間は約2年強と見積られる。

19層~14層:堆積季節が明らかでなく、堆積速度の推定は困難である。

13層~1層:堆積がもっとも速く進行したケースを想定すると、13層(春~秋)→11層・9 層下部(夏)→9層~8層(冬)→5層(春~冬)→2層(冬~翌冬)となり、堆積期間は約 4年と見積られる。

貝層の構成要素と堆積季節の関係(図21)

下部層の2枚のハマグリ層(24層、21層)はいずれも四季の前半期(春または夏)を中心と した堆積である。これらを挟む形で3枚の破砕イボキサゴ層(25層、22層、20層)が堆積して おり、25層と20層からは少数ながら秋~冬の貝が検出されている。したがって、下部層の堆積 パターンは、春~夏のハマグリ層の堆積、秋~冬の破砕イボキサゴ層の堆積の繰り返しであっ た可能性が指摘できる。

二枚貝	層									
RSNo.	混土率	貝類組成	灰	季節	1	2	3	4	5	6
2	純貝層	XII • Cs • Cj		Feb-Jun/Dec~Jan	_			-		
5	純貝層	XI +Tp	***	Hay-Jun/Feb	į	<u> </u>		-		
9	混土自然	KI +Umbr		Jul/Dec-Feb						
11	随且把	NI HGa		Jun-Jul	*****			1		
13	純貝層	tian III (+Cg)		(Mar-May/Sep)						*******
16/17	純貧困	Va·XI +Vabr	÷	(Jul-Mar)						
19	純貝層	X1	-	(Sep)	and a second					
				~	1					

-

-

(lar-Jul)

Feb-Mar(/Sep)

Mar-Aug

完形イボキサゴ層

191

21

24

韩貝冏 XI-By

混土貝紹 XI HAY

純貝尼 10

槛No.	混土率	貝類組成	灰	季節	1	2	3	4	5	6	1	8	9	10	11	12	
7 13 18	純貝層 純貝唇 純貝唇	Un Um-M1 (+Cg) Um		(Feb-Way) (Mar-Way/Sep) (-Sep-)				****	****	* * -							

...

7 8 9 10 11 12

÷.

..........

防砕イボキサゴ層

图No.	混土率	貝類組成	既	季節		1	2	3	4	5	6	7	8	9	10	11	12	
 3/4	純貝層	Umbr		(Peb)							1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.							
6	純貝層	Umbr		(Feb-May)			•		- • • •		-							
8	純貝層	Unbr	*****	(Feb)		,					1911-1911-							100
10/12	混土貿易	Dabr	*****	(Sep-Jun)	ļ.								•		· ·			
20	純貝周	Unbr•Cg	•••••	-Feb-	-	* * *	***	·••••			111111							
22	純貝層	Umbr		(Aug-Feb)							541640							Con 5 gran
25	耗負層	Uabr		(Nov-Feb)							-Test Lines							2. 4 CO.
					Ŧ			-			ŝ							3

マガキを含む層

.

層No.	湿土率	貝類組成	灰	筆節	1	2	3	4	5	6	7	8	9	10	11	12
13 20	純貝層 純貝居	Un-M1 (HCg) Umbr-Cg	 **	(llar-Sep) -Feb-		•••						***				

図21. 加曽利北貝塚区画B(II層)における貝層構成要素と堆積季節の関係 (凡例は図10を参照)

上部層の3枚のハマグリ層(13層、5層、2層)は、いずれも春・夏から秋・冬までの季節 性を示している。11層・9層も、これらを一連の堆積とするならば、やはり同様の季節パター ンをもつと見なし得る。このため、これらのハマグリ層に挟まれた4枚の破砕イボキサゴ層 (10層・12層、8~6層、3~4層、1層)は、いずれも秋または冬の貝の上に乗り、春または 夏の貝に覆われる形となっている。また、8層の上面には冬の貝が1点見られる。これらの証 拠から見ると、上部層における貝層の堆積パターンも、下部層と同様に、冬を中心とした破砕 イボキサゴ層の堆積、および春から夏を中心としたハマグリ層の堆積の繰り返しから成ってい た可能性がある。

中部層については、前述のとおり堆積季節が明瞭でないため、省略する。

(4) 区画C(III層)

貝層の堆積状況

図22に区画Cにおける員層の堆積状況と試料の採取位置を示す。1~4層がⅢ層に、5 層以 下はI層に相当する。本区画における分析対象はⅢ層のみである。4層はハマグリを主体とし、 アサリを若干混じえる単純な純貝層。50~60cmの層厚をもつが、内容は均質で細別できない。 3~1層はハマグリ・シオフキ主体の二枚貝層とイボキサゴ層(ともに層厚10~20cm)の互層 である。

Ⅲ層では全体的にハマグリなどの二枚貝が卓越しており、イボキサゴをあまり含まず、シオフキ・アサリが目立つ。かなり厚い層であるが、I層・II層と違って内容物の層位的な変化に 乏しい。また、全体に貝の堆積方向がかなりランダムであること、破砕貝が多く全体が泥で汚れていることなど、I層・II層とは対照的な様相を呈しており、断面観察による限り二次堆積物の可能性も考えられた(図版1-2)。

死亡季節分布と貝層の堆積季節

すでに述べたとおり、本区画では**W**層の性格(二次堆積層か否か)の把握を主眼としたため、 分析は図22に示した区画内についてのみ行った。各試料の計測値・推定死亡季節・冬輪殻高の 一覧を表6に示す。区画B全試料の合計値による季節分布(図23)を見ると、**W**層全体として は、冬輪形成期の直前~形成中(12月~2月頃)の貝が少ないのを除き、死亡季節は各季節に 等しく分散しており、特定の季節に偏ることはない。

推定死亡季節・季節層の分布を図24に示した。以下、各層ごとに季節分布を記載する。

4 層(ハマグリ主体、純貝層):上部に3月中旬から下旬の貝8点が明瞭なまとまりを見せる(試料 No.75、76、77、80、88、89、90、94)。これらの貝は層の傾斜に沿って薄い層を成しており、明らかな季節層と考えられる。また、この季節層の直下にも4~8月の貝3点が傾斜方向に並んでおり(No.95、102、103)、これらについても季節層の可能性がある。

図22. 加曽利北貝塚区画C(Ⅲ層)の貝層断面と試料採取位置(●) (凡例は図5,各層の記載は表7を参照)

表7.	加藰利北貝	塚区画C	(Ⅲ層)	における	5貝層の層相	(図22参照)
-----	-------	------	------	------	--------	---------

圈番号	灌土率	貝類組成	做考	
1	派士具唇	ハマグリ主体、アサリ・ジオフキ多い。		
2	派士貝層	イノキサゴ主体		大
	(totan)			跗
3	純民間	ハマグリ(小型+中型)・イボキサゴ主体		M
		アサリ・シオフキ多い、下面(?) にマガキ散主		裔
4	純貝層	ハマグリ (小ー中型) 主体、アサリ・シオフキ多い、	ランダムな堆積で	
		下部でイポキサゴ混じる。	全体が均宜	
5a	純貝層	イボキサゴ(酸弥)主体		
5b	科貝房	イボキサゴ主体		
Ş	純貨層	ハマグリ (小型) 主体	区面A7層につづく	
7	純貝類	イボキサゴ主体		*
8	純目怒	ハマグリ主体		別
8	前到腳	破砕貝主体		I
10	純貝斯	ハマグリ主体		ß
11	純貝腐	イボキサゴ主体、ハマグリ(小型)多い、		
		ヤマトシジミ混じる		
12		ハマグリ (小〜大型) 主体、シオフキュヤマトシジミ多い	}	

その他の試料は明らかな季節的まとまりをなさないが、例えば、No. 87・91 (9 月~冬輪形 成前),No. 83・84 (2 ~ 3 月)、No. 86・101 (8 月) などのように、死亡季節の近い貝が傾斜 方向に隣接して並ぶケースが見られる。

3 層(ハマグリ・キサゴ混合、純貝屬):4 層と同様に、死亡季節の近い貝のグループが傾 斜方向に沿って並ぶケースが見られる。こうしたケースには、下部の冬~春グループ(No.66、 68、69、72=2~3月)、下部の秋グループ(No.44、59、60=10~11月)があり、いずれも季 節層の存在を示す可能性が強い。これらのグループ以外については、各季節の貝が混合してお り、明らかなまとまりを成さないが、上面付近の No.38、52、61は春(4~5月)の季節層を 成す可能性もある。

2層(イボキサゴ主体、混土貝層):試料なし。

1層(ハマグリ主体、混土貝層): 層の下面に11月の貝2点、3月の貝1点があり、その上位に7~11月の貝が堆積方向に沿って並ぶ(No.30、33、39、46、47、55、57)。ともに季節層 と考えてよいだろう。秋に堆積が始まり、翌年の夏から秋にかけて急速に堆積した層と推定される。上部に4月の貝が1点あり、堆積が翌々年の春まで継続した可能性もある。

貝層の保存状態

Ⅲ層は層相観察の所見から再堆積層ではないかとの疑いがもたれたが、死亡季節推定の結果、

図23.加曽利北貝塚区画C(Ⅲ層)における二枚貝類の死亡季節組成

表8.カ	n曾利北貝塚区画C	(Ⅲ層)	におけ	る貝殻成長線分	} 析試料	と分析結果
------	-----------	------	-----	---------	-------	-------

No.	sp.	L/R	SL	SH	W/F	seasonality	No	SD.	L/R	SL	SH	W/F	seasonality
	*1		*2	*2	*3	,		*1		*2	*2	*3	-
30	ML	L	37.6	31.7	₩	145	69	ML	L	-	-	(f)	5
33	MV	R	43.1	37.4	w	180	70	MV	L	35.5	32.2	w	70
36	ML	R	* 32.8	28.3	₩*	28	71	TP	L	* 37.0	30.4	w	-
37	ML	Ŀ	34.0	29.4	₩	116	72	TP	L	* 35.0	27.5	w	20 ?
38	TP	R	* 38.5	* 28.5	(w)*	77	73	MV	R	33.0	28.9	w	315
39	MV	R	37.3	34.4	w	200	74	ML	R	35,6	30.0	w	51/322-BW
40	ML	R	-	-	(w)*	13/240	75	ML	L	32.3	27.0	w	46
41	ML	Ŀ	* 44.0	37.0	w*	181 ?	76	ML	R	34.3	29.4	w	28[/210]
42	MV	L	-	* 37.3	(w)	51/287	171	ML	L	* 33.5	29.2	w	34
43	ML,	L	29.3	25.4	w	126/288-BW	78	TP	L	* 35.0	27.0	w	269[/W]
44	MV	R	38.2	33.1	w	245 ?	79	ML	L	-	* 44.8	(w)	26
45	MV	L	* 33.0	30.7	w	[279-]306	80	ML	L	34.0	29.8	w	32
46	TP	L	* 32.0	24.5	w	263 +	81	ML	L	* 39.5	34.2	w	223 ?
47	ML	Ŀ	38.6	32.4	w	214	82	TP	R	31.0	22.9	w	158
48	ML	L	~	* 29.1	(w)	280	83	TP	R	40.3	29,1	**	W
49	MV	R	40.3	35.2	w	Summer-Autumn ?	84	TP	L	-	-	f	22
50	ML.	L	36.5	29.6	w	59/222	85	ML	L	* 33.0	28.0	w	134[/358]
51	MV	R	36.1	31.3	w	W(303+)	86	ML	L	-	* 33.2	(w)	186
52	ML,	R	36.6	30.1	W	64	87	ML	R	28.0	24.8	w	209
53	MV	L	41.0	35.4	w	-	88	TP	R	-		f	24
54	TP	L	37.8	27.8	w*	280 +	89	ML	L	35.1	* 29.5	w*	29
55	MV	R	~	* 36.5	(w)	200 ?	90	ML	R	* 32.0	27.9	w	23/313-BW
56	MV	R	37.3	33.2	w	65	91	ML	L	* 33.5	-	(w)#	217-BW
57	ML	R	43.4	35.4	w	160	92	ML	L	34.5	-	(w)*	35/220
58	MV	L	-	-	f	270	93	ML	L	* 36.0	30.7	w	11/191
59	TP	R	-	* 23.6	(w)	260	94	ML	R	* 35.5	30.4	. w	39 ?
60	ML	R	* 39.5	34.5	w	238 ?	95	ML	L	-	* 33.2	()	58
61	MV	R	-	* 31.8	(w)	53	96	TP	L	* 36.0	* 28.5	₩*	-
62	MV	R	36.2	33.2	w	EW	97	ML	L	33.0	28.4	w	210 ?
63	ML	L	39.4	33.5	w	206	98	ML	L	- 1	* 31.6	(w)	27/244
64	MV	R	39.4	34.4	w	Autumn-Winter ?	99	ML	L	-	* 32.4	(w)	22/361
65	ML	L	* 35.0	30.1	*	63	10	D TP	R	* 32.0	25.5	**	-
66	TP	L	* 36.0	* 29.5	(w)	-	10	I ML	L	40.5	34.2	w	170 +
67	TP	R	* 37.5	29.0	w*	100 ?	10	2 ML	L	-	31.4	(w)	181 ?
68	MV	L.	32.1	30.8	w*	W(316+)	10	ML	R	* 48.0	39.0	w	126

*1. ML: バマグリ, MV:シオフキ, TP: アサリ. *2. (): 確定的でない, +:あり(位置不明), −:なし, /:複数候補あり. *3. w:売形, (w): 磁損(中心線残存), (f):破損(中心線なし, 数頂あり), f:破損(数頂なし), *:切断線≠中心線.

図24 加曽利北貝塚区画C(II層)における二枚貝類の死亡季節と季節層の層位分布 (数字は試料番号、凡所は図7・8を参照)

4 層と1 屬には一部に明らかな季節層が確認された。これらについても、他の場所に堆積した 季節層がまるごと再堆積した可能性がないとは言い切れないが、この点については今のところ 確認する方法がない。常識的に判断するならば、一次的な廃棄単位がそのまま保存されたと解 釈するのが妥当であろう。また、3 層の同一季節グループも、死亡季節の近さと分布のまとま りから見て、季節層の可能性がある。しかし、これら以外の部分では死亡季節のまとまりは明 らかでなく、廃棄単位の保存は全般にあまり良好とは考えられない。小規模な季節グループは 見られるが、一次堆積層の存在を示す積極的な証拠とは言い難い。

要するに、Ⅲ層では部分的に一次的な廃棄単位も保存されており、全面的に再堆積層である とは言えないものの、概してⅠ層・Ⅱ層よりも混合・再堆積の作用を強く被っているものと推 定される。このように、Ⅲ層では廃棄単位の保存状態が悪く、貝層の堆積季節が明瞭でないた め、季節的な堆積パターンや堆積速度については検討を見送った。

Layer	No.	sp.	Number of	E Gro V	wth-1	Lines 90	from	Las 18	L Wint	er 21	Ring 70	W
	5069795370648 3535353548	MV ML TP MV MV MV MV ML ML ML TP ML	65 59/222 263+ SumAut.? 214 200 200? 180 160 145 28 280+ 280		0	0	 0	0	0000	0	 o	
លកាលសាលាលសាលាពាលកាលកាលលាល	352610458112223794052983	TP MU MV MV MV MV MV MV MV MV MV MV MV MV MV	77 64 53 13/240 AutW? [279-]306 270 303-W 181? 51/287 EW 206 116 260 245? 238? 63 20? 5 W(316+) 126/288-BW		0		O		• •	, , ,	• •	
444444444444444444444444444444444444444	$\begin{array}{c} 70\\ 85\\ 101\\ 864\\ 83\\ 731\\ 893\\ 997\\ 78\\ 805\\ 779\\ 902\\ 395\\ 1095\\ 8902\\ 395\\ 997\\ 998\\ 997\\ 998\\ 999\\ 999\\ 999\\ 999$	MVP MLL MLPPVL MLP MLL MLL MLL MLL MLL MLL MLL MLL ML	70 100? 134[/358] 170+ 186 22 W 315 223? 158 11/191 217-BW 35/220 209 51/322-BW 39? 28[/210] 24 46 34 29 23/313-BW 181? 126 58 269[/W] 26 210? 27/244 W			0	° °		, , , ,	0		°

図25. 加曽利北貝塚区画C(Ⅲ層)における死亡季節の層位変化を示すダイアグラム (凡例は図9を参照) 4、総 括

(1) 主要二枚貝の採取季節

全区画・全試料の合計による季節分布を見ると、主要二枚貝(ハマグリ・シオフキ・アサリ) の死亡季節は周年にわたってほぼ均等に分布しており、とくに春~夏前半の比率がやや高い (図47)。このことから、加曽利北貝塚においては、これらの貝類の採取が一年を通して行われ ており、平年的には春~夏前半にやや活発化する傾向にあったと推定できる。しかし、1 屬か らⅡ・Ⅲ層までの層位的な変遷をたどると、季節分布は時期によって著しく変動していること がわかる。

区画A(I層)では、他の層よりも秋(10~11月)の貝の比率が高く、夏(7~9月)の貝 が少ない。この傾向は上層ほど顕著で、最上部(5層以上)では試料の大半が秋~冬の貝で占 められている。これに対し、区画D(住居跡内貝層)では春~夏の貝が目立つようになり、秋 ~冬の貝は減少する。区画B(II層)でも、春前半と夏の比率が高く、秋~冬前半の貝はさら に減少する。区画C(II層)では各季節に比較的均等に分散するが、季節層を成すのは春や夏 の貝で、冬(12月~2月頃)の貝が少ない。秋前半の貝も結構目立つが、明瞭な季節層を成さ ないため、二次堆積によってもたらされた可能性もある。

以上のように、加曽利北貝塚における主要二枚貝類の採取季節は、時期によって不規則に変動している。長期的な流れとして見た場合、春・秋型の分布から春~夏型の分布へという変化 傾向を示しているようにも思えるが、それほど明確ではない。

(2) 貝層の形成過程

■層を除く各区画では、死亡時期の近接した貝が薄い層を成してまとまるケースが多く見ら れた。したがって、これらの貝層中における廃棄単位の保存状況は概して良好であると判定で きる。しかし、個々の季節層の中では、死亡季節の前後関係と試料の上下関係に若干の混乱が 見られるのが普通であり、徴視的には廃棄後の混合がある程度進んでいると推測される。

貝屬形成初期の1層下部では廃棄単位の保存が特によく、春を中心とする明瞭な季節層が認 められる。これは、貝層堆積の初期段階で、堆積面がまだ平坦で安定していたこと、周囲に二 次的な混合の元となるような貝層がなかったことなどによると推測される。特に区画Aの27層 (灰層)付近ではほぼ1ヶ月間の貝のみが分布している。この灰層は粘性が強く、このため廃 棄後の貝殻の移動・混合が妨げられたものと思われる。

しかし、貝層の堆積が進むにつれて、こうした明瞭な集中は見られなくなる。調査地点の貝 層は、そのほとんどが土をあまり含まない混土貝層~純貝層で、安定した間層もないため崩れ やすく、なおかつ貝層がうず高く堆積しているため、斜面を流れ落ちる貝が多かったであろう ことは容易に推測できる。貝殻を捨てにくる人間の度重なる歩行・踏みつけも大きな撹乱要因 となっていたに違いない。こうした貝層の堆積の進行に伴う堆積面の不安定化により、廃棄単 位間の混合が次第に大きくなっていったものと考えられる。

■層は、泥と破砕貝が多く混じった汚れた層であること、貝の方向がランダムなこと、内容 が均質なことなど、典型的な撹乱・再堆積層の特徴を示している。死亡季節分布もかなり混在 した状況を呈しており、層相観察からの予想通り、I層・I層よりも攪乱・二次堆積の作用を 強く彼っていると推測された。しかし、部分的には季節層も存在しているので、Ⅱ層は一次堆 積層と二次堆積層の複合堆積物であると結論できる。ただし、層相観察からはこれらを区別す ることは難しく、季節層としたまとまりが本当に一次堆積物なのか、さらに検討を要するよう に思われる。

(3) 貝層の堆積に要した年数

■層を除く各大別屬の堆積に要した最低年数の推定結果をまとめると、1層が15年、住居内 貝層(19~7層)が5年(6~1層は不明)、Ⅱ層(上部層+下部層)が6年(中部層は不明) となった。Ⅱ層と住居内貝層については、不明の層準を加味すれば全体で10年程度となろう。 したがって、個々の大別層の形成には、最低でも10年前後の期間を要したと推定される。ただ し、この値は区画内の層がすべて連続して(1年以上のブランクを置かずに)堆積したと仮定 した場合の最小値であり、また区面内に現れていない層も多いと考えられるので、実際の堆積 所要期間はこれよりかなり長かったと考えてよい。

・しかしながら、1層、1層のような層群の存在は、貝の捨て場に一定の範囲があり、その範囲内に連続して貝殻が捨てられていったことを示している。今回は、各区画をこうした大別層の中心に設定してあるので、それらを構成する単層のかなりの部分はカバーできていると思われる。したがって、上記の推定年数は、実際の年数よりは小さいとしても、ひどくかけ離れた数字ではないと考えている。断面と直交方向における大別層の広がりが把握できていないので、個々の大別層の堆積に要した実際の年数については推測の域を出ないが、各区画内に現れている単層が全体の半数をカバーしていると仮定すれば20~30年程度、1/4として50年前後と見積られる。いうまでもなく、この数字はあくまで調査地点における個々の大別層に対するものであり、加曽利北貝塚全体の貝層がわずかこの程度の年数で形成されたということではない。おそらくここでの1層・11層のような潛群が基礎的な構成単位となり、これらが数百年にわたって場所を移しつつ堆積し続けた結果、次第に貝塚の全体像が形造られていったのではないかと推測される。

(4) 貝層の構成要素と堆積季節の関係

各層の内容と堆積季節の関係について整理する。

ハマグリをはじめとする二枚貝主体層や完形イボキサゴ層の場合、各区画とも堆積季節や堆 積に要した時間幅は一定しておらず、規則的・周期的なパターンは認められなかった。したがっ て、これらの層の堆積に関しては一定の季節的なパターンは存在していなかったものと推定さ れる。

これに対し破砕イボキサゴ層は、全ての区画において冬ないしは春を中心とした季節性を示 しており、完形イボキサゴ層とは明らかに異なった傾向を示している。イボキサゴ層やその破 砕貝層については堆積季節の推定方法に限界があるうえ、II層中部層のように堆積季節の不明 確な部分も残されているので、慎重に判断する必要があるが、イボキサゴの破砕・廃棄は冬~ 春を中心とした季節的な行動であった可能性が高い。

そのほかの要素については例数が少ないが、ヤマトシジミは秋~春の層で見られることが多 く、また灰層も秋または春の季節性を示す傾向にある。マガキについてはとくに傾向は認めら れなかった。

第3節 加曽利北貝塚産ハマグリの成長速度と年齢構成

加曽利北貝塚に限らず、東京湾東岸域の縄文中期貝塚に見られるハマグリは、一般に著しく 小型の個体が多いことによって特徴づけられる。これは、当時のハマグリ資源の利用状況や資 源動態を考える上できわめて興味深い様相といえる。そこで、ハマグリの殻成長速度と殻高分 布との比較を通じて本遺跡のハマグリの年齢構成を調べ、当時の採貝活動とハマグリ資源との 関係について考察した。

1. 試料と分析方法

分析試料としたのは、死亡季節推定用に採取した試料のうち、区画A(I層)・区画B(Ⅱ層) から得られたハマグリである。これらの中から明らかな冬輪が認められたものを抽出した(試 料の採取地点と採取方法、冬輪の認定方法等については第2節を参照)。擬冬輪等の存在のた め、冬輪を確定できなかった試料は除外した。これらの試料について、殻頂と各冬輪のステー ジ座標から算出した両者間の距離を冬輪形成時の殻高と見なし(表2・表4)、年齢別にその 分布を求めた。また、複数の冬輪をもつ試料については、Walfordの定差図法(Walford、194 6、小池、1982)によって各満年齢時の平均殻高を求めた。

なお、冬輪形成時の殻高分布を求める際には、第1冬輪の位置が問題となる。産卵期の後半 に発生したハマグリの場合、生後最初の冬輪は殻頂のごく近くに形成されることになるが、遠 跡産のハマグリでは、こうした殻頂付近の冬輪は侵食や風化のために失われていることが多い。 したがって、冬輪形成時の平均殻高を算定するためには、観察された最初の冬輪が第1冬輪な のか、その前に失われた第1冬輪が存在するのかを判定しておく必要がある。

ハマグリが成長線の観察が可能な炭酸カルシウム殻の形成を開始するのは産卵後3週間目で ある(Koike、1980:27)。ここで、加曽利北貝塚産ハマグリの産卵開始期を近年の東京湾と同 じ6月上旬(瀧、1949)と仮定すると、最も早く発生した群では、3週間後の6月下旬には殻 形成が開始されると考えられる。6月下旬から冬輪中心の形成期である2月中旬までの経過日 数は230~240日であるから、観察できる最初の冬輪から遡って成長線が観察され始める点まで の日成長線数が240以上ある場合、産卵は6月より前ということになる。こうした個体につい ては前年に発生し越冬したものと考えざるを得ないので、観察された最初の冬輪は第2冬輪で あり、殻頂付近に観察不能な第1冬輪が存在していると判断できる。また、最初の冬輪~成長 線の観察開始点間の日成長線数が240未満の場合でも、成長線観察開始点の殻高から見て、そ れより殻頂側に冬輪の存在が想定される場合には、やはり観察された最初の冬輪を第2冬輪と 見なした。こうした試料では第1冬輪の殻高を測定できないので、図26・図27に示した第1冬 輪の殻高分布には表されていない。したがって、同図の第1冬輪の平均殻高は実際の値よりも かなり大きい値となっていると考えられる。

2. 結果と考察

まず冬輪形成時の殻高分布を見ると、区画A(図26)では、第1冬輪で1~25mm(平均8.7mm)、 第2冬輪で17~33mm(平均24.9mm)、第3冬輪で27~40mm(平均33.9mm)となった。区画B(図 27)では、第1冬輪で1~25mm(平均10.8mm)、第2冬輪で18~33mm(平均27.1mm)、第3冬輪 で26~40mm(平均33.1mm)で、区画Aとほぼ同じである。ただし両区画とも、第3冬輪につい ては試料が成長速度の遅い個体に偏っている可能性が強いため、実際にはもう少し大ききな値 となるだろう。第1冬輪の殻高は、区画A・Bとも4mm以下と16~18mmにふたつのモードが認 められることから、産卵期のピークが2回に分かれていた可能性がある。

Walfordの定差図法によって推定された満年齢時の殻高は、区画A(図28)では満1歳で20, 9mm、2歳で33.3mm、3歳で40.6mm、区画B(図29)では満1歳で24.1mm、2歳で34.5mm、3歳 で38.9mmとなった。区画Bの方がやや初期成長が大きく、加齢に伴う成長速度の減衰が強い傾 向はあるが、3歳までの成長曲線はほぼ一致している。これらの値から、加曽利北貝塚のハマ グリの多くは生後最初の冬を迎える頃には穀高1~数mm(早産の個体は17mm前後)、翌夏(満 1歳)には20mm以上、1歳の冬には25mm以上に成長し、さらに満2歳で約35mm、3歳で40mm前 後に達したものと推定される。

図26. 加曽利北貝塚区画A(I層)におけるハマグリの冬輪(W)形成時の殻高分布

左図の各点は個々の値(〇は障害輪の疑いのあるもの)、構線は平均を示す。右図の凝線は設 高範囲、横線は平均値、枠線は基準偏差を示す。第1冬輪のうち大型グループの中には、実際に は第2冬輪となるものが含まれている可能性がある。第3冬輪以降は成長の遅い個体に試料が偏っ ているため、やや低めの値となっている可能性が強い。

図27. 加曾利北貝塚区画B(II層)におけるハマグリの冬輪形成時の殻高分布(凡例は図26に同じ)

図28: Walford の定差図法による加曽利北貝塚区画A(I層)ハマグリの成長速度 H(t):t 歳時の平均殻高、Hmax:最終殻高

i

ł

図29. Walford の定差図法による加曽利北貝塚区画B(II層)ハマグリの成長速度(凡例は図28に同じ)

図30. 加曽利北貝塚における貝殻成長線分析用ハマグリ試料の殻高分布

調査地点におけるハマグリの殻高分布に関する定量的データは得られていないが、今回採取 したハマグリ試料のサイズは、1層(区画 A)ではほとんどが殻高22~34mの範囲内にあり、 平均28mmである(図30)。II・II層(区画 B・C)ではやや大きく、24~38mmのものが大半で、 平均約31mmである。試料の採取に際しては、著しく小型または大型の貝殻は避けているが、そ の他は貝層断面に露呈する貝殻をおおむねランダムに採取していると考えられるので、この程 度のサイズが貝層の主体を占めていると見てよいだろう。これは1966年度の発掘調査時におけ る金子浩昌の観察(金子、1970)ともおよそ一致する。

1

これを上記の成長曲線と比較すると、ハマグリが漁獲対象となるサイズ(22mm以上)まで成 長してくるのは生後1年日の夏頃(満1歳)であり、また漁獲物の大半は2歳未満の未成貝に よって占められていることがわかる。現生ハマグリの生物学的最小形(生殖能力を持つ最小サ イズ)は殻長3~4 cm(=殻高約25~35mm)とされており(大分県、1979:27)、本遺跡の場合、 ハマグリが生殖年齢に達する前後に成長した時点で、あらかたの貝が採り尽くされてしまって いた可能性が濃厚である。こうした状況は乱獲と呼ぶにふさわしいものであり、ハマグリ資源 が捕獲圧によって深刻な影響を受けていたであろうことを推測させる。

1層(区面A)ではハマグリ資源が一時的に枯渇した可能性を示唆する証拠が得られている。 すでに述べたとおり、区画Aにおける死亡季節分布は、下層(28層以下)では夏と冬に低下が あるものの比較的安定した分布を示すが、中層(27~14層)では夏の貝が大きく減少して春・ 秋の双峰分布となり、上層(13層以上)では春のビークも消滅する。これを年齢(冬輪数)と の関係から見ると(図31)、下層では春に主として冬輪数2(前々年生まれ)の貝が漁獲され、 夏~秋には漁獲対象となるサイズに成長してきた冬輪数1(前年生まれ)の貝へと主体が次第 に移行する。これに対し、上層では漁獲物の大半は秋の冬輪数1の個体で占められており、春 における冬輪数2の貝のビークが見られない。季節分布の層位変化は、主にこうした冬輪数2 の貝の減少に起因している。春における冬輪数2の貝は前年秋の冬輪数1の貝の生き残りであ るから、上層においてこれらの貝が見られないことは、秋~冬に冬輪数1の貝の大半があらか た漁獲され尽くしてしまい、翌春の干潟にはすでに漁獲可能なサイズの貝がほとんど残されて いなかった可能性を示唆する。季節分布の変化が単に春における需要の低下によるものなら、 秋に冬輪数2の個体が多く漁獲されるはずだが、実際にはそうした個体は見られない。

以上から、区画Aにおける季節分布の層位変化は、ハマグリの過剰採取による季節的な資源 の枯渇に起因している可能性が強い。その過程は以下のようにまとめられる。

下層の時期には、春の漁獲物の大半を占めていた冬輪数2の貝は夏~秋にかけて次第に減少 したが、冬輪数1の貝がこれを補う形で漁獲対象となるサイズまで成長してきたため、年間を 通じて比較的安定した漁獲量が辛うじて維持されていた。

図31. 加曽利北貝塚区画A(I層)におけるハマグリの年齢と死亡季節の関係 Wn:冬輸数=nの個体 死亡季節が「X-BW」になっているデータは「X」として集計した。

図32. 加曽利北貝塚区画B(住居跡内貝層)におけるハマグリの年齢と死亡季節の関係(凡例は図31に同じ)

しかし、中層の時期になると捕獲圧が増大し、冬輪数2の貝は春に採り尽くされた。ところ が、夏には冬輪数1の貝の大半は漁獲対象のサイズまで成長していなかったため、干潟からは 漁獲可能なサイズの貝がほとんど消滅し、漁獲量は大幅に減少した。秋には冬輪数1の貝が漁 獲対象の大きさに成長してきたため、漁獲量は再び増加した。

上層では、過剰捕獲がいっそう顕著となり、激しい捕獲圧に晒された結果、ハマグリは1歳 の秋~冬頃に捕獲対象サイズに成長した段階でそのほとんどが漁獲されてしまい、翌春まで生 き残る個体はわずかであった。この結果、季節分布は秋に集中し、春のピークは消滅したと考 えられる。

こうした猛烈な捕獲圧下で資源を維持し得たのか疑問だが、事実として貝塚の形成は継続し ている。その理由としては、捕獲圧に晒された干海が局地的であった可能性、潮下帯などに部 分的に残された成員によって再生産がまかなわれていた可能性などが考えられる。また、東京 湾西岸奥部の東京都北区中里貝塚では充分に生育したハマグリが選択的に捕獲されていること から、この地域に成員の良好な生息地が存在したことは間違いない。ハマグリは発生後約3週 間の浮遊生活期がある(吉田、1953)ので、こうした地域から内湾水の流れに乗って仔貝が供 給されていた可能性も考えられる。これらの問題については、今後の課題としておきたい。

なお、区面A上層に後続する区面Bでは春における冬輪数2の貝が復活し、逆に秋におけ る冬輪数1の貝のピークが消滅する(図32)。殻高分布もやや大型化しており(図30)、捕獲圧 は次第に低下する傾向が認められる。

第2章 加曽利南貝塚における貝層分析調査

第1節 調査の概要

1.調査の目的

この調査は、「加曽利南貝塚貝層断面観覧施設」の建設に先立って実施したものである。そ の概要についてはすでに報告した(樋泉、1995a)。本稿ではこれに再検討を加えるとともに、 詳穏なデータも併せて提示した。

調査は、以下の3点の解明を主眼として実施した。

(1) 貝層ブロック試料の分析によって、貝層の形成開始期から終末期に至る長期的な貝層内 容(貝類組成およびサイズの変化)の変化を把握し、採貝活動の内容とその変遷を明らかにする。

(2) 北貝塚と同様に、貝屬衡面から採取した貝殻の成長線分析を通じて貝層内における死亡 季節の層位的な分布を調べることにより、貝層堆積の季節性と堆積速度を明らかにする。また、 貝の死亡季節分布、および貝層の堆積季節とそこに含まれる貝の種構成との相関関係から採貝 活動の季節パターンについて検討する。

(3) ハマグリの殻成長速度と年齢構成を推定し、当時の貝類採集活動とハマグリ資源との関係を解明する。

2、調査地点と層序

加曽利南貝塚は縄文時代後期を主な形成時期とする典型的な馬蹄形貝塚で、貝層外縁の直径 は東西約150m、南北約180mである。今回の調査地点は貝層の北西部、加曽利貝塚B地点に位 置する(図1)。現在「貝層断面観覧施設」が設置されている地点で、1964~65年度発掘調査 (加曽利貝塚調査団編、1968)の第Ⅲトレンチ3区に相当し、本貝塚の中でも貝層が比較的厚 く、かつ良好な状態で保存されていると考えられた部分である。

調査は「貝層断面観覧施設」建設の際に露呈した貝層断面において実施した(図版2)。こ の施設は、貝層を南北方向に切り通す旧トレンチを再発掘し、トレンチの東西両壁に露呈した 貝層断面を接状剥離したのち、東壁と西壁を入れ替えて固定・展示したものである(このため 現在の展示断面はトレンチ壁面の反転像となっている)。調査はトレンチ再発掘の際に西壁断 面(すなわち現在展示されている東断面)で実施した。

貝層断面図を図33に示す。貝層は、直径数m、厚さ数10m程度のレンズ状貝層が間層(土層) を挟みつつ累重する堆積状況を示した。レンズ状貝層は計7層が確認され、これらを下層から ブロック1~7とした(ブロック5は1枚のレンズではなく、小規模なレンズが連続して構成

現在展示されているのは接状剥離断面(反転像)である。このため、本断面は展示断面の東断面に当たる。

されている)。また、ブロック2と3の間には薄く不明瞭なレンズが認められたため、これを ブロック2'とした。ブロック4~7の上下関係は明らかでなく、一連のレンズが撹乱によっ て分断されたものである可能性も考えられる。

ブロック1~6は、いずれも主としてハマグリなどの二枚貝もしくはイボキサゴを主体とす る小レンズの累積によって構成されており、部分的に灰や土の薄層、マガキなどや破砕された イボキサゴの小ブロックなどが介在している。こうした堆積状況から、これらのレンズ状貝層 は、いずれも堆積時の状況を比較的よく保存しているものと推測される。一方、ブロック7は 比較的均質な混貝土層で、貝殻の破砕が強く、土混じりの汚い層であることから、少なくとも かなりの撹乱作用を被っているものと推測され、二次堆積物の可能性も考えられる。

出土土器による各ブロックの考古年代は、ブロック1~3が堀之内I式期、ブロック4~6 (および7?)が加曽利B式期と推定される。

第2節 加曽利南貝塚における貝類遺体群の構成

加曽利南貝塚における貝類遺体群については、すでに金子(1968)、金子・牛沢(1982)の報告があるが、遺体群の組成や貝類のサイズ分布に関しては定量的なデータが不足していた。とくにサイズに関しては、成長線分析による成長速度との比較資料として、詳細なデータが不可欠である。そこで、これらのデータを得るために、貝層断面から貝層のブロック試料を採取し、その内容について分析した。

1. 試料と分析方法

貝層試料は接状剥離実施後の貝層断面から採取した。まず、各レンズ状貝層につき堆積状況 の良好な地点を2~3ヶ所選定し、試料採取用の区画を設定した。区画は、層位的な偏りを避 けるため、レンズ状貝層の上面から下面まで上下方向に一定幅(約20~30cm)の帯状となるよ う設定した(図33)。各区画内の断面をクリーニングした後、貝層を土のう袋半量程度採取し た。この時、貝層が断面から一定の奥行き(5~10cm程度)で採取されるよう留意した。区画 の幅と採取する厚さは、貝層の厚さに応じてサンプル量が一定になるよう調節した。

採取した貝層ブロック試料の篩別方法は以下の通りである:(1) 各貝層ブロック試料を十分 乾燥させ、計量する。(2) 1 mmメッシュの JIS 標準フルイを用いて試料を篩別し、通過した土 壌約200gを保存用に採取する。(3) 4 mm・2 mm・1 mmメッシュの3種類のフルイを重ね、試料 を適量づつ入れて、水槽内で水洗する。その際、浮遊物についても洗濯機のゴミ取りネットで 回収する。(4) 水洗を終えた試料は各メッシュごとに分けて十分に乾燥させ、計量する。

表9.加曽利南貝塚貝層試料の貝類組成(L:R)

.

						腹	æ	綱						ツ ノ ガ							Ħ	足(X			-				
サ ン ブ ル Na	ツボミ	イボキサゴ	スガイ	カワニナ	ヘナタリ属	ウミニナ属	アカニシ	イポニシ属	ツメタガイ	ブ ラムシロ	ムシロガイ	パイ	ヤツシロガイ	リイ類	マガキ	イシガイ料	ヤマトシジミ	ウネナシ	アサリ	オキシジミ	カガミガイ	ハマグリ	チョウセン	シオフキ	パカガイ	オキアサリ	ムラサキガイ旗	マテガイ風	オオノガイ	未同定
1	-	999	4	ł	-	2	6	4	8	4	-	-	-	-		+	1:2	- : -	29:39	• : -	8 : 10	85;87	-:-	20:21	• : •	• ; •	- : *	1:4	ĩ : 5	2
2	-	2830*	-	-	•	12	14	3	-	22	-	t		•	l:-	*	4	- ; -	27:29	• ; •	6;2	61:71	- : -	10:4	- 1 -	× ; •	• ; •	3:3	2:1	*-7997 1:0
3	•	3510*		•	•	8	٠	-	-	31	-	•	•	*	*;•	٠	* (•	• : -	27:32	•;1	•:•	90:90	- : -	12:19	= ; *	жŢн	- : -	2:2	- 1 -	<i>*=</i> 799?0:1
4	•	3080*	-	1		9	-	•	3	20	L		-	-	7:-	*	3:1	- : -	15:12	-:-	4:2	62:63	- : -	7:8	• ; -	- ; -	• \$ -	1:1	• ; •	
5	•	2810*	•	٠	-	9	•	•	5	31	-			×	*:•	٠	3:3	• ; •	27:22	1:-	13 : 8	93:91	• : •	18:14	-:1	- : - *	- 1 -	7:2	1:1	
6	L	3280*	•	٠	•	7	l	-	1	47	-	-	ι	•	15 ; 2 <1>	*	1:-	• : •	19:24	6:1	(:2	142,144	2: 4	49:32	•:•	• : •	• : •	8:4	1:-	オニアサリア 0:し
7	L	3790*	2 (1)	•		17	1	-	1	64	-	•	-	•	93:70	+	6:3	5:4	26:24	4:5	12:13	156:132	- : •	60:53	- : -	-:-	1:-	::1	•:•	
8	٠	2650"	٠	1	ŧ	23	1	٠	1	55	•	•	~	-	3: (1:D	1:-	- : -	- : -	56:56	1:1	• : •	48:56	-:-	2T:24	• ; •	12:10	• ; •	1:1	1:-	
9	٠	2100*	•	1	•	12	•		4	枊	1	•	-	-	• : 1	+	-:1	- ; -	17:12	1:2	-:1	117:124	- ; -	27:23	• ; •	2:2	•:1	2:2	1:2	1
10	-	379		•	2	4	1	1	4	5	ж	-	•	•	20:20 <1>	-	• : •	• : •	15: 7	* : 1	*1*	107:110	-1-	35-30	• : •	-:1	-:-	-:-	-:1	
11	•	63	-	-	-	2	-	•	L	Ż		*	-	•	21:10	-	•:•	- : -	36:32	-:1	- : •	112:119	- 1 -	45:35	• * •	-:1	•:•	• : •	1:-	
12	1	4240*	1	-	1	40	-	-	*	57	•	•`	•		12: 3	-	1:-		37:85	• : •	1:1	19:31	-:•	9:11	. : -	- : -	-:-	1:1	-:1	2
13	ł	1770*	3 (1)	1	2	21	-		L	26	*	•	•	-	+:1	-	2 : -	-;-	240:231	m (=	1:2	24:21	•:•	11.9	-:-	7:1	- ; -	6:\$	7:L	クラトリガイ類・1-1
14	•	2170*	2	1	-	9	3	2	3	30		-	-	1	5:-	÷	3:1	- ; -	33:25	-:3	2:2	108:122	-:-	24:23	-:-	2:2	•:-	1:•	1:3	
15	-	1570*	•	2	-	20		2	3	24	-		•	-	1:2	+	6:2	- ; -	41:34	4:3	7:2	107:105	-:-	19:9	• : •	1:2	•:=	4:5	1:2	
4 3	***	ゴの*	は頂	日から	の推り	直磁_	スガ	100 (```	オフタ	. 21	(キの・	\sim	时的	目の戦	を示	d*		**											

\$
篩別後の残留物中から貝殻(陸産貝を除く)を選別し、同定・計数を行った(陸産貝につい ては今回は扱わない)。計数部位は二枚貝では殻頂、巻貝では殻口部とした。貝類以外の動物 遺体については予備的な観察にとどめた。また、主体貝種であるハマグリ・イボキサゴなどに ついては、それぞれ殻高、殻径を計測した。

2.結果

(1) 貝類組成とサイズ分布

同定結果を表9に示す。個体数比ではイボキサゴが圧倒的に多く、ハマグリがこれに次ぐ。 大半の層でこれら2種が9割前後を占める。その他の種類では、アサリ・シオフキがやや多く、 ウミニナ類・アラムシロ・ツメタガイ・アカニシ・マガキ・ヤマトシジミ・オキシジミ・カガ ミガイ・マテガイ・オオノガイも普通にみられる。アカニシはNo.2で、マガキはNo.7・10・ 11で、アサリはNo.13で、オキアサリはNo.8で、それぞれ集中して検出されている。その他の 種類はいずれも少数で、検出サンプルも限られている。こうした組成は、東京湾東岸域におけ る縄文後期員塚に典型的なものである。

組成に大きな簡位変化は見られないが、マガキは中部(No6~11=ブロック3~5)でやや 増加するように見える。オキアサリは No.8以上のみで出現する。No.10・11ではイボキサゴ が少ないが、これはこれらの試料がたまたまイボキサゴ層のない地点に当たっていたためであ る。

表10に貝層の主要構成種であるハマグリ、イボキサゴ、アサリ、シオフキの計測結果を示した。ハマグリは殻高5~20mm程度の幼貝群と、それ以上の成貝群とに分かれる。幼貝群はおそらくイボキサゴ採取の際の混獲物と推測される。成貝群はサンプルによって若干のばらつきはあるが、殻高25~60mm程度のものが大半で、平均は35mm前後である(図34)。イボキサゴは大半が殻径10~18mm程度、平均は14mm前後である(図35)。種類組成と同様に、いずれも層位変化は認められなかった。

以上から、加曽利南貝塚における貝類採取活動は、縄文後期の前葉から中葉にかけてほぼ同様の内容を維持していたものと推定できる。

(2) 脊椎動物遺体

魚骨・獣骨は少ない。ただし、魚類は種類が豊富で、現在までにエイ目・ニシン科・サヨリ 属・ボラ科・キス属(?)・アジ科・サバ属・クロダイ属・ハゼ科・カレイ科・ササウシノシタ 亜目が確認されている。クロダイ属のような大型魚が少なく、大半は2~1 muメッシュ上で分 離される小型魚類である。獣骨は小破片資料がほとんどで、種名の明らかなものは少ない。

図34. 加曽利南貝塚貝層試料におけるハマグリの殻高分布(㎜)

- 68 --

表10.	加曾利南貝塚	ミ貝層試料の)主要貝類計	測値

	ハマグリ (殺高, mm)												
試料	計測		幼貝鮮		主群								
No.	個体数	N	設高範囲	N	最小 - 平均±標準個差 - 最大								
1	89	0		89	$25 - 36.2 \pm 6.3 - 64$								
2	57	4	10 - 16	53	$23 - 33.5 \pm 7.4 - 56$								
3	70	8	9 - 19	62	$24 - 34.2 \pm 6.1 - 51$								
4	70	7	9 - 12	63	$24 - 38.3 \pm 7 - 60$								
5	82	3	9 - 14	79	26 - 35.9 ± 5.8 - 55								
6	99	5	10 - 16	94	24 - 33.8 ± 6.2 - 61								
7	106	10	8 - 17	96	$20 - 33.8 \pm 7 - 58$								
8	57	1	18	56	25 - 37 ± 5.8 - 49								
9	110	1	19	109	24 - 35.6 ± 7.7 - 73								
10	63	1	11	62	25 - 35.9 ± 8.1 - 60								
11	90	0	-	90	23 - 36.7 ± 7.7 - 62								
12	35	8	6 - 18	27	22 - 32.5 ± 5.8 - 45								
13	24	3	7 - 14	21	21 - 36.7 ± 9.9 - 59								
14	60	2	7 - 13	58	26 - 35.7 ± 6.1 - 48								
15	72	0		72	$23 - 37.3 \pm 8.4 - 67$								

イポキサゴ (殻径, mm)									
試料	計測	最小 一平均土標準備 2 一最大							
No.	個体数								
1	100	$11.2 - 14.15 \pm 1.06 - 17.1$							
2	100	11.6 - 14.24 ± 1.13 - 17.2							
3	100	9.5 - 14.66 ± 1.28 - 17.2							
4	100	10.4 - 13.57 ± 1.63 - 18.2							
5	100	11.2 - 14.13 ± 1.73 - 19.5							
6	100	$10.8 - 13.65 \pm 1.60 - 17.4$							
7	100	11.5 - 14.19 ± 1.21 - 18.1							
8	100	11.5 - 14.00 ± 0.98 - 16.6							
9	100	8.9 - 13.85 ± 1.45 - 18.0							
10	38	11.7 - 13.42 ± 1.22 - 16.7							
11	16	$14.1 - 15.23 \pm 0.80 - 16.7$							
12	100	10.7 - 14.37 ± 1.55 - 18.3							
13	100	11.2 - 15.50 ± 1.66 - 20.8							
14	100	10.4 - 14.36 ± 1.17 - 17.8							
15	100	$9.2 - 13.73 \pm 1.41 - 18.3$							

		_	アサリ	(殼油	5, mm)
試料	計測		幼貝群		主群
No.	個体数	N	致高範囲	N	殿小 - 平均土標準備差 - 最大
1	33	0		33	$20 - 28.5 \pm 3.4 - 35$
2	24	3	8 - 9	21	18 - 27.7 ± 4.5 - 34
3	34	9	7 - 14	25	$23 - 28.5 \pm 3.1 - 33$
5	9	0		9	25 - 32.7 ± 5 - 38
6	27	6	8 - 13	21	17 - 26.7 ± 3.6 - 33
7	32	2	9 - 12	30	22 - 27.6 ± 2.7 - 32
8	66	1	8	65	15 - 27.4 ± 3.6 - 38
9	13	2	8	11	23 - 31.1 ± 4.2 - 40
11	49	0		49	19 - 29.9 ± 4.5 - 39
12	41	5	8 - 11	36	17 - 28 ± 5.4 - 36
13	110	3	5 - 8	107	15 - 26.1 ± 5.8 - 40
14	8	0		8	22 - 29.9 ± 5.4 - 36
15	9	1	14	8	22 - 28.6 ± 5.9 - 36

* 試料No.4 - 10は計測可能資料なし.

	<u>シオフ</u> キ (殻高, mm)									
試料	計測	最小 — 平均士樓準備養 — 最大								
No.	個体数									
1	24	27 - 36.3 ± 4.64 - 44								
3	21	32 - 38.9 ± 3.40 - 44								
5	13	31 - 40.4 ± 3.90 - 45								
6	48	27 - 36.1 ± 4.82 - 46								
7	63	$26 - 35.4 \pm 4.17 - 45$								
8	35	31 - 36.2 ± 3.83 - 42								
.9	25	$24 - 38.6 \pm 5.53 - 47$								
10	32	31 - 38 ± 3.66 - 47								
11	65	28 - 37.6 ± 3.99 - 45								
12	8	13 - 30.6 ± 8.52 - 45								
13	12	29 - 38.4 ± 3.68 - 42								
14	21	30 - 37.3 ± 3.96 - 44								
15	9	$34 - 38.6 \pm 2.33 - 42$								

*試料No.2 - 4は計測可能資料なし.

第3節 加曽利南貝塚における貝層形成の季節性

南貝塚と北貝塚は、外見上は類似した規模・形態をもつ環状貝塚だが、貝層の堆積構造は両 者の間で大きく異なっている。こうした相違の原因を探るため、北貝塚と比較可能な方法でハ マグリをはじめとする二枚貝類の死亡季節の層位分布を調べ、貝層形成の季節性や堆積速度に ついて分析した。なお、前報(樋泉、1995a)における貝層の堆積季節の解釈には多くの問題 点が見出されたため、本報ではこれを全面的に再検討し、修正を加えた。 1. 試料と方法

(1) 試料と分析方法

分析対象としたのは、レンズ状貝層のうち堆積が安定しているブロック1~3である。分析 試料には、貝層断面に露呈する貝殻の内、ハマグリ、アサリ、シオフキの3種を用いた。試料 は、接状剥離断面との対比を重視して、剥離前の断面から採取した。

まず貝屬の詳細な断面図を作成した後、断面に露呈した貝殻の中から保存状態の良好なもの を選び、位置を断面図中に記録しながら採取した。このとき試料ができるだけ均等に分散する ように留意した。試料の点数は、ブロック1が59点、ブロック2が41点、ブロック3が78点、 計178点である(表11)。

死亡季節の推定、貝層堆積季節・堆積速度の推定の方法は、北貝塚と同様である。

(2) ハマグリの年間日成長線数の不足および障害輪の介在について

南貝塚のハマグリにも、北貝塚と同様に年間日成長線数の不足が確認された。冬輪間の日成 長線数は、第1-第2冬輪間で 251~380 (309.4±36.8)、第2-第3冬輪間およびそれ以降で 265~350 (297.8±40.7) となり (図36A)、冬輪形成の際に平均約2ヶ月間にわたって殻成長 の停止が生じていたことを示している。したがって、南貝塚においても死亡季節の推定値は実 際の死亡季節よりも早めの値を示している可能性が高い。

また、南貝塚においても夏期の成長障害や擬冬輪の介在する個体が多数確認された(図版4-5)。第1冬輪中心から障害輪までの日成長線数は203.9±42.2、障害輪から第2冬輪までの 日成長線数は159.5±31.9、冬輪と障害輪の判別が難しい試料における低成長帯間の日成長線 数は185.9±38.6 である(図36B・C)。これらの値はいずれも北貝塚とほぼ一致していること から、南貝塚においても夏期に成長障害を起こす個体が多く、障害の程度が強い場合には擬冬 輪が形成されているものと考えられる。擬冬輪の介在する試料の死亡季節に関しては、北貝塚 と同様にふたつの推定値を/で結んで表記した。

2、貝層の堆積季節と堆積に要した年数

各試料の計測値、死亡季節、冬輪殻高を表11に示した。以下に、死亡季節組成の特徴、貝層の堆積季節と堆積速度について各ブロックごとに述べる。

(1) ブロック1

貝層の堆積状況

ブロック1は大きくⅠ~皿層に区分される(図38)。ハマグリ主体の混土貝層(1層・皿層) 間にイボキサゴ主体の純貝層(Ⅱ層)が介在する。Ⅲ層にはアサリ・シオフキも多く含まれる。

図36. 加曽利南貝塚におけるハマグリの冬輪間および冬輪一障害輪間の日成長線数 W1:第1冬輪 W2:第2冬輪 D:障害輪

※11. 加曽利南貝塚における貝殻成長線分析試料と分析結果

No.	Block	\$\$	L/R	S.L	S.H.	W/F	Seasonaity	Number of	She	s Hight a	t Winter	Ring
<u> </u>	L	+1	<u>l</u>	-2	*2	•3		Winter Rings	W1	W2	W3	W4
	3	ML	X	35.3	29.3	W	246	1	5.5	~		
20	3	NL I	ļĶ	54.5 41.7	43,5	1 100	290	3	23	21.2	35.7	1
41	3	ME	12	41.7	33.4	fug]-	295-312		111.0	34,9		1
б	3	MV	ΙĔ	48.5	40.7	w						
7a	3	MV	L	37,6	32.4	w	247-273					1
8	3	ML	L	40.1	33.9	w	287-c	2	15.1	32.7		
9	3	MV ₩V	l Ŗ	45.8	40.7	w	(early spring?)	•	1		ł	
10	3	MV :	R	* 44.4	40,0	w	(automa?)			1		
1 1 1 2	3	NL I		39.1	349.0	1 💥	127]は,に 14、15	000	I	1
13		1 154L		43.6	4 25.7	- 1W1	90 158	6	10.0	286		1
14	3	M	Ř	47.3	33.9	1,≠1√ #/	8	ž	16.8	37.4	l	t
15a	3	M	R	43.4	36.5	W N	70		1	_	[·	1
168	3	ML.	lι	48.8	39.5	w l	196	1	18.3		1 :	1
17	3	ML	L L	~	* 39.0	(w)	-	[-				1
18	3	ML.	L	54.2	44.0	W	128-171	2	23.4	36.4		ł
19a	3	ML	R	44,6	36.Z	w	252-W	tor2			l	1
20	3	ML		40.0	32.9	w	(W)	Z	11.9	32.2	I	l
278	3	ML		33.4	28.7	W	[¥¥]	2	5.6	Z8.6	l	1
225	3	ML		30 9	37.0	W .	218		17.5		I	1
242	1	MD.		39.9	33.5	w w	100.234	1 7	19.7	1	1	ſ
25	i i	MV	l R	+ 46.2	39.2	w v	(300)					ł
26a	3	ML	1 2	35.2	29.8	w	188	,	14.2			
27	3	ML	L	* 41.0	35.0	**	180	l lor2	-	f		
25	3	ML	L	33.9	29.0	w	256	1	13.0		1	
29	3	ML	R	41.9	34.3	w	236		16.9		1	1
30	3	ML	l ŀ	* 55,1	45,7	w	(200)	2	15.7	37.9	1	
312	3	ML		35.0	29.9	W	149	1 lor2	ł		I	1
320	3	ML NO	1.	36.7	20.0	107	131	1072		1		
34	ŝ	M	1 k	44.3	36.6	1	2/10		296	1	l	1
35	3	ML	R	40.1	32.7	W	307-W	2	16.8	32.4	ł	1
362	3	ML	l E	32.7	28.0	W	(129/304)		1			1
37a	3	ML	L L	38.7	33.3	w	196	2	2.9	23.0		
38	3	ML	L	*	* 36.2	(w)	(128)	z	9,2	28.0	1	
39a	3	ML.	R	* 35.2	29.3	w	156	1	18,0]
40	3	ML	1 1	45.2	38.7	w	-79	l lor2			1	1
41	1 3	ML	i K	43.5	35.4	W	260-W	-		1		1
428	3	1.0"	15	39.1	31.3	w.	776		1		l	1
44	3	MV	Ιĭ	38.0	32.6	Ur W	409 65			ł		
45	13	NY	Īž	38.9	33.6		345	1 .		1	ļ	1
46	3	MV	Ιũ	* 36,3	31,3	l w	Ŵ		1	1	1	l I
473	3	MV	L	33.2	29.8	w	W	-				
48#	3	MV	L L	• 39.9	33.9	w	37		1			
49a	3	MV	<u>L</u>	• 48,0	41.9	₩	W	1 :	I		1	
50	3	ML,	18	42.7	34.6	w	312-28	2	14.4	33,1	1	ł
51	3	ML	K	* >2.6	47.4	W	166		16.8	36.8	1	1
53		1.0	1.	394	+ 333	(W) W	202.31	1 5	1.7	33.4	l	ĺ
54	3	M	١Ę.		* 47.1	(w)	147	1072	14.5	31.4		1
55a	3	ML	R	37.7	32.3	Ŵ	194	2	17.7	26.2	I	
56a	Э	ML	L	34.5	29.5	w	173	2	17.2	23.6		1
57a	Э	ML.	R			(ŋ-	179			ļ		1
58	3	ML	R	34.0	29.8	w	205	1	16.5	1		1
59	3	NL	-	45.4	36.9	W	102		1	1		1
60a	1	MV	l B	36.1	33.5	w	(autumn?)	1 :	1		 i	
62a	3	M		+ 48 1	40.4	1 ¥	278		15,0			1
63	3	NV	Ř	41.9	35.9	s v	(250)					1
64	3	ML	R	34.6	28.9	Ŵ	253-early W.		10.4	· ·		l
65a	3	TP	R	32.0	24.6	Ŵ	-					1
66	3	ML	L	37.6	31.7	w	153	tor2		l		ł
67	3	M¥	R	41.3	35.5	w	-	•	1	I	1	1
68	3	ML	L L	* 43.6	35.7	W-	253	-	1		1	1
69	3	MV		49_1	42.7	w	W(355-35)		1	ļ		1
704	3	I MV	15	40.3	35.9	*	167-185					1
22	5	ML	1 :	36.8	31-2	W	278-W	Z	20.5	30.Z	1	ł
730	3	NO NO	1.	96.4	201	114	4/4-11	4	10.1	20.5		1
74	13	MV I	15	503		197	234		19.0			ł
75a	3	MV	Ιĩ	53.7	46.8	₩.	awa -					1
76	3	W	L	31.Z	* 27.0	₩-	67	1 .				
77	3	ML	L	34.8	29.8	W	294-W	2	17.8	29.6		ł
78	3	ML	R	36.7	30,6	w	W/174					1
10		ML	l ŀ	39.5	33.6	w-	217				F 1	ł
102a	111	MV		39.2	34.7	W/	277				, 1	i i
103		ML	N N	41.2	33.1	**	196	1072		I	i 1	i i
105	;	ML ML		51.5	40.1	¥7	229	2013	441	21.2	40.1	l.
106	l i !	TP	Ř	42.5	32.5	w l	237	5	10-1	21.2	447.1	1
1074	li	ML	R	45.4	36.7	w	206	2	5,1	29.0		í
108a	i	ML	R	38,9	32.5	w		-				4
109	1	ML	R	54.1	42.7	w	(180)	2	19.9	36.7	1 1	i
110a	131	I NV -	L	38.7	34.1	w	290-342	•				İ.
1 111		ML	R	* 50.9	40.5	w !	223	2	8.9	33.5	1 1	į –
112 7	1 1 1	4 E.S.	1 -	20.1	1 74	, <i>W</i>			16.4	36,4	i !	1

.

*18年:ハマダ北、科ダンジオフキ、TP:アサリ、 *2計測線の*は美文化。 *3 w:見形。(w):NM線(中心意味作)。(1):NM線(中心線なし・反道あり)。そ:NM線(加速なし)。-:SMW線中中心器

表11. (つづき)

No.	Level	sp	L/R	S.L	S.H.	W/F	Seasonality	Number of	Sh	ell Hight :	at Winter	Rina
		1						Winter Rings	WI	W2	W3	WA
113	1	ML	L	36.1	30.8	w	(224)	1 1	16.8	<u> </u>	1 112	1 11
114a		ML	L	41.6	35.1	w-	(63)	- 1	{	1		
1115		ML.		38.6	34.0	w	75	2	4,8	30.1		1
117a		ML		35.5	20.0	**	53	lorz	1 50			
118a		MV	lĭ	40.6	34.6	w w	(336)	2	5.0	37.4		
119	1	W	Ιĩ	* 45.5	39.8	w	(350)					
120a	1	WV	L	47.0	40.7	w	-			1		1
121	1	ML	R	•	* 36.0	(w)	(175)	z	+	27.1		
122a	! !	MV	L	* 48.1	40,8	₩+	•	-				
1232		ML.		40.7	35.4	w	W	2	5.9	30,5		1
125				* 47.7	+ 26.2	W	(summer/)	-		I.		1
126a		M	Â	+ 34.7	29.9		W/239					
127a	i	ML	lι	43.3	36.1		140	2		24.3		
128	1	ML	L	* 32.8	* 29.3	w	153/293	2				
129	1	ML.	L	44.0	36.4	w	179	2	4.7	28.3	1	
130		ML	R	33.8	28.7	w	146-184		20.5			
131	1	ML		• 50.5	* 42.3	w		4	4.4	22.7	32.6	39.0
1320		141.		* 20.0	20.7	W	120	4	3.2	24.9	35.7	47.5
134a		M		* 365	31.4	ů.	126	2	17.7	22.7		
135	1	MV	R	* 48.0	41.0	w	-	-	3.5	64.1		
136a	1	NV	R	* 48.1	40.5	w		-			1	1
137		ML	L	36.5	31.8	w	100/273	-			1	
138		ML	1	47.3	38.3	w	W/185	-			1	I .
139		ML	ĸ	56.9	45.2	w	26/202	-				l '
140		ML.		40.3	53.3 25 a	W	37/202 ¢p	1007			1	
142	;	M	Ιĉ	51.5	42.0	w	228	1	212		1	
143	i	ML	R	44,4	37.4	w	64/254		£1.5		1	
144	1	ML.	ι	41.6	34.9	w	W	2	3.1	34.0		
145	1	ML.	L	42.1	35.2	w	33	1or2				
146	1	MV	R	* 49.2	41.3	w	•	-				
14/8		ML. 113	1	40.0	34.3	w	1	-				
149		ML.	R	* 36.1	29.0	w	(287)	17	24			
150a	i	पा	î		* 28.2	(w)						
151	1	TP	Ē	* 40.8	Z9.3	w	(140)	-				
152	1	TP	L	34.6	25.3	w	182	-				
153	!!	TP	R	* 40.1	* 31.9	w	180	-				
155		TO	R	- 41.7	* 24.5	W (m)	164	-				
156	ii	TP	î	* 34.5	* 24.8	(w) W-	193	-				
157	i	TP	R	40.6	28.5	w						
158	2	ML.	R	47.0	39.3	w	22/129	-				
159	2	ME,	L	* 39.0	33.3	w	200	1	17.0			
160a	1	MQ.	R	44.7	36.8	w	W	2	19.8	35.9		
162=	2	ML.	ĸ	38.5 43 3	31.8	w	242-W	2	14.1	30.9		
163a	z	ME.	ī	43.5	* 36.9	- W-	W					
164	2	MB_	R	37.9	32.4	w	(234)	1	17.8			
165a	2	ML.	L	37.2	32.0	w	35	z	2.1	30.3		
166	2	N8L	R		* 37.3	(w)	218	1	21.1			
1678	2	MV M	ĸ	44.1 52.4	40.1	w	319	-				
169	2	ML	L.	33,4	* 46.5	(w)	27/225					
170a	2	MV	Ē	47.1	40.0	w	•	-		,		
171	2	ML.	R	- 1	* 33,6	(w)-	-	-				
172	2	ML,		41,4	35.3	w	W/207	-				
173	2	ML.		35.0	30.8	W	10	1er2				
175	5	ME	15	* 340	* 20.2	(W)-	273-W 310		40	703		
176a	2	ML	R	38.4	31.6	w.	12	2	2.4	30 3		
177	z	MI,	R	37.3	32.1	w	28	ž	5.8	30.8		
178	2	ML,	L	40.7	34.4	w	· 285	1	15.2			
179	Z	ML		42.8	36.8	w	62	1or2				
180	2	ML.	R	50.0	41,6	w	79/268	:				
187	2	ML.	P	* 29 1	46.0 22 F	W	(35)	4	11.0	22.3	36.9	44.0
183	ž	ML	Ľ		* 29.1	(w)	98-126	2	14.1	249		
184	2	TP	R	* 37.8	* 27.7	w-	100		• "•			
185	2	ML.	R	31.9	26.2	w	38	1or2				
186	2	ML.		* 37.0	31.0	w	350	1	11.6			
187	2	ML		40.6	33.7	W (m)	(171)	Zor3				
189a	2	ML.		* 310	27 2	(w)	241-W 134	10-2	20.8			
190	ž	TP	Ιĩ		+ 29.3	(w)	W					
191	2	TP	L C	* 47.6	35.7	*	220	-				
192	2	TP	L		* 33.2	(w)	150	-				
193	2	ML	R	* 45.0	* 36.6	₩-	(285)	:				
194	5	P6L, h/t/		59.2	51.0	**	222	3	+	30,3	43.7	
196	2	ML	Î	* 45.4	37.2	w	229	2	4.4	23 4		
1978	2	ML	R	45.2	36.0	w	-	3	19.5	30.5	33.5	
198	2	ML.	L	44.4	36,7	w	267	2	18.2	27.6		
199a	2	MV MV		37.0	33.1	w	331	1	15.0			
200	~	PSL.		46.3	30.4	w	204	2013				

.

図37、加曽利南貝塚ブロック1における二枚貝類の死亡季節組成

ブロック2とは土層 (S1層)によって画されるが、その中には薄いレンズ状貝層 (S1b層) が介在しており、それほど明瞭な間層ではない。また、現在展示されている剥離断面では、S 1層の土が洗い流された結果、この間層はほぼ消滅し、ブロック1と2は連続した1枚のレン ズとなっている。こうした状況から見て、両ブロックは本来連続した貝層であった可能性も強 い。

死亡季節分布と貝層の堆積季節

全体試料の合計による死亡季節分布(図37)を見ると、死亡季節は各季節にわたっており、 とくに夏後半~秋前半の比率が高い。このことから、二枚貝類の採取季節は周年にわたってお り、とくに夏場が盛期となっていたことがうかがわれる。

図38は推定死亡季節を貝層断面図にプロットしたものである。上図には全試料の採取位置と 試料番号を示し、また各試料の死亡季節をシンボルで表示した。下図は死亡季節を確定できな かった試料を除外したものである。図39は細別層単位での死亡季節の分布とその層位的な推移 を示したものである。試料の配列は、細別層や各試料間の堆積の前後関係と矛盾しない範囲内 で、季節の推移が連続的になるように調整してある。

季節分布を細別層ごとに見ると、それぞれある程度まとまった季節性を示しており、季節層 の形成が認められる。したがって、これらの貝層は廃棄単位を比較的よく保存していると言え る。死亡季節の層位分布から、各層の堆積季節は以下のように推定される。

I a 層(混土貝層、ハマグリ主体)・I b 層(純貝層、イボキサゴ・ハマグリ混合): I a 層 下部に 8 月~ 9 月、I a 層~ I b 層上部に 9 月~ 2 月の貝が分布する。夏~秋前半(8~ 9 月) の貝が多く、この季節を中心に、翌年 2 月までの堆積物と推定される。

Ⅱ a層(純貝層、イボキサゴ主体、小型ハマグリを含む):イボキサゴ層中に混在する小型

- 76 -

図39. 加曽利南貝塚ブロック1(左)・ブロック2(右)における二枚貝類死亡季節の層位変化を示すダイアグラム

- 77 -

ハマグリはすべて3月~4月の死亡季節を示した。Ia層からの連続的な堆積物と考えられる。

Ⅱ b層(混土貝層、イボキサゴ主体、小型アサリを含む):イボキサゴ層中に混在するアサ リはすべて7~8月の死亡季節を示した。層序関係・死亡季節から判断して、Ⅲ a 層と同時並 行の堆積層と推定される。

II c 層 (イボキサゴのみからなる混土貝層): 試料なし。

Ⅱ a 層(混土貝層、ハマグリ主体):5月~8月の貝がやや混在した状況で堆積する。本層 は混土率が高く、堆積状況も不安定な様相を呈していることから、季節層が二次的に混合した 可能性が高い。Ⅱ a 層からの連続的な堆積物と考えられる(下部に冬の貝が1点見られるが、 周囲の季節分布との関係から見て混入の疑いが強い)。

Ⅲ b 層(混土貝層、ハマグリ・アサリ主体): 冬の貝が1 点得られたのみである。

S1b層(混貝土層、ハマグリ主体): ブロック1とブロック2を画する間層(S1層)中に介 在する小レンズである。9月~2月の貝が分布しており、この時期の季節層と推定される。層 序関係・貝層の内容・死亡季節から見て、Ⅲb層と一連の層である可能性が強い。

貝層の堆積に要した年数

図39には、I層からII b層=II a層にかけて明瞭な季節推移が描かれている。したがって、 これら一連の層は連続的な堆積物である可能性が高く、その堆積に要した期間は8月(I層) から翌年の8月(II b層=II a層)までの約1年間と推定される。これにII b層=S1 b層を加 えると次の冬までの約1年半となるが、II b層とS1 b層の間には間層(S1 a層)が介在して いること、II a層~II b層の混土率が高いことから見て、II b層=S1 b層の堆積前に、ある程 度の断絶期間が存在した可能性もある。

貝層の構成要素と堆積季節の関係

ここでは貝層の堆積季節と、そこに含まれる貝の組成との対応関係について検討する。貝類 の組成は貝層断面の定性的な観察によるものである。北貝塚と同様に、キサゴ層などのため試 料が得られなかった層については、上下の層の季節に連続的な推移が認められる場合、両者の 間を堆積季節と見なした。本プロックにおける堆積季節と貝層形成過程の対応関係をまとめる と、以下の通りである。

I a 層:8月~翌2月にかけてハマグリの廃棄。

Ⅱ a 層:2月~4月の間にキサゴの集中的な廃棄。

Ⅱ b層=Ⅲ a層:5月~8月にハマグリ(Ⅲ a層)およびアサリ・キサゴ(Ⅱ b層)の廃棄。
 Ⅲ b層=S1b層:Ⅱ b層が土層(S1a層)に覆われた後、9月~2月にハマグリ・アサリの廃棄。

(2) ブロック2

貝層の堆積状況

ブロック2は大きくI~V層に区分される。厚さ10cm内外のイボキサゴ主体層(I層・W 層)と、ハマグリ・キサゴ混合層(I層)またはハマグリ主体層(V層)が互層を成す。一部 にカガミガイ・マテガイの薄層も介在する。II層は土層だが、間層というほどの広がりはなく、 ひとつのブロック内のバリエーションと見た方がよい。II層とN層の境界には撹乱が入ってい るため、両者の上下関係は明らかでない。なお、本ブロックは層厚も薄く、また全般に混土率 も高く、堆積状況は他のブロックに比べやや不安定な様相を示している。こうした状況から見 て、トレンチ壁面に露呈しているのは、本ブロックの中心から大きくはずれた周縁部の断面で ある可能性も考えられる。

死亡季節分布と貝層の堆積季節

全試料の合計による死亡季節分布(図40)を見ると、死亡季節は各季節に分散しており、二 枚貝類の採取が周年にわたって行われたことがわかる。ただし、ブロック1と比較すると夏の 比率が低く、冬と秋前半の比率がやや高い点で対照的な様相を呈している。とくに1 a 層~ II 層では春後半~夏(冬輪中心からの日成長線数60~200)に空白があり(図39)、夏場の採貝が 低調であったことをうかがわせる。

死亡季節の層位分布を図41に、また死亡季節の層位的推移を図39に示す。死亡季節の層位分 布から推定される各層の主な堆積季節は以下の通りである。

I a 層(混土貝層、イボキサゴ主体、ハマグリ多い):下部に9月~2月の貝が混在した状態で分布し、その上に3月の貝が散在する。秋~冬を中心に翌春までの堆積層と推定される。

図40. 加曽利南貝塚ブロック2における二枚貝類の死亡季節組成

図41. 加曽利南貝塚ブロック2における貝層新面と死亡季節の層位分布(凡例は図38を参照)

- 88

Ic層: (イボキサゴのみの純貝層): 試料なし。

Ⅱ層(混土貝層、イボキサゴ主体、ハマグリ多い):11月の貝1点、1月~4月の貝4点が 分布する。秋~翌春の堆積層の可能性が高いが(図39ではそのように表示してある)、Ia層 の堆積直後(3月~4月)から夏の中断を挟んで秋~冬(11月~2月)までの堆積とする解釈 も成り立つ。

Ⅲ層(土層):試料なし。

Ⅳ層(混土貝層、イボキサゴ主体、ハマグリ・アサリを含む):イボキサゴ層中に1月~8 月の貝の薄層が介在する。層全体の堆積期間は不明である。

Va層(純貝層、大型ハマグリ主体、アサリ・シオフキ多い。下面にカガミガイ・マテガイ の薄層あり): ブロック2の中では土の含有量が少なく、貝殻がぎっしりと詰まって安定した 堆積状況を示している。堆積後に強く加圧されたらしく、固く締まっており、貝殻の破砕度も やや高い。こうした状況を反映してか、死亡季節もよくまとまっており、9月~1月の貝が明 らかな季節層を成す。上面には7月の貝も見られる。

V b 層(混土貝層、ハマグリ主体):3月の貝が1点得られたのみである。V a 層に先行す る可能性もあるが、判然としない。

貝層の堆積に要した年数

本ブロックでは、Va層を除けば季節層が明瞭でなく、またI層~Ⅱ層の間では春後半~夏 の貝がほとんど見られないため、季節推移の連続性を追跡しにくい。さらに、イボキサゴ層が 卓越しているため、二枚貝の死亡季節が層全体の堆積季節をどの程度代表しているかも評価が 難しい。これらの理由により、堆積速度の推定は困難である。可能な解釈の中で最速のケース を選べば、Ia層(秋~春)→Ⅱ層(春~冬)→Ⅳ層(冬~夏)→Va層(秋~冬)となり、少な くとも2年以上をかけた堆積物であることは間違いない。実際にはより長期間にわたって、あ る程度の堆積休止期間を挟みながら断続的に形成されたと考えるのが自然であろう。

貝層の構成要素と堆積季節の関係

上記の通り、本ブロックでは堆積季節が全般に不明瞭であったため、貝層の構成要素と堆積 季節の関係も把握しにくい。比較的確実性の高い層準としては、I a 層(10月~翌3月を中心 にキサゴおよび若干のハマグリの廃棄)、V a 層(10月~12月にハマグリなどの廃棄)が指摘 できるのみである。

(3) ブロック3

貝層の堆積状況

ブロック3は、数cm~10cm程度の薄いハマグリ主体層(I層・Ⅲ層・V層・Ⅲ層)とイボキ サゴ主体層(Ⅱ層・Ⅳ層・Ⅵ層)の互層から成り、一部に灰層や土層マガキのブロックが介在 する(図43)。本ブロックは混土率が低く、また各層は全般に明瞭な層界によって区画されて おり、堆積構造はきわめて安定している。

死亡季節分布と貝層の堆積季節

全試料の合計による死亡季節分布(図42)を見ると、死亡季節は周年にわたるが、とくに夏 後半以降の比率が高く、ブロック1に類似した分布形となっている。

推定死亡季節の層位分布を図43に、また死亡季節の層位的推移を図44に示す。各層の季節の まとまりはおおむね良好で、廃棄単位がよく保存されているものと判断される。死亡季節の層 位分布から推定される各層の主な堆積季節は以下の通りである。

I層(純貝層〜混土貝層、小型ハマグリ主体): I a 層〜 I c 層に分かれる。I a 層では10月 ~12月、I c 層は(秋~?) 2月の貝から成る(I c 層上面に4月の貝が1点あるが、Ш層か らの流れととらえるべきであろう)。I b 層では下部に冬、上部に8~11月の貝が分布する。 I 層全体を同一年の秋~冬の季節層と解釈することもできるが、I b 層の季節分布から見て、 I a 層~I b 層下部(秋~冬)→ I b 層上部~I c 層(翌年夏~冬)と見た方が整合性が高いよ うに思われる。I b・I c 層の間にはマガキブロックが介在しており、11~2月に廃棄された ものと推定される。

Ⅱ層(純貝層、イボキサゴ主体、灰層と絡む):試料なし。灰層はⅠb層とマガキブロックに挟まれており、やはり秋~冬に廃棄されたものと推定される。イボキサゴ層もⅠb層以後~
Ⅲ層以前、すなわち11月~2月の間の堆積である可能性が高い。

Ⅲ層(純貝層、ハマグリ主体、下部に土の薄層あり):2月の貝1点以外はすべて春後半~ 夏(4月~8月)の貝からなる。1層に後続する季節層と考えられる。したがって、本層下部の土層は2~3月頃の堆積と推定される。

Ⅳ層(純貝層、イボキサゴのみ):下面近くに9月の貝が1点ある。Ⅲ層の形成直後に堆積 し始めた可能性がある。

図42.加曽利南貝塚ブロック3における二枚貝類の死亡季節組成

(1. 灰層、2. マガキ。他の凡例は図38を参照)

88

	No.	死亡季節	W	9	0	1	80	2	.70	W
3-VII	57 55 55 55 55 55 55 55 55 55 55 55 55 5	179 282-31 205 142 134 173 166 102 77		0	0	0000	0			
3-VI	37 39 66 38 40 41 43	196 156 153 (128) (79) 260-W 236		0		。 0	0	0		
3-Vc	4 4 4 8 4 6 4 7 4 9 5 0 4 5	65 37 W W 312-28 345	0 0 0 0	0						0
3-Va	25 61 28 63 29 23 62 24 30 32 24 30 226 27 31	(300) 276 253-EW 256 (250) 236 228 222 190-234 (200- 191 188 180 149				0] ° 00	000 01	<u> </u>	
3-Vb	34 33 35 36	95 348 307-W (129/304)			o	•				<u> </u>
3-VI	22	218				-	(c		
3-111	11 16 13 18 12 15 14	197 196 158 128-171 98 70 8	o	0	o	<u> </u>	00			
3-Ic	76 78 20 21 75 77 19	67 W/174 (W) (W) (W) 294-W 252-W	•	0		٥				
3-Ib	68 73 70 69 71 72	253 237 167-185 W 278-W 274-W	¢					°		•
3-Ia	3 4 8 2 7 1	306 295-312 287 < 290 247-273 246						0	°[]0	
			(2月)	((5月)	((8月)		(11月)	(2月

冬輪中心(W)からの日成長線数

図44. 加曽利南貝塚ブロック3における二枚貝類死亡季節の層位変化を示すダイアグラム (凡例は図39を参照) .

.

Va層(純貝層、イボキサゴ・ハマグリ混合):夏後半~冬前半(7月~12月)の貝が集中 しており、この時期の季節層と考えられる。本層の堆積開始季節は、Ⅲ層の堆積完了季節(8 月頃)よりわずかに早い。この点については、(1)死亡季節の推定誤差によるもので、Ⅲ層~ Va層を連続的な堆積物と見る解釈と、(2)Ⅲ層とVa層の間に1年以上のブランクを想定す る解釈の2通りが考えられる。

V b 層(純貝層、ハマグリ・カガミガイ主体):12~2月の貝が2点、5月の貝が1点ある。 後者は周囲の死亡季節の分布状況から見て混入の疑いもある。V a 層に後続する冬の層の可能 性と、W層に後続しV a 層に先行する冬~春の層の可能性とが考えられる。

Vc層(混土貝層、小型ハマグリ主体):2~4月の貝が明瞭な季節層を成す。

Ⅲ層~V層の堆積序列を整理すると、次のふたつの流れが考えられる(前報(樋泉、1995a) ではAの解釈をとったが、Bの解釈の方がより整合性が高いように思われる)。

A. Ⅲ層 (春~夏)→Ⅳ層 (夏)→V a 層 (夏~冬)→V b 層 (冬)→V c 層 (春)

B. Ⅲ層(春~夏)→Ⅳ層(秋~冬?)→Vb層(冬~春)→Va層(夏~冬)→Vc層(春)

Ⅵ層(純貝層~混土貝層、イボキサゴ主体、小型ハマグリ多い):下面近くに10月~冬の貝が2点あり、これを春~夏(5~8月)の貝が覆う。秋~翌年夏までの約1年間の堆積物の可能性がある(前報では春~秋の堆積層としたが、訂正する)。

M層(混土貝層、ハマグリ主体):春後半~夏を主体とする貝がやや混在した状態で分布する。この時期の季節層が二次的に混合した可能性と、複数年の堆積物が複合している可能性が考えられる。 W層は、土を多めに混じえる点、イボキサゴをほとんど含まない点、かなり大型のハマグリを含む点(I~VI層のハマグリは小~中型)など、VI層以下とはかなり印象が異なっている。こうした点から見て、VI層と本層の間にはある程度の時間的間隙が存在している可能性が強い。

貝層の堆積に要した年数

季節推移に基づいて貝層の堆積速度を推定すると、I層~Ⅲ層で約2年のサイクル(秋から 翌々年の夏)を示している。Ⅲ層~V層の堆積序列については、上記の通り複数の解釈が可能 だが、Aの解釈をとれば1年、Bの解釈をとれば2年となる。Vc層~VI層では約1年余であ る。以上から、I層~VI層の堆積に要した時間は最低で4年~5年と見積られる。この層準に おける貝層の堆積状況は極めて安定しており、季節層の保存も概して良好である。したがって、 その形成期間中にそれほど長い堆積の中断が存在したとは考えられない。よって、実際の堆積 期間も上記の推定年数を大幅に上回るものではなかったと考えてよいだろう。

これに四層を加えると、ブロック3全体の堆積に要した時間は5~6年以上と見積られるが、 上記の通り11層-111層間にはより長期間の断絶が存在した可能性がある。

貝層の構成要素と堆積季節の関係

堆積季節と貝層の構成要素との対応関係から、貝層の形成過程は以下のように復元される。 Ia層~Ib層:10~2月および翌年8~11月にハマグリの廃棄。

I c 層~Ⅱ層:11~2月の間にイボキサゴ・灰(Ⅱ層)、続いてカキの廃棄。2月にハマグリの廃棄(I c 層)。

Ⅲ層: 2~3月頃に薄い土層の形成。4~8月にハマグリ・シオフキの廃棄。

Ⅳ層~V層:上記Bの解釈に従えば、9月以降(~冬?)にキサゴの廃棄(Ⅳ層)、12~5 月にハマグリ・カガミガイの廃棄(Vb層)、7月~12月にハマグリ・キサゴの廃棄(Va層、 ただしキサゴについてはIV層からの混入とも考えられる)、2月~翌4月にかけてハマグリの 廃棄継続(Vc層)。一方、Aの解釈に従えば、8月にキサゴの集中的な廃棄(IV層)、9月か ら4月にかけてハマグリの廃棄継続(V層)となる。

Ⅵ層:10月~翌年8月にキサゴと若干のハマグリ・シオフキ・アサリの廃棄。Ⅶ層:その後(翌年またはさらに後)の5月~8月?にハマグリの廃棄。

3. 総 括

(1) 主要二枚貝の採取季節

各ブロックとも死亡季節は周年にわたっており、季節変動もそれほど激しくない。また、夏 後半~秋と冬後半~春前半の範囲内にふたつのピークをもつ点では、すべてのブロックが共通 した特徴を示している。ただし、各ブロックでの死亡季節のピークを見ると、ブロック1では 夏後半~秋前半、ブロック2では秋前半と春前半、ブロック3では夏後半~冬後半となってお り、分布形はブロックによってかなり異なる。

こうしたブロック間での変異は、たとえばブロック3において秋~冬の明瞭な季節層が、ま たブロック2において春後半~夏の空白が、それぞれ繰り返し出現していることからもわかる ように、調査地点における死亡季節分布の偶然の偏りによるものではなく、採貝季節の周期性 の変化をある程度反映していると考えてよい。

以上から、加曽利南貝塚においては二枚貝類の採集が年間を通じて行われていたこと、また 採集季節は夏後半~秋と冬後半~春前半をピークとした周期性を示す傾向にあること、さらに、 そうした基本的なスケジュールの中で、実際の採取季節は年々の状況に応じて柔軟に変動して いたことが推測される。

なお、ハマグリとアサリ・シオフキの死亡季節を比較すると、アサリでは夏、シオフキでは 冬に偏る傾向が認められる。

(2) 貝層の形成過程と廃棄単位の保存状態

ブロック1とブロック3は土の含有率が低く、内部の細別層も明瞭で、安定した堆積構造を 示している。このことから、断面観察の段階で廃棄単位が良好な状態で保存されていることが 予測されたが、死亡季節分布もこの予測を裏付ける結果を示した。すなわち、死亡季節は多く の層準で3~4ヶ月前後の範囲内にまとまる傾向を示しており、明瞭な季節層の形成が認めら れた。これは、ブロック1・3の貝層が廃棄単位を比較的よく保存していることを示している。 一方、季節分布のまとまりからはずれる推定値も散見されるが、その多くは他の層からの混入 もしくは障害輪の問題などによる推定誤差に起因するものと思われる。

また、これらのブロックでは全般に季節分布の層位的連続性がよく、季節推移を追跡しやすい。個々の季節層の層厚も数 cm~10cm 前後と厚い。このことは、連続的な廃棄によって貝層の形成が急速に進行したことを示す。すなわち、これらのブロックでは1回の廃棄量が多く、なおかつ廃棄単位が連続的に堆積したため、廃棄後の貝殻の拡散・混合が抑制され、廃棄単位が良好な状態で保存されたものと考えられる。

ブロック2ではVa層に明瞭な季節層があるが、他の層準ではイボキサゴが卓越しており、 分析試料を充分に確保できなかったため、廃棄単位の保存状態については評価が困難である。

(3) 貝層の堆積に要した年数

各ブロックの堆積に要した期間は、最低に見積った場合でブロック1が約1年半、ブロック 2が約2年、ブロック3が約5~6年と推定された。ブロック1と3では、上記の通り堆積物 や季節推移の連続性がよく、実際の堆積期間に関しても上記の推定年数を大幅に上回ることは 考えにくい。ブロック2については、ある程度の時間的間隙をおきつつ断続的に形成された可 能性があるが、その点を考慮してもせいぜい数年間程度で形成されたものと考えてよいだろう。

加曽利南貝塚の貝層は、こうした比較的小規模で短期間に形成されたレンズ状の地点貝層を マクロな堆積単位とし、これらが明瞭な間層を挟みながら繰り返し堆積している(図33)。す なわち、本遺跡ではこのような地点貝層が次々と場所を移しながら形成され、積み重なってい くことにより、次第に貝塚の全体像が形作られていったものと推定される。

(4) 堆積季節と貝層構成要素の関係

目層の構成要素と堆積季節の関係についてまとめると、ハマグリ主体層の堆積季節はとくに 偏りなく周年にばらつくが、死亡季節分布と同様に、夏と冬の季節性を示す層が多い。これに 対し、イボキサゴ主体層の堆積季節は9月~4月の範囲内に収まるケースが多く(ブロック1-Ⅱ a 層、同2-Ia層、同3-Ⅱ層)、夏の堆積季節を示すのはブロック1-Ⅱb層のみであ る(3-Ⅳ層についても秋~冬の可能性が強いが、夏の可能性もある)。例数が少ないので速 断はできないが、イボキサゴ採取は冬場を中心とした活動であった可能性もある。イボキサゴ 層の卓越するブロック2に含まれるハマグリの多くが秋~春先の死亡季節を示す点についても、 このブロックの形成時に夏場のハマグリ採取が低調であった(あるいは廃棄場所が異なってい た)ため、冬場のイボキサゴ採取の際に捕獲されたハマグリの比率が相対的に高くなった可能 性がある。

第4節 加曽利南貝塚産ハマグリの成長速度と年齢構成

加曽利貝塚をはじめ、東京湾東岸域の縄文貝塚においては、中期から後期にかけて出土する ハマグリのサイズが次第に大型化傾向を示すことが指摘されている(金子・牛沢、1982)。こ うした殻サイズの変化の原因としては、年齢構成の変化と成長速度の変化のふたつの要因が考 えられる。そこで、本貝塚より得られたハマグリの成長速度を調べ、また殻高分布と比較する ことにより年齢構成について検討した。

1. 試料と分析方法

季節推定用試料の中から、明らかな冬輪が認められたものを抽出し、分析試料とした。擬冬 輪等の存在のために冬輪を確定できなかった試料は除外した。表11に示した冬輪形成時の殻高 にもとづいて各冬輪の殻高分布を求め、2ヶ所以上の冬輪をもつ試料については Walford の定 差図法によって満年齢時の殻高を推定した。分析方法の詳細は北貝塚と同様である。

2. 結果と考察

ハマグリの冬輪時殻高(図45)は、第1冬輪で2~30mm(平均13.5mm)、第2冬輪で21~38mm (平均30.0mm)、第3冬輪で33~44mm(平均36.9mm)であった。ただし、第3冬輪については、 試料が成長速度の遅い個体に偏っている可能性が強いため、実際にはもう少し大ききな値とな るだろう。また、Walfordの定差図法(図46)によって推定される満年齢時の殻高は、満1歳 で22.3mm、満2歳で36.1mm、満3歳で44.6mmとなった。これらの値から、加曽利南貝塚のハマ グリは生後最初の冬を迎える頃には殻高5mm~2cm前後に成長し、満1歳で平均約2.5cm、2 歳で3.5cm、3歳で4.5cm以上に達したものと推定される。

これを先に述べたハマグリの殻高分布(図34)と比較すると、捕獲されたハマグリ(成貝群) は殻高2.5~5 cm、年齢で1歳以上のものが主体となっており、特に殻高3~4 cm、2歳前後 の若い個体が主要な捕獲対象となっていたと推定される。3歳以上の貝が少ないことは、それ 以上に成長する前に大半の貝が捕獲されてしまっていることを示しており、当時の貝類採取が ハマグリ資源に対してかなりの捕獲圧を与えていたことをうかがわせる。一方、1歳未満の貝

図45. 加曽利南貝塚におけるハマグリの冬輪形成時の殻高分布 各点は個々の値、縦線は殻高範囲、横線は平均値、枠線は標準偏差を示す。第3冬輪以降は成 長の遅い個体に試料が偏っているため、やや低めの値となっている可能性が強い。

図46. Walford の定差図法による加曽利南貝塚ハマグリの成長速度
 ○:障害翰の疑いのあるもの H(t):t歳時の平均競高 Hmax:最終競高

が見られない点については、そうした**幼**員を採らずに残しておくことで資源を維持しようとす る姿勢の現れとも考えられる。

第3章 加曽利北貝塚・南貝塚における貝層形成過程と採貝活動の比較

研究の総括として、北貝塚(加曽利EI~E II 式期)と南貝塚(堀之内~加曽利B式期)の分析 結果を比較し、貝層の形成過程、貝類採集活動の季節性、ハマグリ資源に対する捕獲圧の3点につ いて、それぞれの特徴を検討する。

第1節 員層の形成過程

加曽利北貝塚の貝層は、断面での幅約10m、最大厚1m内外の大規模なレンズ状貝層をマク ロな堆積単位(大別層)とし、これらが内外に堆積中心をずらしながら累積している(図2)。 各大別層の内部構造は、III層を除き薄いハマグリ層とイボキサゴ層の互層から成っており、貝 層断面は緻密な縞模様を呈する。季節層構造を見ても、厚さ数cm以下の薄い季節層が多数累積 してラミナ状の堆積構造を成している。各大別層の形成期間は長く、一旦廃棄が始まるとその 場に執着し、背丈に近い高さに貝が積み重なるまで、最低でも10~15年前後(おそらく20~30 年程度?)にわたって延々と廃棄が繰り返される。I層(区画 A)では厚さ1.5mの貝層の堆 積に最低でも15年を要しており、平均の堆積速度は最も速く見積っても10cm/年、実際には数 cm/年程度と推測される。他の大別層も似たようなものであろう。また、北貝塚では、貝層中 における季節的なまとまりは全般にあまり明瞭でない。季節の層位的連続性もはっきりせず、 季節推移を追跡しにくい。これは、1回の廃棄量が少ないか、廃棄の場が広範囲であったため に、堆積速度が遅く廃棄単位が分散したこと、さらに堆積の進行につれて貝層が高く盛り上が り、表面が平滑な傾斜面を成したため、廃棄後の貝殻の移動・拡散が起きやすかったことなど によるものと推測される。

このように北貝塚では、一枚一枚の季節層が薄く堆積速度が遅い反面、同じ場所に長期間に わたって執念深く廃棄が続けられた結果、大規模な貝の「塚」が形成されている。文字通り 「塵も積れば山」のパターンといえる。また北貝塚では、住居跡内部のように特に堆積的な環 境にあった部分を除けば、各大別層の間に明瞭な間層(土層)がなく、それぞれの境界ははっ きりしない。これは、貝層が高塚をなしていたため表層が浸食を受けやすい条件にあった可能 性も考えられるが、おそらく大別層の移行に際して大きな時間的間隙がなかったことが主な理 由であると思われる。

これに対し加曽利南貝塚では、径数m、厚さ30~50cm程度の薄いレンズ状貝層をマクロな堆

積単位とし、これらが明瞭な間層を挟みながら繰り返し堆積している(図33)。各レンズ状貝 層の内部構造をみると、個々の季節層が数cm~10cm程度と厚く、季節のまとまりも比較的明瞭 で、廃棄単位の保存がよい。また季節性の層位的連続性がよく、季節推移を追跡しやすい。こ れは1回の廃棄量が多く、なおかつ廃棄の場が比較的狭い範囲に集中していたために、貝層の 堆積速度が速く、廃棄単位が連続的に堆積したこと、また北貝塚のように貝層が高く盛り上が らず堆積面が比較的フラットに保たれていたために、廃棄後の拡散が抑制されたことなどの理 由によると推測される。しかし、北貝塚のようにひとつの廃棄場に長く固執することはなく、 捨てた貝が数年で厚さ30~50cm程度の小山を成すとその場は放棄され、各レンズ状貝層は次第 に土層によって覆われる。各レンズはこうした明瞭な間層によって区画されており、一地点に 限って見れば、貝層の形成が長い中断期を挟みながら断続的に起こったことがわかる。このよ うに、南貝塚では比較的短期間に形成された小規模な貝層が点々と場所を移しながら堆積して いくことによって、目塚の全体像が次第に形作られていったものと推定される。

以上のように、南貝塚と北貝塚は外観上は類似した環状貝塚だが、その形成パターンは大き く異なる。景観的に表現すれば、北貝塚では貝の山が毎年じわじわと成長し、やがて大規模な 塚となっていく光景が想像されるのに対し、南貝塚では貝の小山があちこちで急速に形成され ては埋没していく光景が想像される。

ただし、今回の分析は南北両貝塚とも1ヶ所の断面のみで行われたものであり、他の地点で は異なった形成過程が存在した可能性も充分に考えられる。実際、北貝塚田層の堆積構造は他 の大別層と著しく異なっており、同時期の貝層であっても堆積パターンにかなりのバリエーショ ンが存在していたことを示している。これらの問題については今後の課題としておきたい。

第2節 貝類採集の季節性

全試料の合計値による季節分布を見ると、北貝塚でも南貝塚でも、ハマグリをはじめとする 主要二枚貝類は基本的に年間を通じて採取されていることがわかる(図47)。北貝塚では春~ 夏、南貝塚では夏・冬の頻度がやや高いが、いずれも変動は緩やかで、採貝活動が特定の季節 に大きく偏ることはない。このように、長期間の通算データで比較する限り、両貝塚の間に著 しい相違は認められない。

しかし、北貝塚の季節分布を大別層ごとに分けて見ると、いずれも激しい季節変動を示して おり、分布形も層によって著しく異なる。分布形の変化を層位的に追跡しても、一定のパター ンは見出せない。このことから見て、北貝塚におけるハマグリ採集には固定的な季節スケジュー ルは未発達であり、採取季節はその年々の貝類資源に対する需要状況や資源量の変動に応じて 不規則に変化するのが普通であったと推定される。

図47. 加営利北貝塚(左)・南貝塚(右)における二枚貝類の死亡季節組成の比較

これに対し南貝塚の場合、各ブロックとも採集季節は夏後半ないしは秋、および冬後半ない しは春前半をピークとした周期性を示す傾向にある。すなわち、南貝塚では北貝塚に比べて各 ブロック間での季節分布の類似性が高く、ハマグリ採集の季節スケジュールがある程度固定さ れてきた可能性を示している。一方、そうした基本的なスケジュールを維持しつつも、各ブロッ クの季節分布にはかなりの相違も見られ、実際の採取季節は年々の状況に応じて柔軟に変動し ていたことが推測される。

以上のように、北貝塚における二枚貝類の採取季節は場当たり的で計画性に乏しいのに対し、 南貝塚においてはある程度定まった季節スケジュールを基本とし、その上で状況に応じた採取 季節の調整が加えられていたと推測できる。

なお、ハマグリとアサリ・シオフキの死亡季節を比較すると、北貝塚では特に差がなく、区 別されずに扱われていた可能性が高いのに対し、南貝塚ではアサリが夏に、シオフキが冬に偏 る傾向を示しており、これらの貝の採集がハマグリとは異なった季節スケジュールに沿って行 われていた可能性も考えられる。

イボキサゴの採集季節については今一つはっきりしないが、北貝塚ではハマグリと同様に周 年にわたって行われていたのに対し、南貝塚では冬中心に偏る印象があり、ハマグリとは採取 季節が異なっていた可能性も考えられる。また、北貝塚のイボキサゴ破砕貝層は冬場を中心に 形成される傾向にある。イボキサゴは東京湾東岸域の貝塚を特徴づける貝であるにもかかわら ず、その利用形態については謎が多い。今後の研究の蓄積によってその採取季節を明らかにで きれば、この貝の性格を理解する大きな手がかりとなるものと期待される。

第3節 ハマグリ資源に対する捕獲圧

1

北貝塚において主体となるハマグリの殻サイズは、I層~住居内貝層(区画 A~D)で殻高2 2~34mm前後(平均28mm)、II層・III層(区画 B・C)ではやや回復するものの24~38mm前後(平 均31mm)で、生物学的最小形(殻高30mm前後)に相当する個体が漁獲物の大部分を占める(図 30)。年齢構成も1歳貝が大半で、2歳以上の貝は極めて少ない。とくに I 層上部では、1歳 貝が秋にこの程度のサイズまで成長してきた段階で、そのほとんどが採り尽くされていた可能 性が濃厚である。このように、中期後半においては著しい捕獲圧によってハマグリ資源が深刻 な打撃を受けていたことが明らかである。当歳貝が少ないことは、辛うじて資源を保持しよう とする配慮の表れといえるかも知れない。

これに対し、南貝塚における殻高分布の主体は約24~44mm程度(平均35mm前後)で、相変わ らず小型の貝が多いが、北貝塚と比べると40mm代の貝が増加しており、平均値としては明らか に大型化している(図34)。年齢構成も満2歳前後の個体が漁獲物の主体を成しており、3歳

図48。加曽利北貝塚(区画A・B)と加曽利南貝塚におけるハマグリの成長曲線の比較

以上の個体もある程度含まれる。また、成長速度も2歳までは北貝塚と同様だが、3歳以降はや や速くなる(図48)。殻の大型化は、こうした年齢構成の回復と成長速度の増加の結果と見な し得る。このように、後期前半には中期に見られた極端な捕獲圧が次第に緩和されていった様 子がうかがえる。また、生殖年齢に達した個体の増加によって、資源の再生産もかなり改善さ れたことが推測できる。しかし、3~4歳以上の目が急速に減少することは、それ以上に成長 する前に大半の貝が捕獲されてしまっていたことを示しており、ハマグリ資源への捕獲圧は後 期前半においても決して低くはなかったと推定される。

以上のように、加曽利貝塚におけるハマグリ資源は中期後半~後期前半にかけて一貫して強い捕獲圧下にあったが、中期の乱獲に近い状況は、後期になると次第に緩和されていった。これが貝類の資源量の増加によるものか、貝類に対する需要の低下によるものか、あるいは資源の維持を目的とした積極的な「自主規制」の結果なのかについては今後の課題だが、季節性に見られたように、中期では不規則で一定のスケジュールがなく、非計画的な様相が強く認められたのに対し、後期は採集季節スケジュールが次第に発達し、計画的な採取がなされるようになったと推測される。こうした様相から見れば、後期には資源の維持を促す何らかの仕組みが発達してきた可能性も充分に考えられる。これは現在の狩猟採集民に広く見られる資源利用の持続性の起源を考える上でも興味深い結果といえよう。

謝辞

青沼道文・佐藤順一(千葉市文化財調査協会)、山本勇(千葉市教育委員会)、村田六郎太 (千葉市立加曽利貝塚博物館)の各氏には、貴重な研究の機会を賜り、また調査の実施に当たっ て多くの便宜を図っていただいた。また村田氏からは報告書の作成に際して多大なるご理解と ご助力を得た。小池裕子氏(九州大学)には貝殻成長線の分析方法についてご指導いただいた。 西本豊弘氏(国立歴史民俗博物館)には、分析機器の使用に関して多大なる便宜を賜った。建 石徹氏(東京芸術大学)からは、堆積物の形成過程に関する討論を通じて有意義なご教示を賜っ た。植月学氏(早稲田大学)・中山弘樹氏(日野市教育委員会)には試料の採集・分析に際し て協力していただいた。末筆ながら、以上の方々に厚く御礼申し上げる。

参考文献

後藤和民(1970)「加曽利北貝塚の貝層堆積」、『加曽利貝塚Ⅲ』、千葉市加曽利貝塚博物館、 pp. 55-66。

金子浩昌(1968)「加曽利南貝塚の動物」、『加曽利貝塚II』、千葉市加曽利貝塚博物館、pp. 38-59。 金子浩昌(1970)「加曽利北貝塚の動物」、『加曽利貝塚II』、千葉市加曽利貝塚博物館、pp. 20-53。 金子浩昌・牛沢百合子(1982)「貝塚出土の動物遺体」。貝塚博物館研究資料第3集。千葉市加 曽利貝塚博物館友の会。

加曽利貝塚調査団編(1968)『加曽利貝塚Ⅱ』、千葉市加曽利貝塚博物館。

Koike, H. (1980) "Seasonal dating by growth-line counting of the clam, Meretrix lusoria",

The university museum, The university of Tokyo, Bulletin 18, pp. 1-104.

小池裕子(1982)「日本海北陸地域産ハマグリ類の貝殻成長線分析」、第四紀研究 21(3): 273-282。 大分県(1979)『昭和53年度大規模養殖場開発事業調査報告書(宇佐地区・ハマグリ)』。

大野照文(1989)「二枚貝の微細成長縞形成時間間隔の多様性」、日本ベントス研究会誌37。 杉原荘介編(1970)『加曽利貝塚Ⅲ』、千葉市加曽利貝塚博物館。

- 瀧 庸(1949)「ハマグリの産卵期の研究1 昭和22年東京湾に於けるハマグリの産卵期」、日本水産学会誌15(9): 479-486.
- 樋泉岳二(1995)「能満上小貝塚出土ハマグリの採取季節と成長速度」、『市原市能満上小貝塚』、 市原市文化財センター、pp.484-501。
- ・植泉岳二(1998)「水神貝塚(第2貝塚)出土ハマグリの貝殻成長線分析」、『水神貝塚(第2貝塚)」、豊橋市教育委員会・牟呂地区遺跡調査会、pp.199-217、pls.57-59。
- Walford, L. A. (1946) "A new graphic method of discribing the growth of animals", Biological Bulletin. 90: 141 147.
- 吉田 裕(1953)「浅海産有用二枚貝の稚仔の研究」、農林省水産講習所研究報告 3(1): 1-105.

図版1.加曽利北貝塚「貝塚断面観覧施設」における貝層断面(南断面)

1. 全景(東より)、2. Ⅲ層(区画C)、3. Ⅱ層中部(区画B)、4. 住居跡内貝層(区画D)
 5. Ⅰ層最下部(区画A)

図版2. 加曾利南負塚「貞層断面鏡覧施設」建設地(第旧瓜トレンチ3区)の西登断面

1、貝磨断面の概観(北より)、2. ブロック1~3の堆積状況(下開奥からブロック1、2、3。上半部はブロック7)、 3. ブロック1、4. ブロック2(下)・ブロック3(上)、5. ブロック1の堆積状況拡大(写真3の矢印部分)、 6. ブロック3の堆積状況拡大。

1. 北貝塚A区試料Ma146、数字は日成長線数、a.0歳夏、b.第1冬輪(0歳冬)、c.1歳夏、d.第2冬輪 (1歳冬)、c.2歳夏、f. 第3冬輪(2歳冬)、g.腹縁(推定死亡時期=6月)。1a~1g:×50倍。

 2. 冬輪形成中に死亡した個体 (北貝塚A区試料%145、×50倍)

 3. 産卵障害の可能性のある成長遅滞
 (北貝塚A区試料№225、×50倍)

-98 -

4. 北貝塚A区試料№196。 a ~ d の 4 ケ所に成長低下部(成長線の密集帯)が見られるが、それぞれの間の成長数からみて すべてが冬輪とは考えにくい。 b ・ d は成長の低下が弱く、夏期の障害輪である可能性が強い。4 a ~4 e :×50倍。

5. 南貝塚試料10.21、a. 第1冬輪、b. 夏期の障害輪、c. 腹縁(第2冬輪形成中)。5a~5c:×50倍。

加曽利南貝塚出土資料

土 器 (1)

南貝塚出土資料の整理

I 収蔵・整理に至る経緯

1964年から65年にかけての加曽利南貝塚における発掘調査に至る経緯は「加曽利貝塚II」に 詳しく記されている。調査は、まず加曽利南貝塚の中央部を縦・横断する総延長170mの第I・ IFレンチが設定され、第1期事業として1964年8月1日~22日に調査が実施された。続いて 第I・IFレンチの南北・東西に並行する形で、第II・IV・V・VIトレンチが設定され、8月 24日~10月23日にかけて第2期事業として進めている。第3期事業は、貝塚中央部南東にあた る11区の平面調査で、10月25日~65年3月31日に実施し、全面調査に至る以前に中断した。

出土資料は、1965年から68年にわたり概要が整理され、68年3月に「加曽利貝塚Ⅱ」として 報告書が刊行されてはいるが、膨大な出土資料全体を報告したわけではない。

Fig. 1 加曾利南貝塚全図

Fig. 2 南貝塚11区概略図

1966年に加留利貝塚博物館が竣工し、出土資料のほとんどが取納された。しかし新設の博物 館は、野外施設整備の発掘調査や展示準備ばかりでなく、1971年度まで千葉市の埋蔵文化財行 政に伴う発掘調査も担当している。併せて東傾斜面(南貝塚隣接地)の開発計画に伴う限界確 認調査など、加曾利貝塚をめぐる情勢に対応するため、多くの時間・労力が費やされ、南貝塚 出土資料の多くは永く顧みられることが無かった。

1982年に学芸員に着任し、83年~84年9月まで学芸係長となった薬師寺崇氏が、死蔵状態に あった南貝塚出土資料にまず着目している。未水洗の土器と荷札が同封されていたため、遺物 の所属を示す荷札の多くが腐り、ビニール袋も劣化が進む状況にあった。取りあえず袋の詰め 替えと、荷札の裏打ち・解読と新たな荷札の記載など地道な作業を進め、資料の情報を遺すこ とに努め、整理作業を進めるための人的体制づくりや予算も整備している。他の収蔵資料につ いても同様で、薬師寺氏が博物館の収蔵体系を構築したといっても過言ではない。

1985年に村田が学芸員に着任し、館務実習生や整理補助員の協力を得て、南員塚出土資料を グリット別に仕分け、日付順に番号を付けるグリット別遺物台帳を作成した。以後この台帳を 基に整理作業を進めている。

1983年から進められた水洗作業と、86年から開始した注記作業の全てが、1994年7月に完了 し、以後、接合・復原・拓本・実測といった作業段階へと移行している。
Ⅱ 整理の方法

南貝塚出土資料は、基本的に2m幅のトレンチ調査による遺物であり、接合・復原では遺物 の広がりを考慮することにも限界がある。また膨大な資料を同時並行の状態で広げるスペース も無いことから、いくつかのルールを設定し、それに沿って整理作業をすすめている。また、 調査に関わる全ての出土資料を一括して整理し、報告するには膨大な時間を必要とするため、 年度計画を作り、個々のトレンチ別に整理・報告することとしている。

まず、南貝塚の整備の核となる施設として、剥ぎ取り式貝層断面の観覧施設が第Ⅱトレンチ Ⅲ区にあたる地点に設定され、1994年度に公開されている。そのため、このトレンチ部分を先 行して報告することとした。1999年度以後は、第Ⅰトレンチ第1区から順次整理を進め報告し ていく予定である。

接合にあたっては、次の項目に則って作業をすすめている。

- 1 隣接する3グリットを並行して広げ、相互の接合関係を調べる。
- 2 同一のグリット内で接合する場合、攪乱層でない限り下位の層の帰属とする。
- 3 隣接するグリット間で接合する場合、遺物全体量なども加味し、下位の層にあたるグ リットに帰属するものと考える。
- 4 土器型式にとらわれず、あくまで層位区分の中で作業する。

Fig. 3 第**正トレンチ**3区周辺図

第Ⅲトレンチ3区の場合、23-23区から42-23区にわたる範囲になるが、23-23区の接合を 進める場合、第Ⅳトレンチ2区との交差点にあたり、21-23・23-21・23-24区も接合対象と している。

このことによって、2m方眼のグリット遺物について、少なくとも前後2グリット分の範囲 が接合対象となり、特徴的なものは抽出することによって接合範囲を拡大した。

各グリットにおける台帳から日付順の一覧表を作り、層位記載の類似したものに着目して接 合関係を求めている。しかし、層位記載の不明確なもの、名称の乱れなども多く見られる。

一連の接合作業の後、拓本可能な土器片を無作為に抽出し、拓本作成と並行して断面図を作 成している。接合可能な土器片でも、一度に拓本取りが不可能なものは、部分で拓本を取った 後に接合し、断面図を作成し、拓影も貼り合わせた。

次に帰属する層位の判定である。南貝塚の土層断面図は未調整の1/20原図と報告書作成用 の調整図が残されている。いずれも、南北トレンチでは西壁、東西トレンチでは北壁の図で、 他の壁面は見られない。この土層断面図の層位記載と、荷札にのこる層位記載との間に、相違 点が多く見られる。そのため、未調整の原図をあえて使用した。次に、グリット別遺物台帳に 記載した取り上げ日付を一覧表にして、それぞれの調査期間をグラフ化した。

その後、調査日誌を含め、遺物の層位確定作業に入ったが、層位無記入の遺物や解読不能な 荷札なども多い。その場合、本書に記載した各グリット別土層断面の右上に遺物番号を記載す るに留めている。

いずれにしても、混貝土層や混土貝層などの区分にも混乱があり、層位決定は現段階で判り 得るものと考えざるを得ない。

H / L	00.00	04.00	05.00	0.0.00	07.00	00.00	00.00	00.00	01 00	20.02	20.00	04.00	15 02	26.22
_ চায	23-23	24-23	25-23	26-23	21-23	28-23	29-23	30-23	31-23	32-23	33-23	34-23	30-23	30-23
8⁄15	1, 2, 3, 22	1.2.3	1	1.2.3	1.2.3	2.3.4.	1.2.3.4.	1.2.3.	1.2	1.2	1			
				4	4, 0, 0	о	0.0.0	10.11						
17			2	5	7	6	7		3	3	2	1	1	1
18			3	6.7	8	7.8	11	12.13	4.5.6	4	3	2	2	
19	16, 24	4	4.5	8.9.10	9.10	9.10	12.13	4.14	7.8	5.6.7.8	4.5			
20		5												
21		6	6		11		14		9	9	6	_		
22	4.13	7	7.8		12.13		9	5	10	10.11	7,8,9			
24		8				11. 12. 13.			17	12	10	3		
25	5. 25. 26	9	9, 10, 11, 12	11.12. 17	14	14, 15. 16	10	6. 15	11.12	13	11, 12, 13 14, 15, 16	4		2
26		10, 11		13.14. 15	15.16. 20		15	7.8	13. 14. 15			5	3	3
27	18. 23. 27	12	13			17		9.16.17				6	4	
28	19. 20. 21	13.14. 15	14.15	16	17	18. 19. 20			16	14, 15, 16				
29			16		18.19	21.22							5	

第Ⅲトレンチ調査工程表

 $2 \ 3 - 2 \ 3 \ G$

Na	日付	超位ほか	重量g		17	0915	壁より落下	84
1	0815	表土	831		18	0827	貝屬下黒褐色土層	2173
2	0815	キサゴ混貝土層-30~60	2214		19	0828	貝層下黑褐色土層下部	1137
3	0815	キサゴ層	3113		20	0828	第2 黒褐色土層	6135
4	0822	第2貝層	1330		21	0828	貝層下混員土層下部K-1 P-27	13
5	0825	貝圈下褐色土層	1849		22	0815	表土下褐色	1230
6	0914	10圈褐色土周	3150		23	0827	貝層下黒褐色土層下部	2536
7	0915	10	562		24	0819	貝層下土層	1719
8	0915	10 層褐色土層	497		25	0825	貝图下褐色土層	1608
9	0915	10層上面	2221		26	0825	貝層下黒褐色土層	2156
10	0916	10層褐色土層 P-33 カP-9	686		27	0827	貝蘭下混貝土層下部	52
11	0916 ?	10層褐色土層 カロー9	725					
12	0917	住居跡覆土	293					
13	0822	第2貝層下部	588					
14	0915	8 層混貝土層	466					
15	0916	11層切り込み住居跡内覆土	459					
16	0819	第3貝曆	7306					
L	l		1	ļ	l	L	1	

-107 -

Fig. 5 23-23 グリット出土土器(1)

Fig. 6 23-23 グリット出土土器(2)

Fig. 7 23-23 グリット出土土器 (3)

Fig. 8 23-23 グリット出土土器 (4)

Fig. 9 23-23 グリット出土土器 (5)

Fig. 10 23-23 グリット出土土器(6)

Fig. 11 23-23 グリット出土土器(7)

Fig. 12 23-23 グリット出土土器 (8)

24-23G

No.	日付	層位ほか	重量 g			
1	0815	表土	1086			
2	0815	キサゴ層一括	1283			
3	0815	キサゴ層VI	4484			
4	0819	第三貝層 K-4層	4524			
5	0820	貝層下混貝土層VI	479			
6	0821	第三貝層VI	911			
7	0822	第2貝層	2750			
8	0824	貝層下混貝土層VI	4088			
9	0825	貝層下混貝土層	1066			
10	0826	貝層下混貝土層VI	3335			
11	0826	貝層下混貝層	2274			
12	0827	東壁拡張区貝層中VI	13007			
13	0828	第二混貝土層下黒褐色(第二)層	3110			
14	0828	第二混貝土層	484			
15	0828	東壁拡張区混貝土層VI	1160			
			ļ	l		 ļ

Fig. 13 24-23 グリット 土層断面図

Fig. 14 24-23 グリット出土土器(1)

Fig. 15 24-23 グリット出土土器 (2)

.

Fig. 16 24-23 グリット 出土土器 (3)

Fig. 17 24-23 グリット出土土器(4)

Fig. 18 24-23 グリット 出土土器(5)

				25-2
Na	日付	層位ほか	重量 g	
1	0815	表土 Ⅵ	348	
2	0817	第二混土 VI	2862	
3	0818	第2混土 VI	4264	
4	0819	第2月層	918	
5	0819	第三貝層 K-4層VI	1577	
6	0821	第三貝層	965	
7	0822	第二貝層	3858	
8	0822	第二貝層下部	666	
9	0825	貝層下黒褐色土層VI	731	
0	0825	貝層下褐色土層 6班	1351	
1	0825	貝層下混貝土層	1679	
2	0825	貝層下混貝土層VI	2041	
3	0827	貝層下混貝土層下部VI	5639	
4	0828	第二混貝土層VI	770	
5	0828	貝層下混土層下部VI	3181	
16	0829	貝層下混貝土層最下部VI	2249	

Fig. 21 25-23 グリット 出土土器 (1)

Fig. 22 25-23 グリット出土土器 (2)

Fig. 23 25-23 グリット 出土土器 (3)

26 - 23G

Va.	日付	層位ほか	重量g
1	0815	表土 Ⅵ	1346
2	0815	表土下混土 VI	1774
3	0815	表土下混貝土層 VI	1765
4	0815	表土下混土 二枚貝	1095
5	0817	第二混土 VI	3972
6	0818	第二混土 K4 VI	805
7	0818	第二混土	5286
8	0819	第二貝層 K-4層 VI	3492
9	0819	第三貝層 VI	1918
10	0819	貝層下黒褐色土層 ピット内VI	949
11	0825	混貝土層	4635
12	0825	貝層下褐色土層	2986
13	0826	貝層下混貝土層上部	3947
14	0826	貝層下混貝土層	8895
15	0826	貝層下混貝土層下部	484
16	0828	貝層下混貝土層 VI	2453
17	0825	無表記(カp-81)	190

Fig. 25 26-23 グリット 出土土器 (1)

Fig. 26 26-23 グリット 出土土器 (2)

Fig. 27 26-23 グリット出土土器 (3)

Fig. 28 26-23 グリット出土土器(4)

14

						27-	23G
Na.	日付	層位はか	敢量 g	17	0825	第4貝酚 VI	1177
1	0815	表土	2202	18	0829	貝層下混貝土層 VI	798
2	0815	表土下の褐色	542	19	0829	第4貝層下部 VI	436
3	0815	表土の褐色土層 VI	654	20	0826	貝層下混貝土層下部	1204
4	0815	表土下混土	1252				
5	0815	褐色おちこみ	972				
6	0815	VI	1651				
7	0817	第二混土 VI	2918				
8	0818	第二混土 VI	3364				
9	0819	第二貝層 K-4層 VI	4583				
10	0819	第三貝層	1137				
11	0819	表採 VI班	846				
12	0822	第2貝層	2470				
13	0822	第3貝層	958				
14	0825	貝層下褐色土層 6班	3116				
15	0826	貝層下混貝土層 VI	4976				
16	0826	貝蘭下混貝土層 VI	1395				

Fig. 29 27-23 グリット 土層断面図

5

Fig. 30 27-23 グリット 出土土器(1)

•

Fig. 31 27-23 グリット 出土土器 (2)

Fig. 32 27-23 グリット 出土土器 (3)

-136-

28-	23	3 G
-----	----	-----

No.	日付	層位ほか	重量g	17	0827	第4貝層 VI	6442
1		欠番		18	0828	第4貝層	4628
2	0815	表土 VI	3191	19	0828	貝層下混? VI	2984
3	0815	表土下貝層	375	20	0828	貝層下混貝土層下部	5188
4	0815	表土下褐色	1125	21	0829	第4 貝層下部 VI	192
5	0815	上部貝層(二枚貝)Ⅵ	1485	22	0829	貝層 VI	1388
6	0817	第二混土 VI	5110				
7	0818	第二混土 VI	5775				
8	0818	第二混土 ₽−14 VI	101				
9	0819	第二混土 K-4層 VI	4644				
10	0819	第三貝層 VI	1772				
11	0819	層位なし	1846				
12	0824	6班	3513				
13	0824	6班 D	365				
14	0825	無表記	3622				
15	0825	K 4 C.23	26				
16	0825	貝層下褐色土層 6班	1644				

Fig. 34 28-23 グリット 土層断面図

,

Fig. 35 28-23 グリット出土土器 (1)

Fig. 36 28-23 グリット出土土器(2)

Fig. 37 28-23 グリット出土土器 (3)

Fig. 38 28-23 グリット 出土土器 (4)

29 - 23G

Na	日付	置位はか	重量 g		14	0821	第2頁圖 VI		108
1	0815	表土	2898		15	0826	貝閣下混貝土眉	VI	1354
2	0815	表土下褐色土扇	955						
3	0815	褐色中の貝層	1242						
4	0815	表土下混貝	834						
5	0815	上部混土貝層	233						
6	0815	貝層上褐色土層	376						
7	0817	表土下混土	3818						
8	0815	無表記	270						
9	0822	第2員曆	2503						
10	0825	無表記	1822				5		
11	0818	第2選十	2618	•					
12	0819	第2頁層 羽	878						
13	0819	第2員暦 Kー4層	3200						
ł			1	ł	L	l	[

Fig. 39 29-23 グリット土層断面図

No.	日付	層位ほか		重量g
1	0815	表土		2158
2	0815	褐色中貝層		1620
3	0815	貝層上部		98
4	0819	第2貝層 p-17		1112
5	0822	第2貝層		1547
6	0825	不明		1630
7	0826	貝層下混貝土層		1897
8	0826	貝層下混貝土層下部		5349
9	0827	貝層下		3216
10	0815	表土下混貝		872
11	0815	上部混貝		1151
12	0818	第2月層		2748
13	0818	第2月層 混土		1656
14	0819	第2貝層 K-4層		2352
15	0825	無表記		2375
16	0827	貝層下混貝土層下部		7130
17	0827	貝層下混貝土層下部	k 2 層	19

Fig. 41 30-23 グリット 土層断面図

Fig. 42 30-23 グリット出土土器(1)

Fig. 43 30-23 グリット 出土土器 (2)

Fig. 44 30-23 グリット 出土土器(3)

Na	日付	層位ほか	重鼠g
1	0815	表土	607
2	0815	表土下褐色	3136
3	0815	表土	315
4	0818	第2貝層	1725
5	0818	第2混土	760
6	0818	黑色土	742
7	0819	第2月層	1702
8	0819	第2貝層 K-4層	3001
9	0821	第2貝層	262
10	0822	第2貝層下部	6809
11	0825	無表記	4161
12	0825	貝層下黑褐色土層	2087
13	0826	貝層下混貝土層	2382
14	0826	貝層下混具土層下部	6273
15	0826	貝口下混貝土層	2263
16	0828	貝層下混貝土層下部	1852
17	0824	6班	157

Fig. 46 31-23 グリット 出土土器 (1)

Fig. 47 31-23 グリット 出土土器 (2)

Fig. 48 31-23 グリット 出土土器 (3)

				32-230
Na.	日付	層位ほか	重量 g	
1	0815	表土	2114	
2	0815	表土下褐色	468	
3	0817	表土下黒色	3206	
4	0818	黒色土 VI	5685	
5	0819	黒色層 K-4層	1050	
6	0819	第2貝層 Kー4層 VI	2356	
7	0819	第2貝層 K4層	3086	
8	0819	第3貝層	2067	
9	0821	第3貝層	771	
10	0822	第2貝層下部	1029	
11	0822	第3貝層下層	2228	
12	0824	無表記 VI	2805	
13	0826	無表記	3562	
14	0828	ピット内	379	
15	0828	ビット内2~7 VI	375	
16	0828	貝層下黄褐色土層 VI	1162	
L				

~ ~

000

_

Fig. 50 32-23 グリット 出土土器 (1)

Fig. 51 32-23 グリット出土土器(2)

Fig. 52 32-23 グリット 出土土器 (3)

								33-	<u>23G</u>
Na	日付	層位ほか	重量。		17	日付なし	麦土下黑色土		58
1	0815	表土	395		18	日付不明	累褐色土層		1102
2	0817	表土下黒色	7672		19	日付不明	表土下黑色P-11	カーP-89	84
3	0818	黑色土	5390						
4	0819	黑色土曆 VI	4226						
5	0819	第2員層 VI	5682						
6	0821	第3貝屬	322						
7	0822	第2貝層下層	50						
8	0822	第2月層下層	513						
9	0822	第3貝層	580						
10	0824	VI	1735						
11	0825	無表記	4196						••
12	0825	P 20	853						-
13	0825	P-21	1065						
14	0825	P - 22	1068						
15	0825	P-23	1203						
16	0825	P - 24	1406	:					
1		·	1]			1		1

Fig. 53 33-23 グリット 土層断面図

Fig. 54 33-23 グリット 出土土器 (1)

Fig. 55 33-23 グリット 出土土器(2)

Fig. 56 33-23 グリット 出土土器 (3)

Fig. 57 33-23 グリット 出土土器 (4)

Na	日付	層位ほか	重量g
1	0817	表土下黒色	1735
2	0818	黒色土	5757
3	0824	無表記	5914
4	0825	無表記	11628
5	0826	黒褐色土層	1188
6	0827	第2 層褐色土層35~39-23	5309
7	日付なし	黒色土層 D-15 カP-94	33
			1

Fig. 58 34-23 グリット 土層断面図

6

Fig. 59 34-23 グリット出土土器(1)

Fig. 60 34-23 グリット 出土土器 (2)

.

Fig. 61 34-23 グリット 出土土器 (3)

35-23G

4

No.	日付	層位ほか	重量 g			
1	0817	表土	867			
2	0818	黒色土	2302			
3	0826	黒褐色土層 VI	1982			
4	0827	黒褐色土層第二層 P−26 VI	24			
5	0829	第2層口褐色土層	1509			
	1					

Fig. 63 35-23 グリット 出土土器

,

1

				_		36—	23G
Na	日付	層位ほか	重量 g				
1	0817	表土 VI	437				
2	0825	黑色土層 VI	1359				
3	0826	貝層下混貝土層下部? VI	2427				
							ĺ
ĺ							
ļ							
						1	

Fig. 64 36-23 グリット 土層断面図

調査データの修正と補足

I グリットポイントの測量

1965年の各トレンチ埋め戻し時点で、各トレンチ末端のグリットポイントにコンクリート杭 が埋設された。86年にはこれらの杭の風化・崩落が進み、また1/1000・1/500地形図にト レンチ位置を書き込んだ遺跡全体図を作成する必要から、国の水平直角座標系IX系を基とする 測量を、村田と石橋一恵が実施した。

残存が確認されたコンクリート杭は、第Ⅱトレンチ西端の1-44GPと、第Ⅳトレンチ西端 の1-23GP、南貝塚中央の44-44GP、第Ⅵトレンチ東端の66-86GPである。これら4ポイン トと、地形測量に用いた基準杭2点に、任意に設定した木杭を加えて、15点の閉合トラバース 測量を行い、各杭の座標を算出した。算出座標は次のとおりである。

No.		X 座 標	Y座標	備考ほか
TP-	- 1	-42175.599	30165.392	測量基準点(現存していない)
H	2	-42143.469	30167.796	1-44GP・第Ⅱトレンチ西端
"	3	-42102.872	30160.944	1-23GP・第IVトレンチ西端
11	4	-42115.356	30196.771	
"	5	-42121.316	30219.503	
"	6	-42131.975	30249.220	44-44GP・南貝塚中央
11	7	-42088.528	30263.931	
Ħ	8	-42065.492	30287.883	測量基準点(現存していない)
11	9	-42093,557	, 30326.045	
11	10	-42133.564	30348.658	
#	11	-42165.947	30338.732	66-86GP・第VIトレンチ西端
"	12	-42196.490	30302.277	
"	13	-42215.722	30262.716	
"	14	-42214.331	30229.094	
"	15	-42202:943	30189.100	

Fig. 66 南貝塚トラバース測量から描き出したトレンチ配置図

- 169 --

Ⅱ 算出座標からの補正・考察

算出された座標を基に、地形図にトレンチを復原するわけであるが、まず TP-2と TP-6 の関係に着目したい。両者の差は x=11.494m、y=81.424m である。当初のグリット設定では、 両者は東西方向に86m の配置となっている。直線距離は近似値ではあるが、西方向としては、 大きく南に振れ、算出される北方向はほぼ N-8°2′-Wとなる。これは、一般に言われる 関東エリアの磁北と真北の差約6°ともかけ離れている。おそらく、当初のグリット設定の段 階で、何らかの機械的なトラブルがあったか、あるいは北貝塚の上を東西方向に設置される送 電線による磁界の乱れによる影響と考えられる。

次に TP-6と TP-11の関係に着目したい。両者の差は x=33.972m、y=89.512m である。 本来のグリット設定では南北に44m、東西に84mの間隔が想定される。しかし、TP-2と TP-6の延長線上に44-86GPを仮に設定し、このポイントとの直線距離間を図上で測ると、約50 mの間隔となる。

報告されている南貝塚の調査行程をみると、まず、第1・Ⅱトレンチが設定され、次に並行 する各トレンチが設定されている。調査日誌などから読みとれる設定方法は、第1・Ⅱトレン チ末端の杭から南北・東西方向にメジャーをのばし、トレンチが設定されたとされている。

おそらく、第IIトレンチ東端の44-86GPから南にのばしたメジャーで、大きな読み損じが あったと考えられる。この第VIトレンチに付いては、西端が正確な位置関係と考えた場合、大 きくゆがんだトレンチ位置となる。

この測量の後、南貝塚の整備事業に伴う地下レーダーと非抵抗マッピングの調査が実施され た。これは本来、貝層範囲を正確に知ることや未調査区域の遺構検出を目的としたもので、遺 跡内に設定された座標に基づいて行われた。貝層は電波を吸収する性質が強く、得られたデー クは非常に鮮明なものであったが、調査トレンチも同様に映し出された。61年の測量データと 照合すると、ほぼ同一の結果が得られ、上記の内容を裏付ける結果となった。

南貝塚の南東に広がる東傾斜面での限界確認調査では、同一遺跡内での調査の継続性を加味 して、南貝塚で設定された北方向を尊重してグリットが設定されている。

そのため、南貝塚並びに東傾斜面の調査データについては、真北との誤差を補正する必要が あろう。

貝塚博物館研究資料集第5集 貝層の研究 I

- 平成 11 年 3 月 31 目発行 -

- **編集・発行** 千葉市立加曽利貝塚博物館 千葉市若葉区桜木町163
- 印 刷 (株) 正 文 社