

第398図 石室構築過程の復元

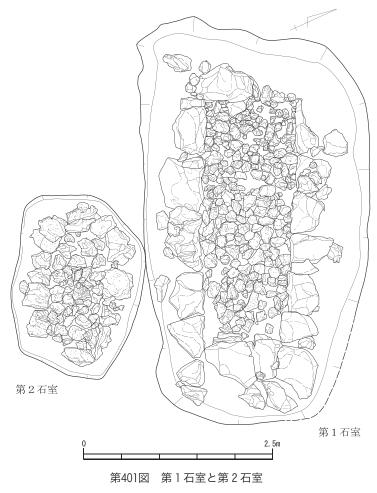
構築過程 大きく4段階(第1段階~第4段階)に設定することができる(第398図)。第1段階は掘り方の掘削である。全体が隅丸長方形状に掘り込まれている。第2段階は基底石の設置である。第1段階で掘り込まれた底部に直接設置されるのではなく、整地を伴って行われている。整地は第1段階における掘削土が用いられているものと考えられる。第3段階は礫床の敷設である。第2段階における整地面上に礫が敷かれている。その後埋葬が行われている。第4段階は追葬である。石室内に礫床が新たに敷かれている。間層を挟むことなく、初葬時の礫床上に直接新たな礫が敷かれている。

第4節 南構3号墳(図版 $100\sim103$ 写真図版 $271\sim290$ 附表 $93\cdot94\cdot105\cdot106\cdot111\cdot112)$

1. はじめに

概 要 南構 1 号墳の南東側にあたる(第353図)。 2 基の埋葬施設(第 1 石室・第 2 石室)からなる(第399 図・第401図)。この 2 基の埋葬施設については主軸方 向を異にするが、近接した位置関係にある。墳丘を伴 うことを前提とすると、両者の位置関係から異なる墳 丘を考えることは困難である。そこで本報告では1つ の墳丘に 2 基の埋葬施設を備えた古墳として理解し、 報告することにする。

墳 丘 推定される墳丘の規模は、周囲の遺構が未検 第399図 南構3号墳の調査 出の範囲を基準とすると(第400図)、主軸方向で11.50m、その直交方向で11.80mと復元できる。



2. 第1石室

(1)検出状況

第2石室の北側に隣接する。両石室はほぼ平行するが、主軸方向を6°30″違えている(第401図)。石室はほぼ全体が検出されているが、掘り方の南東部の一部が後世の攪乱を受けている。隣接する第2石室と切り合い関係にあり、第2石室にわずかに切られている。他の遺構との切り合い関係は認められない。

形状・規模 石室は墓壙内に設置されている。基底石が残存し、一部2段目まで認められる。墓壙の平面形は西辺が東辺より長く、台形傾向にある(第401図)。主軸方向で5.25mを測る。その直交方向については、西辺付近から中央部で3.00mを測り、東辺付近では2.45mである。横断面は逆台形を基本とし、部分的に箱形をなしている。検出面からの深

さは西側が最も深く38cmを測り、逆に東側では14cmと浅くなっている。墓壙底部は平坦に掘削され、中央部における標高は30.10mである。

(2)石 室

概 要 平面形は長方形をなす(第402図)。主軸方向はN65°30′Wを示している。4面が基底石により囲まれている。いずれも墓壙底部に置かれており、設置のための穴・溝等は認められない。ただし、南北の両長辺が東壁より外側までのび、南北の壁が東壁を挟み込む状態となっている。西辺北側の一部は他より小型の石のみ残存する。その規模は主軸方向で3.20mを測り、その直交方向は西辺で1.12m、東辺で1.00mと、西側がわずかに広くなっている。西辺・東辺と主軸方向を基準とした床面積は3.39㎡である。基底石の底部はほぼ一定で、その標高は29.95mを測る。

壁 体 四面とも残存する。石材間の隙間は比較的密で、全体として面をなすように内側の面には加工 が施されている(写真図版280)。

西壁は南西部の1石のみ残存する。幅60cm、高さ50cmを測り、西辺の1/2を占めている。内側の面には加工痕が認められる。北側には10cm~20cm大の小型の石が認められる。

北壁は全ての基底石が残存する。7石からなるが、最も東側の1石は東壁の外側にあたり、墓道の壁と考えられる。7石は、高さと幅の比率が同じもしくは幅の方が大きい石材が用いられている。幅は40cm~65cmとほぼ同規模であるが、このなかで最も西側の基底石が幅65cmと最大である。一方、最も東側

の基底石が幅40cmと最も小型となっている。高さについては一定ではなく、中央部の3石が40cm~45cmと高くなっている。他は30cmである。

東壁は基底石2石からなる。南側が2段に積まれているが、最下段の石は小規模で、上側の石が基底石として機能していたものと考えられる。北側の1石は、幅50cm、高さ40cmと、北部と同規模の石材が用いられている。一方南側の石材は、幅が50cmであるのに対して高さが20cmと、横積み傾向にある。

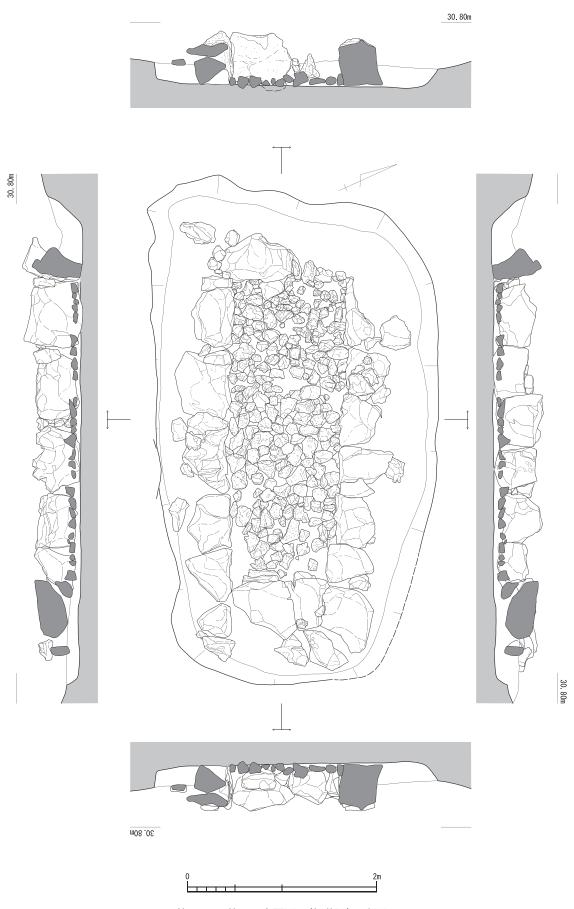
南壁は基底石5石からなるが、最も東側の基底石は東壁の外側にあたり、壁としての機能は認められない。北壁同様西側の石材が最も大きく、幅70cm、高さ60cmと基底石のなかでは最も大型の基底石である。幅が40cm~70cmを測るのに対して高さが40cmと、横積み傾向が認められる。最も東側の基底石が最も小型で、幅35cm、高さ40cmを測る。

床 面 初葬面と追葬面の2面が認められた。

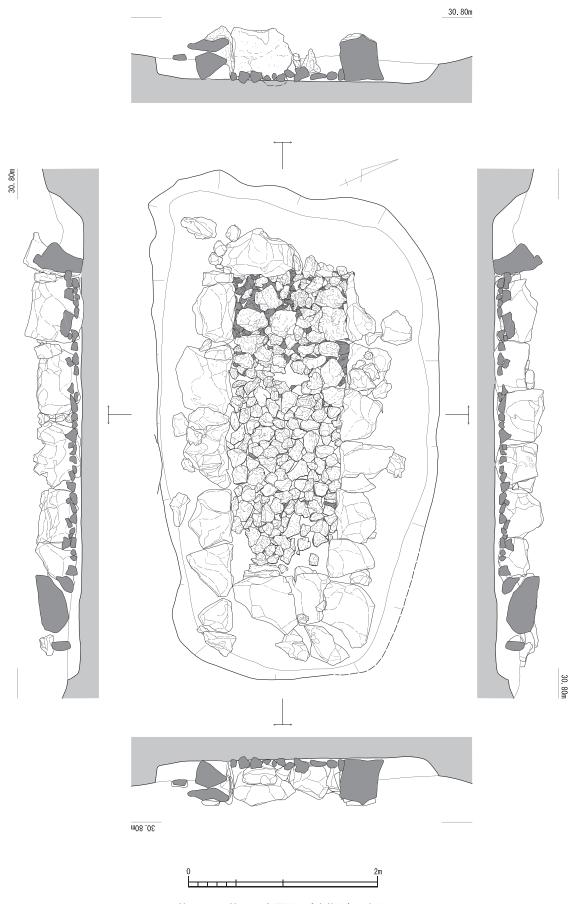
初葬面 石室構築当初の床面である(第402図)。一部を整地後、ほぼ全面に $15cm\sim20cm$ 大の礫(溶岩) が敷き並べられていた。その厚さは5cmと一定で、その上面のレベルはほぼ同じである。一部10cmを超える礫も認められた。

追葬面 初葬面の上側に新たに礫(溶岩)が敷き並べられていた(第403図)。ただしその範囲は石室内 西半に限られる。東半については数石にとどまる。間層を挟むことなく初葬面上に直接礫が敷かれている。追加された礫は20cm大~35cm大の溶岩で、初葬時に敷かれた礫より明らかに大型である。初葬時と 比べて並べ方が雑で、その面も整えられていない。

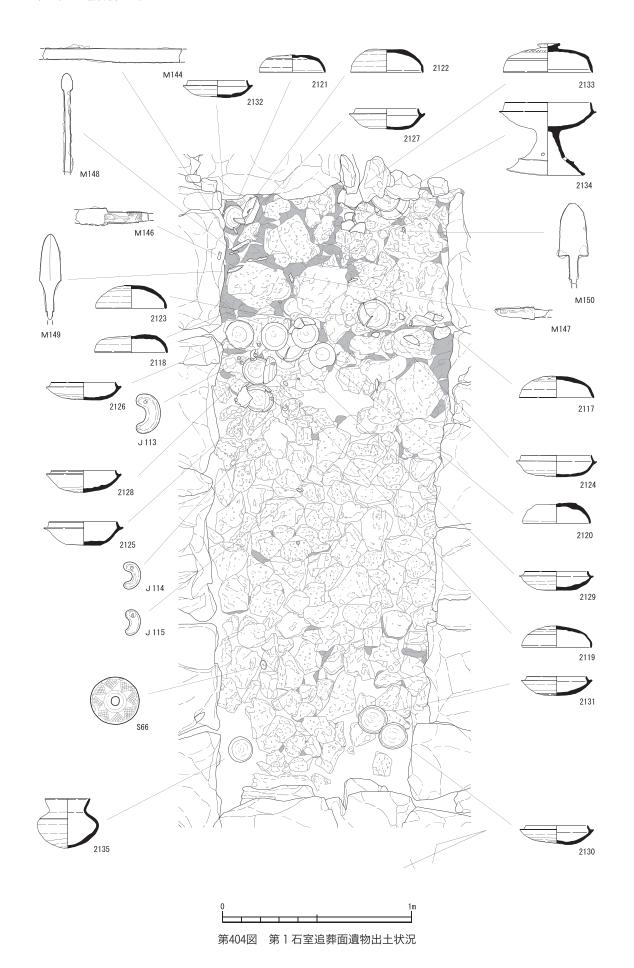
(3)出土遺物(図版100~103 写真図版283~290 附表93・94・101・105・106・111・112) 初葬面と追葬面から副葬品が出土している。


初葬面出土副葬品 鉄鏃が4点(M140~M143)出土している。

M140は茎の先端を欠くがほぼ完存する。有頸式の鉄鏃で、11.45cm残存する。鏃身は逆刺を有する柳葉形をなす。逆刺は完存せず1.20cm残存する。逆刺を含めた鏃身長は5.65cmである。鏃身断面は平造で、中央部における刃幅は3.30cmである。厚さは2.5mmである。頸部は4.65cmを測り、横断面は8mm×3mmの長方形をなしている。茎との境は角関をなし、その幅は8mmである。茎は2.60cm残存し、横断面は4.5mm×2.5mmの長方形をなしている。木質の遺存は認められない。


M141は鏃身の一部である。三角形鏃と考えられ、長さ1.85cm、幅1.70cm残存する。断面は平造で、中央部の厚さは2.5mmである。

M142は頸部から茎にかけて残存する。残存長は7.30cmである。頸部は3.15cm残存し、横断面は6 mm×3.4mmの長方形をなしている。茎との境は台形関をなし、その幅は8.50mmである。茎は完存し、その長さは4.15cmである。横断面は4 mm×3 mmの長方形をなしている。関部付近を中心に木質の遺存が認められる。


M143は有頸式の鉄鏃で、頸部から茎にかけて残存する。残存長は5.35cmである。頸部は4.75cm残存し、横断面は $7\,\text{mm} \times 4.5\,\text{mm}$ の長方形をなしている。上端部で頸部の幅が広がる傾向にあることから、鏃身関に近いものと考えられる。茎との境は台形関をなし、その幅は $8\,\text{mm}$ を測る。茎は $6\,\text{mm}$ 残存し、横断面は $6\,\text{mm} \times 4.5\,\text{mm}$ の長方形をなしている。

第402図 第1石室平面図(初葬面)・立面図

第403図 第1石室平面図(追葬面)・立面図

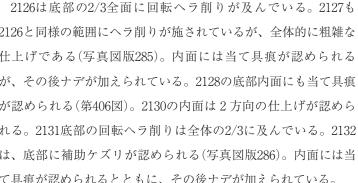
— 430 **—**

追葬面出土副葬品 土器・玉類・石製品・金属製品が出土している(第404図)。いずれも追葬面礫床直 上から出土している。ただし、副葬位置に大きな移動は認められないが、厳密には原位置が保たれてい るとは言い難い状況である。全体的な傾向として、中央部からは一部の玉類を除いては出土は認められ ない。この箇所は、追葬にあたって新たに礫が敷かれた箇所に相当する。

器 出土した土器は須恵器に限られ、大きく西半と東半から出土している。西半では大きく4箇 所に分布の集中が認められる。具体的には、2121・2122・2127・2132が石室南西隅から(土器群1:写 真図版275)、2133と2134が石室北西部から(土器群2:写真図版275)、2117と2124がその東側から出土 している(土器群4:写真図版276)。そして、2118~2120・2123・2125・2126・2128・2129が土器群1 の東側から出土している(土器群3:写真図版276)。このなかで、その出土位置・状況から判断して、 2133と2134、2122と2127がセットとなって副葬されていたものと考えられる。

東半部では両側壁側から出土しているが、量的には西半と比較してわずかである。2135が南東部か ら、2130と2131が北東部付近から出土している。

器種としては杯蓋・杯・高杯蓋・高杯・壺が出土している。


杯蓋 2117~2123の7個体出土している。2117と2121は杯蓋jに、2118・2119・2123は杯蓋rに、 2120は杯蓋Y1に、2122は杯蓋gに分類される。

2117の口縁部内端部にはわずかに端面の痕跡が認められる。2119天井部内面には当て具痕が認められ

る(第405図)。外面は全体の2/3が回転ヘラ削りにより仕上げられ ている。2120の天井部はヘラ切り未調整である。2121の天井部は 回転へラ削りを基本とするが、中心部の一部にはヘラ削りが及ば ない退化削りである。2122の天井部は全体の1/3がヘラ削りによ り仕上げられているが、中心部はヘラ切り未調整のままである。 回転ヘラ削りは数単位に限られ、退化削りである。2123の天井部 外面には1本の直線からなるヘラ記号が認められる

杯 2124~2132の9個体出土している。2124と2125は杯j1に、 2126と2127は杯C5に、2128は杯i1に、2129は杯i2に、2130は杯C5 に、2131は杯C8に、2132は杯h2に分類される。

2126と同様の範囲にヘラ削りが施されているが、全体的に粗雑な 仕上げである(写真図版285)。内面には当て具痕が認められる が、その後ナデが加えられている。2128の底部内面にも当て具痕 が認められる(第406図)。2130の内面は2方向の仕上げが認めら れる。2131底部の回転ヘラ削りは全体の2/3に及んでいる。2132 は、底部に補助ケズリが認められる(写真図版286)。内面には当 て具痕が認められるとともに、その後ナデが加えられている。

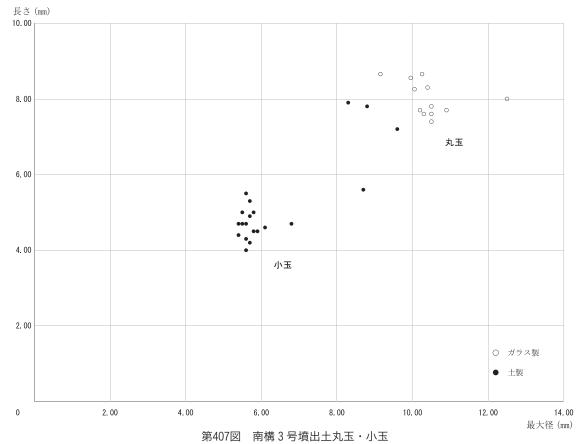
第405図 2119 内面当て具痕

第406図 2128 内面当て具痕

高杯蓋 2133の1個体が出土している。2134とセットとなるも ので、ほぼその状態で出土している(第404図)。杯蓋cを基本とし、天井部中央には釦状のつまみが貼付 けられている。その径は4.70cmを測る。その周囲は回転へラ削り後カキ目により仕上げられ、その後斜 行する櫛描列点文が加えられている(写真図版287)。口縁端部内面には退化した端面が認められる。

高杯 2134の1個体が出土している。有蓋高杯Bに分類され、器高15.40cm・口径18.10cmの大型の高杯である。杯部は杯bを基本とするもので、外面に回転へラ削りは認められない。脚部はハ字形に開くもので、下側1/3の位置には突帯が巡らされている。小規模な突帯で、2mm×2mmの断面方形をなしている。この突帯の上側には径7mmの円孔が3箇所に穿たれている。端部は、脚部方向の直交するナデにより内外方向に肥厚する傾向にある。脚部は全体的に大きく歪んでいる。脚高は9.40cmを測る。

壺 2135の直口壺 1 個体が出土している。扁球形をなす体部に口縁部が斜方向に直線的にのびている。内外面とも回転ナデを基本に仕上げられているが、底部外面は回転へラ削りにより仕上げられている。底部内面はナデにより仕上げられている。外面中位やや上側には 1 条の沈線が施されている。


玉 類 勾玉・切子玉・丸玉・小玉が出土している。石室西半部から集中して出土している。その集中箇所は土器群3の範囲とほぼ一致する(第404図)。他に石室中央部においても数点出土している。

勾玉 $J113\sim J115$ の 3 点が出土している。 J113と J114は瑪瑙製、J115は滑石製の製品で、いずれも完存する。 J113が 3 点の中では明らかに大きく、全長3. 50cmを測る。また、J113と J114の紐穴は片面穿孔によっている。 J113には割れ円錐が認められるが、 J114には認められない。

切子玉 J116の1点が出土している。水晶製の完存する製品で、六角錘の底面を合わせた形状である。穿孔は片面穿孔によっている。終孔面には顕著な割れ円錐が認められる。

丸玉 ガラス製と土製(土玉)が認められる。ガラス製は J 117~ J 128の12点で、紺色透明の完存する製品である。 J 117・ J 118・ J 126~ J 128については、ソーダ石灰ガラス製との分析結果が得られている(第5章第4節)。長さが7.4mm~8.6mm、径が9mm大~12mm大と大型の製品である(第407図)。 J 127と J 128については気泡が多く認められる。

土玉は J 129~ J 132の 4 点である。丸玉の中では小型である(第407図)。

— 432 —

小玉 J133~J149の17点が出土している。いずれも土製である。 J 149が一部を欠く以外は全て完存する。基本的には、長さ 4 mm~5.5 mm・最大径 5 mm~6 mmに集中している (第407図)。

石製品 完存する蛇紋岩製の紡錘車(S66)が2135の西側から出土している(第404図)。径が4.20cm×4.30 cmとほぼ正円をなし、横断面は台形をなしている。側面の高さは $5\,\text{nm}$ で、そのラインは弧状をなしている。上面における径は2.00cm×2.12cmを測り、中央部における厚さは2.10cmである。中央部には軸穴が開けられており、上面での径が8.5mm×8 mm、下面での径が8 mm×7 mmである。

斜面と下面には、金属製工具によると考えられる鋭利な沈線により文様が描かれている。斜面には上面付近に二重の、下面付近に一重の沈線が描かれ、その間に鋸歯文が9画描かれている。ほぼ同規模の鋸歯文により斜面が9分割されている。その規模は底辺が12.5mm~18mm、高さが11mm~15.5mmである。各鋸歯文は、2辺の斜辺に平行する沈線により斜格子状となっている。

下面は軸穴付近に二重の円が描かれ、その外側に鋸歯文が8区画描かれている。ほぼ同規模からなる8区画の鋸歯文により下面は8分割されている。各鋸歯文の規模は、底辺が13mm×15.5mm、高さが9mm×9.8mmである。各鋸歯文内の沈線の描かれ方は側面と同じである。

金属製品 刀子と鉄鏃が出土している。出土地点は土器群1と土器群2の周辺に集中している(第404図)。

刀子 4点(M144~M147)出土している。

M144は刃部で、残存長は14.70cmである。刃幅は最大で1.65cmを測り、断面は鋭角な三角形をなしている。背幅は4mmを測る。刃部のラインが一直線をなしていない点も特徴的である。

M145は刃部と茎の一部が残存する。残存長は4.40cmである。刃部は1.00cm残存し、関部における刃幅は8mmである。背幅は3mmである。茎との境は均等な両関をなしている。茎は3.40cm残存し、横断面は5mm×3.5mmの長方形をなしている。全面ではないが鹿角の遺存が認められる。鹿角が遺存していない箇所についても、木質の遺存が認められる。

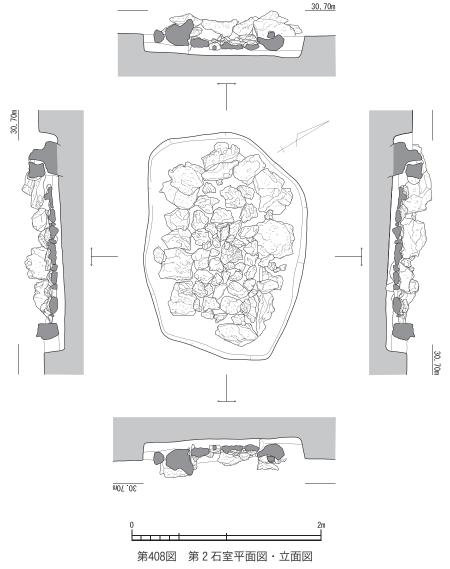
M146は刃部から茎にかけて残存する。刃部は3.30cm残存し、関部における幅は1.80cmを測る。断面は鋭角な三角形をなし、背幅は4mmである。茎との境は角関をなしている。茎は4.40cm残存し、横断面は1.30cm×4mmの長方形をなしている。茎の一部に木質の遺存が認められ、木質が認められない箇所については糸巻き痕が認められる(写真図版288)。

M147は茎の先端を欠き、残存長は5.70cmである。刃部は4.20cmを測り、関部における幅は1.40cmである。横断面は鋭角な三角形をなし、背幅は2.5mmである。一部木質が認められ、鞘の痕跡と考えられる。茎との境は角関をなしている。茎は1.50cm残存し、横断面は $9\,\text{mm}\times3.5\,\text{mm}$ の長方形をなしている。木質は認められない。

鉄鏃 6点(M148~M153)出土している。

M148は有茎式の長頸鏃である。茎を欠き、残存長は10.45cmである。鏃身は柳葉形をなし、全長は1.80cmである。断面は片丸造で、中央部における厚さは2mmで、幅は1.20cmである。頸部は8.65cm残存し、横断面は5.5mm×2.5mmの長方形をなしている。

M149は短頸式の鉄鏃で、鏃身から茎の一部まで残存する。残存長は9.05cmである。鏃身は柳葉形をなし、全長4.90cmを測る。横断面は片丸造で、中央部に鎬が認められる。当該箇所における厚さは3mmである。鏃身関は幅2.30cmを測り、以下頸部は斜行し、その長さは3.30cmを測る。中央部における横断面は9mm×2mmの長方形をなしている。茎との境は角関をなし、その幅は8mmである。茎は8.5mm残存し、その横断面は2.5mm×4mmの長方形をなしている。木質は認められない。


M150は短頸式の鉄鏃で、鏃身から茎の一部まで残存する。残存長は8.50cmである。鏃身は柳葉形で、全長は5.50cmを測る。最大幅は3.15cmである。横断面は平造で、中央部の厚さは3mmである。鏃身関は角関をなし、その幅は1.00cmを測る。頸部は2.50cmを測り、横断面は8mm×2.5mmの長方形をなしている。茎との境は角関をなし、茎の残存長は5mmである。茎に木質の付着は認められない。

M151は茎の一部である。残存長は1.70cmで、横断面の規模は $5\,\text{mm}\times3.5\,\text{mm}$ である。表面にわずかに木質と糸巻き痕が認められる。M152は頸部と考えられが、一部中空となっており頸部と断定することは困難である。残存長1.95cmを測り、断面は $5\,\text{mm}\times4\,\text{mm}$ の長方形をなしている。M153は茎のみ残存する。残存長2.30cmを測り、断面は $4\,\text{mm}\times2.5\,\text{mm}$ の長方形をなしている。全面に糸巻き痕が認められ、多くはその外側に木質が遺存している。

3. 第2石室

(1)検出状況

第1石室の南側に隣接する。第1石室とは主軸方向を 6° 30″ 違えている (第401図)。石室・掘り方ともに全体が検出されている (第408図)。隣接する第1石室と切り合い関係にあり、第1石室を切っている。第1石室と比べて明らかに小型である (第401図)。

(2)墓 壙

石室全体が検出面から掘り下げられている。平面形は隅丸長方形傾向にあるが、全体的に不整形である(第408図)。主軸方向で2.40mを測り、その直交方向は、南東辺付近で1.27m、北西辺付近で1.63mを測る。横断面は箱形をなし底部は平坦である。検出面からの深さは23cmを測る。

(3)石 室

概 要 基底石のみ残存していた。石材は全て溶岩が用いられている。基底石は墓壙底部に置かれており、設置のための穴・溝等は認められなかった。平面形は長方形をなすが、北隅の石材と西隅は側壁に対して斜行し、全体として弧状をなしている(第408図)。石室の主軸方向は北西 – 南東方向に取り、その方位はN59°00′Wを示している。4面が基底石により囲まれているが、南隅の1石を欠く。基底石の底部はほぼ一定で、その標高は30.30mを測る。

石室の規模は主軸方向で1.56mを測り、その直交方向は南東辺付近で66cm、北西辺付近で76cmを測る。主軸方向と南東辺付近の規模を基準とした床面積は1.02㎡と、先述した第1石室の3.39㎡と比較して明らかに小型である。

第409図 第2石室検出作業

壁 面 石材間の隙間が目立ち、全体として粗い並べられ方である(写真図版282)。

北西側壁は両側壁側から弧状をなすように並べられ、北西側壁と判断できるのは2石である。幅30cmと20cmの溶岩が用いられ、高さはわずか15cmである。加工痕は認められない。北東側壁は全ての基底石が残存している。4石からなるが、規模・形状は不揃いである。底部の高さは一定である。4石の隙間には小型の溶岩がはめ込まれている。全体的に南東側ほど小型になる傾向が認められる。北西側の2石は、幅40cm・高さ30cmであるのに対して、南東側は幅が45cmであるが、高さはわずか15cmである。

南東側壁は1石のみ残存する。当初は2石であったと考えられる。幅45cmを測り、高さは15cmである。 南西側壁は基底石6石からなり、北西端については2段目まで残存している。北西端の基底石が最も大きく、幅40cmを測る。他の基底石は幅20cm~35cmである。高さについても一定しておらず、南西端から2石目が30cmと最も高くなっている。

礫 床 石室内全面に礫が敷かれた状態で検出されている。検出できたのは1面のみで、15cm~20cm大の礫(溶岩)が使用されている。礫相互の隙間がやや目立つが、上面がそろうように並べられている。

(4)出土遺物

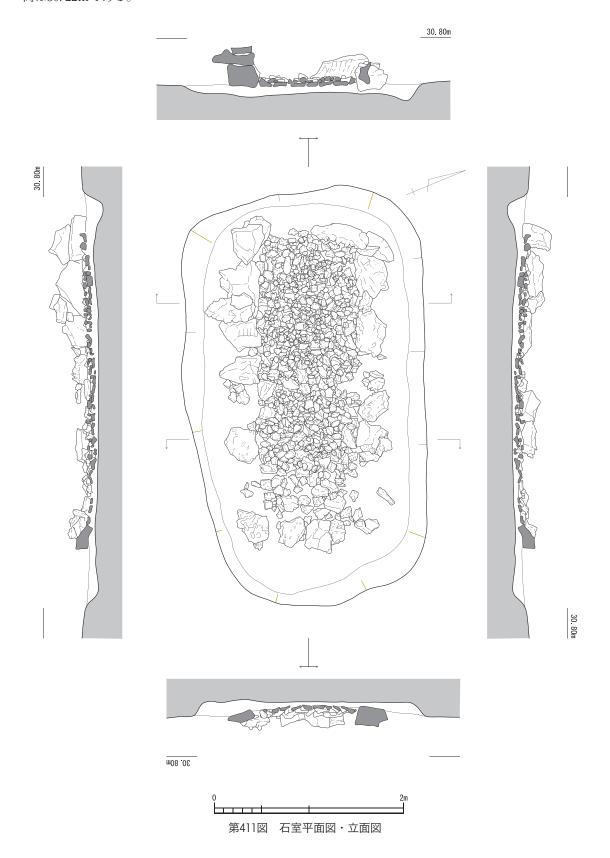
1点も出土していない。

4. 小 結

第1石室については、出土遺物から初葬が古墳群2期、追葬が古墳群4期1段階に位置付けられる (第6章第2節)。第2石室については、遺物が出土していないが第1石室を切ることからこれより新しく 位置付けられる。また、両石室とも竪穴系横口式石室と考えられ、第1石室の頭位は西側と考えられる。

第5節 南構4号墳(図版103 写真図版 $291\sim295$ 附表 $94\cdot112$)

1. 検出状況


第3次調査と第6次調査の2次にわたる調査で明らかとなった古墳である。南構5号墳の北西25m、同2号墳の西20mに位置する(第353図)。墳丘は明らかにできなかったが、石室・掘り方ともに全体が検出されている(第411図)。墳丘の規模は、周囲の遺構の空白部の範囲から主軸方向で9.00m、その直交方向で8.30mの円墳と復元することができる(第410図)。

2. 墓 壙

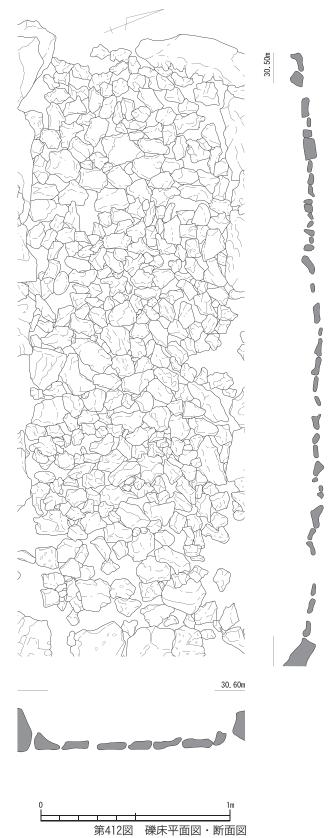
石室全体が検出面から掘り下げられ、平面形は隅丸長方形をなす(第411図)。北辺についてはほぼ直線的であるが、他辺については凹凸が目立つ傾向にある。ほぼ東西方向に主軸をもち、その規模は主軸方向で4.40mを測る。その直交方向については2.52mを測る。東側ほどその幅が狭くなる傾向が認められ

る。横断面は逆台形を基本とするが、南辺を除いては肩部付近がやや深くなる傾向が認められる。検出 面からの深さは、西側が最も深く20cmを測り、他は15cmである。全体的に底部は平坦で、墓壙底部の標 高は30.22mである。

3. 石 室

概 要 平面形は長方形をなし(第411図)、4面を取り囲む壁面からなる。墓壙底部に5cmから10cmの厚さの黒褐色極細砂層(黒ボク層)が整地されており、設置のための穴・溝等は認められない。壁面については各辺とも一部の石を欠く。石室の主軸方向は東西方向に取り、その方位はN67°00′Wを示している。

床面の規模は主軸方向で3.10mを測り、 その直交方向は西辺で1.00m、東辺で1.00 mと同じである。上記から復元される床面 積は3.10㎡である。


壁 面 4面を構成する石材は全て溶岩が使用されている。基底石を中心に残存するが、南側壁西側の一部において2段もしくは3段にわたり残存する箇所も認められた。石材の加工はほとんど認められず、石材の石室内側についても凹凸が顕著である(写真図版294)。基底石の底部はほぼ一定で、その標高は30.30mである。

西辺は、当初2石はあったと考えられるが、残存するのは1石のみである。残存する1石は西辺北側の1/2を占め、幅60cm、高さ40cmを測る。

北側壁は、明確に基底石と判断できるものが4石残存する。北側壁中央部と東辺付近の石材を欠く。いずれも1段のみ残存し、他に間材と考えられる小石が認められた。西辺側の石材が最も大きく、幅50cm、高さ30cmを測る。東側ほど石材が小型化する傾向が認められ、最も東側の石材は幅30cm、高さ20cmである。

東辺は3石残存するが、北端の1石を欠く。全て1段のみの残存である。南端についても小型の石材が置かれていたものと考えられる。最大で幅30cm、高さ20cmと、他辺の石材より小型の傾向が認められる。

南側壁は5石残存する。南辺中央部と東辺付近の石材を欠き、北辺と同様の傾向が認められる。西辺付近では2段もしくは3段に積まれ、床面からの高さは最高所で35

第413図 土器出土位置図

cmを測る。北側壁同様、西側ほど石材が大型の傾向が認められ、最も大型の石材は幅60cm、高さ20cmを測る。最東部の石材は、幅30cm、高さ15cmである。 2 段目・3 段目の石材についても基底石より小型の傾向が顕著である。

床 面 1面のみで明らかな追葬面は認められなかった。床面は、まず $10\text{cm}\sim50\text{cm}$ 大の溶岩が敷き詰められ(第412図)、その後 $5\text{ cm}\sim10\text{cm}$ 大の河原石(円礫)が敷かれていた(写真図版292)。溶岩は比較的扁平なものが用いられている。平面の規模は30cm大が平均的で、各石の平坦面を上側にし、その上面を揃

え、隙間を最小限にするよう敷き詰められていた(写真図版293)。石材の厚さも5cm前後が大半である。またその上面のレベルもほぼ水平になるように敷き詰められ、その上面の標高は30.30mである。河原石については部分的に検出されなかった箇所も認められるが、当初は全面に敷き詰められていたものと考えられる。河原石上面の標高は30.35mである。

4. 出土遺物

土器と玉類が出土している。

土 器 須恵器の杯蓋と杯が計 4 点出土している (第413図)。まず石室内主軸ラインを対とした西壁付近から 2 点 (2136・2137)出土している。床面直上からの出土である。この 2 点については、2136が杯蓋、2137は杯で、両個体の法量からセット関係にあったものと考えられる。ただし、出土状況から土器枕として使用されていたものと考えられる。

この他2138は石室中央部西半よりの床面直上から出土している。2138の西側から2139が出土しているが、床面よりやや浮いたレベルから出土している。

杯蓋 2136の1個体に限られる。杯蓋 f に分類されるもので、天井部には補助ケズリが認められる。 また内面には赤色顔料が付着している。

杯 2137~2139の3個体である。2137が杯C2に、2138と2139が杯j6に分類される。2137の底部2/3が回転ヘラ削りにより仕上げられ、外面全面に亀裂が顕著に認められる。2138と2139は法量的にも近似している(附表94)。

玉 類 滑石製の臼玉が 1 点(J150)出土している(第414図)。完存する個体で、全 面に磨き痕が認められる。

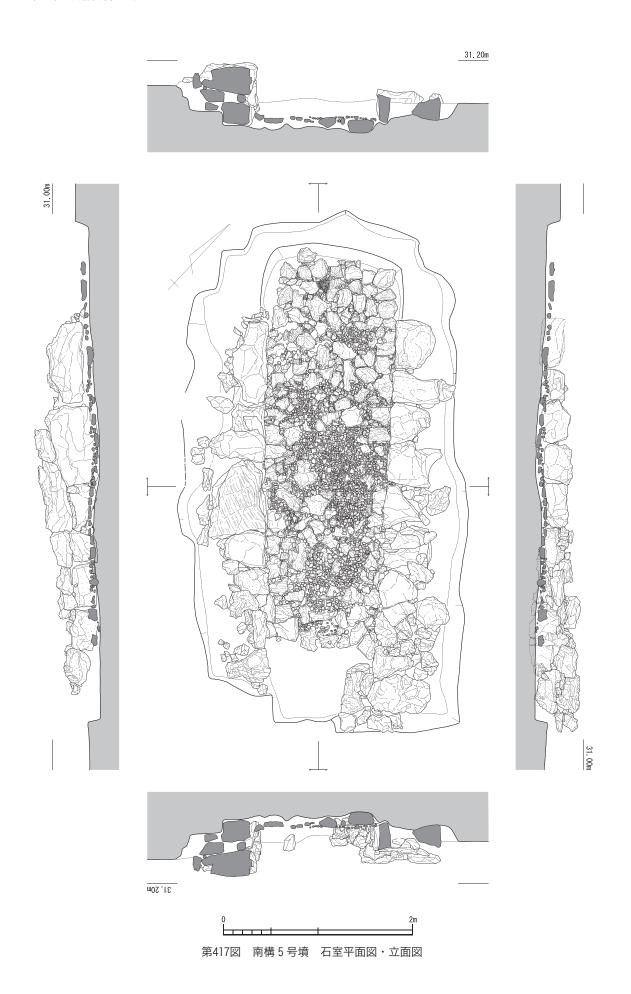
第414図 J150

5. 小 結

出土土器から古墳群 4 期 2 段階に位置付けられる(第 6 章第 2 節)。石室は竪穴系横口式石室と考えられる。セットで出土した2136と2137が土器枕に転用されたと考えられることから、北西側が頭位であったものと復元される。

第6節 南構5号墳(図版103 写真図版296~304 附表94·106)

1. 検出状況


概 要 北地区南西隅で検出されている。南構 1 号墳の南西側に位置する(第353図)。掘り方は全体が検出されているが、石室については部分的に石材が抜き取られていた(第417図)。石室の周囲は遺構の空白地が認められ、この範囲から当墳は主軸方向で12.80m、その直交方向で11.90mの円墳と復元することができる(第416図)。

2. 墓 壙

石室全体が検出面から掘り下げられている。平面形は隅丸長 第415図 石室内の調査 方形傾向にあるが、そのラインは直線的ではない(第417図)。主軸方向で5.30mを測り、その直交方向は 北西辺付近で2.80m、南東辺付近で2.67mを測る。横断面は箱形をなすが、部分的に2段にわたり掘り 込まれている。底部は平坦で、検出面からの深さは15cm~20cmを測る。

3. 石 室

概 要 北西壁については石材が残存していなかった(第417図)。他の箇所については、基底石と部分的に2段目の石が残存していた。いずれも溶岩が用いられている。基底石は墓壙底部に置かれており、設置のための穴・溝等は認められなかった。平面形は長方形をなすと考えられるが、北西壁と南東壁の石材を欠くため、正確な規模を求めることは困難である。礫床の検出範囲および側面における壁の検出状況から判断して、主軸方向に

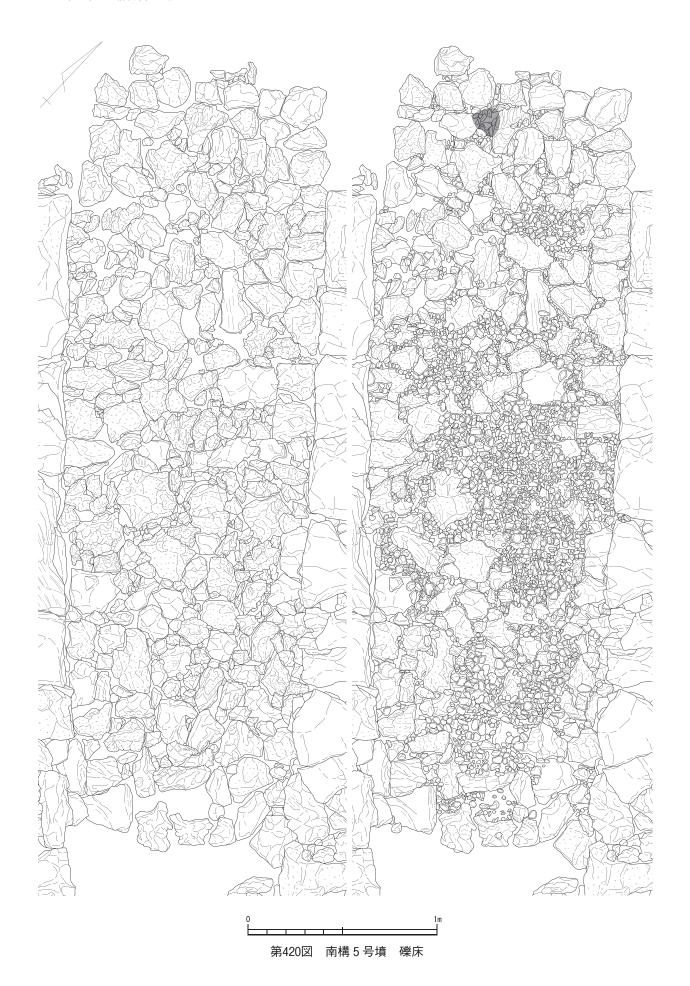
第418図 礫床と側壁

ついては4.40mと復元することができる。またこの直交方向については、基底石が残存する最北西側で1.36m、南東壁側で1.10mを測り、南東側ほど幅が狭くなる傾向が認められる。これらの規模から復元される床面積は5.41mである。北西 – 南東方向に主軸をとり、主軸方向は $N44^\circ$ 00′Wを示している。

壁 面 北西壁については残存せず、他辺については基底石と一部で2段目が残存していた。南西側壁と北東側壁の関係から、南西側壁と北東側壁が南東壁を挟み込んでいたものと考えられる。いずれも溶岩が用いられ、石室内側の面は加工が加えられている。

南西側壁については北西側の数石分を欠く。 $4\,\mathrm{m}$ にわたり残存し、基底石 $7\,\mathrm{Ta}$ からなる。北西側については $2\,\mathrm{Ta}$ 分を欠くものと推定される。いずれも横長に置かれており、北西側の $2\,\mathrm{Ta}$ が幅90cm・ $1\,\mathrm{m}$ と他より明らかに大型の石材が用られている。他の基底石の幅は $40\,\mathrm{cm}$ ~ $50\,\mathrm{cm}$ である。基底石の高さについては北西側の $2\,\mathrm{Ta}$ が最も高く、 $40\,\mathrm{cm}$ ~ $50\,\mathrm{cm}$ を測る。そして中央部を中心に $2\,\mathrm{Pel}$ まで残存していた。基底石と $2\,\mathrm{Pel}$ を含め最も良好に残存する箇所は石室の中央部付近で、その高さは $60\,\mathrm{cm}$ である。 $2\,\mathrm{Pel}$ こいても平積み傾向にある。

北東側壁についても北西側の数石分を欠く。4.30mにわたり残存し、基底石10石からなる。北西側については南西側壁同様2石分を欠くものと考えられる。北東側壁についてはほぼ同規模の石からなり、南西側壁とは特徴を異にする。その規模は、幅30cm~55cm、高さ20cm~30cmである。北西側の基底石は横積みであるが、南東側については小口積み傾向にある。南東側の一部においては2段目まで残存していた。2段目については横積み傾向にある。この箇所が最も高く残存し、その高さは50cmを測る。


南東壁については北東側の1石のみ残存していた。幅20cm、奥行き40cmの小口積みである。

床 面 石室内全面に礫が敷かれた状態で検出されている。検出できたのは1面のみであるが、他の石

室と比べて丁寧に仕上げられている。まず15cm~20cm大の礫(溶岩)が石室内全面に敷き詰められている(第420図左)。各礫の上面を平坦に仕上げ、その面が揃うように敷き詰められている。各礫の隙間はほとんど目立たない状態である(写真図版299・300)。その後この上面に径2cm~4cm大の河原石からなる玉石(円礫)が敷かれている(第419図・第420図右写真図版299)。全面にわたり検出できなかったが、当初はほぼ全面に敷き並べられていたものと考えられる。

第419図 礫床の検出作業

4. 出土遺物

副葬品は土器と金属製品からなり、土器については礫床直上から出土している(第422図)。

土 器 須恵器の杯蓋・杯・高杯が出土している。

北西半では、2143が北西壁沿いで、2140~2142がその東側でまとまって出土している。南東半においては、2145が南東壁沿いで、2146と2147が北西壁沿いで、2144が両個体の東側から出土している。このなかで、2146については杯部と脚部が完全に分離した状態で出土している。以上から、これらの土器については、副葬当時の状況が完全には保たれていないものと判断される。このなかで2140と2142については口縁部を上にしての出土状況であるが、土器枕として転用された可能性が考えられる。

杯蓋 2140~2144の5個体が出土している。2140が杯蓋gに、2141が杯蓋hに、2142が杯蓋oに、2143が杯蓋mに、2144が杯蓋Y2に分類される。2140と2142には退化削りが認められる。2144の天井部1/3はヘラ切り未調整となっている。

杯 2145の1個体が出土している。杯j8に分類されるもので、口径に対して深い形態的特徴が認められる。底部外面は1/3がヘラ切り未調整となっている。

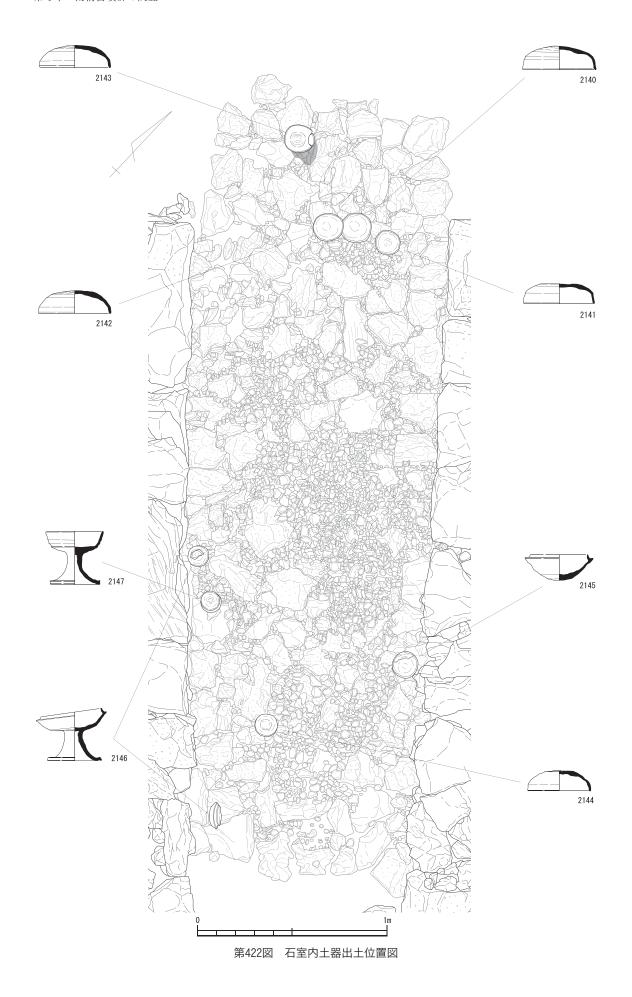
高杯 2146と2147の2個体が出土している。2146は有蓋高杯Cbに分類され、内外面とも回転ナデにより仕上げられている。脚部は短脚で、透かし孔は認められない。脚端部は下方へ折り返されている。2147は無蓋高杯Eに分類され、内外面とも回転ナデにより仕上げられている。脚部も回転ナデにより仕上げられ、透かし孔は認められない。脚端部は強い回転ナデにより明確な端面をなしている。

金属製品 鉄鏃と鉄針が出土しているが、出土地点を平面的に記録することはできなかった。この他石室内からではなく、その周辺部から鉄刀の一部(M157)が出土している。その出土位置から判断して、当墳に伴う可能性が高いことからここで報告する。

鉄鏃 M154とM155の2点出土している。

M154は短頸式鉄鏃である。鏃身の1/2を欠く以外はほぼ完存する。全長は8.30cmを測る。鏃身は逆刺を有する柳葉形をなし、全長3.35cmを測る。幅は1.60cm残存し、復元される幅は2.40cmである。横断面は平造で、中央部の厚さは2mmである。逆刺は1.45cm残存するが、先端を欠く。頸部は3.70cmを測り、横断面は8mm×3.5mmの長方形をなしている。茎との境は棘関となっており、その幅は1.15cmである。茎は2.70cmを測り、横断面は4mm×4mmの方形をなしている。

M155は有頸式の鉄鏃で、頸部から茎にかけて残存している。残存長は8.45cmである。頸部は6.15cm残存し、断面は5.5mm×3.5mmの長方形をなしている。頸部との境は棘関からなり、その幅は8.5mmを測る。


茎は2.30cm残存し、横断面は3mm×3mmの方形をなしている。木質の付着は認められない。

鉄針 M156の1点である。2本の鉄針が銹着した状態で出土 している。残存長は2.9cmと2.75cmである。径は1.5mmを測る。

鉄刀 M157は鉄刀の茎の一部で、残存長はわずか3.80cmである。横断面は2.15cm×7 mmの長方形をなし、周囲には最大4.5mm厚の木質の遺存が認められる。さらにその周囲に銀線が巻かれている(第421図 写真図版304)。銀線一本の幅は1.5mmを測り、厚さは0.5mmである。

第421図 M157 銀線アップ

5. 小 結

埋葬時期については、出土遺物から判断して、初葬が古墳群3期、追葬が古墳群4期2段階に位置付けられる(第6章第2節)。

石室については、両小口側の石材が残存していないが石室全体が掘り方を伴うものであり、床面のレベルが検出面より低いことから、竪穴系横口式石室と考えられる。頭位については、土器枕の位置から 北西側と考えられる。 第7節 南構6号墳(図版104~106 写真図版305~316 附表94 · 106 · 107 · 112 · 113)

1. 検出状況

第4次調査で検出された古墳である。北地区中央部にあたる。南構1号墳の北東側22m、同7号墳の 北西側13mに位置する(第353図)。墳丘本体は検出することができず、石室のみが検出されている。石 室は西側の側壁と床面を中心に検出され、北側・東側については残存していなかった。南側については 一部残存していた。このため、他の石室で検出されている掘方については検出することはできなかっ た。他の遺構との切り合い関係は認められない。

2. 墳 丘

墳丘そのものを検出することはできなかった。ただし周辺の遺構の分布状況をみると、石室を中心とした一定の範囲内は遺構の分布が希薄となっている(第423図)。この範囲が墳丘の規模を示しているものと考えられる。この範囲から復元される墳丘はやや楕円傾向にある円墳と考えられる。その規模は、主軸方向(南北方向)で11.50m、その直交方向で10.50mである。

3. 墓 壙

調査においては明確に検出することはできなかった。基底石下面のレベルが検出面より低いことから、墓壙はあったものと考えられる。

4. 石 室

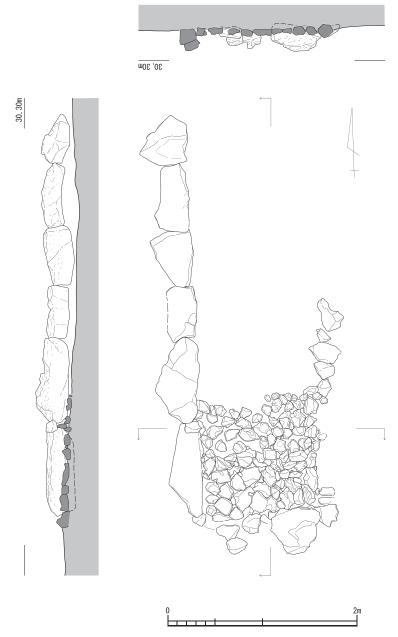
概 要 残存する限りにおいて平面形は長方形をなすものと考えられる。石室の主軸は南北方向を向き (第424図)、 その方向はN1°30″Wを示している。壁面は北側・東側を除く2面が検出されている。 東側についても明確な基底石ではないが、基底石間に積まれたと考えられる石が数石認められた。北側 が残存しないため明確にはできないが、南側の石材の一部が小型であること、玉類の出土が北側に集中 すること、および他の石室の開口方向を考慮すると南側が玄門であったものと考えられる。

床面は礫(溶岩)が敷き並べられていた。追葬が認められ、初葬面上に礫が敷き直されている。その検 出範囲は明確に異なり、初葬面は主軸方向で1.20mの残存であるのに対して、追葬面では西側壁沿いで 3.70m残存していた。その直交方向については、初葬面・追葬面とも同じで1.20mを測る。これが石室 当初の幅を示すものと考えられる。

主軸方向に関しては、後述する西側壁の規模から少なくとも4.30mはあったものと復元することができる。

壁 面 西側壁と南壁の石材は全て溶岩が用いられている。両面とも基底石のみの残存である。最も良好に残存する西側壁は6石からなる。6石とも横長に設置されている。その規模は幅50cm~1mを測る。各石材の高さは20cmから30cmとほぼ一定である。各石材は石室内側が面をなすよう配置されている(写真図版308)。

南側は、基底石としてふさわしい規模の石材1石と、より小型の20cm大の礫数石からなる。基底石は南辺の東側に置かれ、当初は東側壁に接し南東隅を形成していたものと考えられる。幅55cm、高さ25cmを測り、東側壁基底石より小型である。東側壁ほどではないが、石室内側が面をなすような用材意識が認められる。

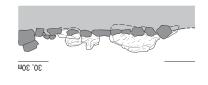

床 面 初葬面と追葬面の2面が検出されている(第424図・第425図)。

初葬面 溶岩が用いられ、隙間のないように敷き並べられていた。全体的に1石が1層をなし、10cm 大から20cm大の礫が用いられている。各礫の上面がほぼ揃うように平坦に敷き詰められ、その上面の標 高は29.65mである。ただし、5号墳のように各礫の平坦面を上側にして揃える様子は認められない。

追葬面 初葬面上に河原石が1石分敷き並べられていた。北半においては初葬面をなしていた礫を取り除いた後に新たに礫が敷き並べられていた(第425図)。この結果、上面の標高が玄門側で30.00m、北側で29.20mを測り、やや北側への傾斜が認められる。礫は5cm大から20cm大の規模からなるが、5cm大が平均的な大きさである。なお、並べられた礫は比較的扁平ではあるが、上面を意識して揃える様子は認められない。

5. 出土遺物

須恵器の2158を除いては追葬面上から出土している。2158は追葬面を検出している最中に出土した遺物で、追葬時の副葬品と考えられる。出土した遺物は、土器・玉類・金属製品である。玉類については、出土地点を記録できたもの以外に、埋土を篩にかけた結果明らかになったものが多く認められる。

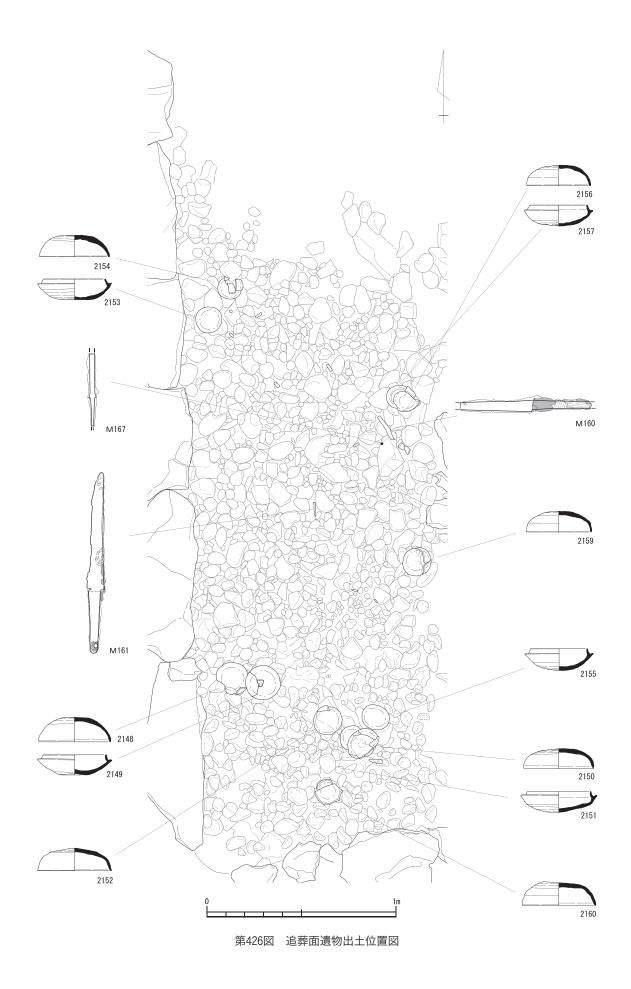


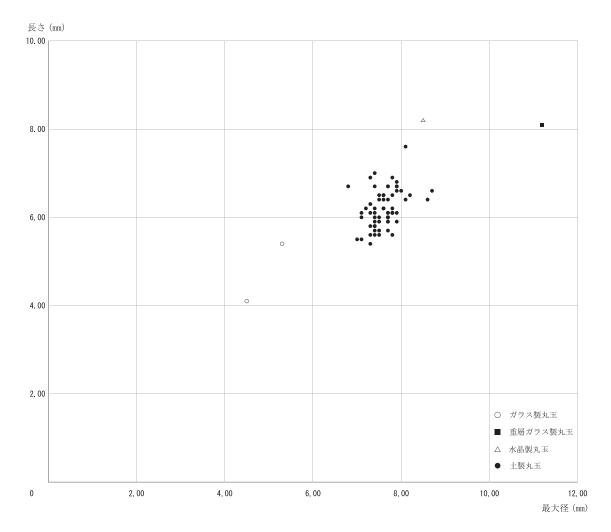
第424図 南構 6 号墳 石室平面(初葬面)・立面図

これらの製品についても追葬面に伴う副葬品と考えられる。全体的に、土器は玄門付近に集中する傾向が認められる。他の土器については側壁に沿った位置から出土している。一方玉類については北半部に集中する傾向が認められる。金属製品も玉類の出土位置と平面的にほぼ一致する。

土 器 全て須恵器で、杯と杯蓋が出土している。このなかで、2150と2151・2156と2157については上下に重なった状態で出土している。しかし、それぞれの口径と受部径をみるといずれも受部径より口径のほうが小さく、セットとみるには厳しい状況である。法量的には、2157と2159、2150と2149、2156と2155もしくは2158がセットとして相応しい組み合わせである(第655図)。また2154と2153についても近接した位置で出土し、法量的に合致することからセットであったものと考えられる。

杯蓋 $2148 \cdot 2150 \cdot 2152 \cdot 2154 \cdot 2156 \cdot 2159 \cdot 2160$ の 7点が出土している。 $2148 \cdot 2156$ が杯蓋 i に、 $2150 \cdot 2152 \cdot 2160$ が杯蓋 j に、2154が杯蓋 r に、2159が杯蓋mに分類される。いずれも天井部外面がヘラ削りにより、他が回転ナデにより仕上げられている。ヘラ削りの範囲は、 $2156 \cdot 2150 \cdot 2160 \cdot 2154$ が


第425図 南構 6号墳 石室平面(追葬面)・立面図


2/3、2148・2152・2159が1/2の範囲に及んでいる。2150については口縁端部に強い回転ナデによる明瞭 な端面が認められる。2148と2160についても、2150ほどではないが端面が認められる。この他2154の内面には当て具痕が認められる。2160天井部外面には直線状のヘラ記号が認められる。

杯 $2149 \cdot 2151 \cdot 2153 \cdot 2155 \cdot 2157 \cdot 2158$ の 6 点が出土している。2149が杯C8に、2151と2153が杯C5に、2157が杯C3に、2155と2158が杯C7にそれぞれ分類される。いずれも底部が回転ヘラ削りにより、他が全て回転ナデにより仕上げられている。外面の回転ヘラ削りの範囲は、 $2155 \cdot 2157 \cdot 2158$ が底部の2/3、 $2151 \cdot 2153$ が3/4以上、2149が1/2の範囲に及んでいる。2153については、退化削りではないが部分的に回転ヘラ削りが及んでいない箇所も認められる。

玉 類 管玉・算盤玉・丸玉が出土している。

管玉 J 151~ J 159の 9 点が出土している。全て碧玉製で完存する。 J 157と J 158が両面穿孔で、他は片面穿孔である。特に片面穿孔の J 153・ J 154・ J 156については、孔が開始面と到達面の心心間を

第427図 南構 6 号墳出土丸玉

貫通せず斜行している (写真図版315)。また J 159の下面においては割れ 円錐が認められる (第428図)。長さは J 151の2.51cmが最長で、 J 159の 1.76cmが最小と、その差は顕著である。径についても、 J 151の8.40mmに 対して J 157・ J 158の 7 mmと差が認められる。

算盤玉 J160~J162の3点で、いずれも水晶製である。六角錘の底面を合わせた形状である。3点とも片面穿孔により孔が開けられ、いずれも割れ円錐が認められる。最大径部が緩やかな稜をなしている。長さ、最大径とも規模を異にしている。

第428図 J159下面

丸玉 水晶製・ガラス製・土製(土玉)が認められる。

水晶製はJ163の1点に限られ、丸玉のなかでも大型の製品である。

ガラス製は J 164~ J 166の 3 点である。 J 164は他の 2 点とは大きく特徴を異にし、内側と外側の二重構造を持つ重層ガラス玉である (第 5 章第 4 節)。 色調は金色系の淡黄緑色をなしている。 規模も他の丸玉と明らかに異なり、最大径10.9mm×11.2mm、長さ8.1mmと大型である。 この他 J 165については青色をなし、カリガラス製との分析結果が得られている (第 5 章第 4 節)。 J 166は淡青緑色である。

土玉は J 167~ J 230の64点である。比較的同規模の製品である(第427図)。

金属製品 鉄鏃・刀子・鉄鐸が出土している。

鉄鏃 M162~M176の15点出土している。

M162とM163は鏃身の一部である。M162は残存長2. 60cmを測る。平面形は柳葉形をなし、中央部における幅は1. 25cmである。横断面は平造で、中央部の厚さは 3 mmである。M163は残存長2. 10cmを測る。横断面は平造で、厚さは 2 mmである。

M164は完存する短頸式鉄鏃である。鏃身は逆刺を有する柳葉形をなし、全長4.10cmを測る。最大幅は2.40cmである。横断面は平造で、中央部における厚さは2mmである。逆刺は長さ7mmを測る。頸部は3.80cmを測り、横断面は6mm×3mmの長方形をなしている。茎との境は角関をなすが、一方は欠損している。茎は4.20cm測り、横断面は3mm×3mmの方形をなしている。

M165とM166は鏃身のみ残存する。M165は逆刺を有するが、基部を欠いている。鏃身の残存長は 4.85cmで、最大幅は3.05cmである。横断面は平造で、中央部における厚さは2.5mmである。M166は残存 長4.50cmを測る。鏃身幅は最大で2.65cmを測る。横断面は平造で、中央部における厚さは3 mmである。

M167~M169は有頸式の鉄鏃である。

M167は頸部から茎にかけて残存する。残存長は7.75cmである。頸部は4.75cmを測り、横断面は5.5mm×2.5mmの長方形をなしている。茎との境は台形関となっており、その幅は7mmである。茎は3cmを測り、先端部付近の横断面は2.5mm×2mmの方形をなしている。茎表面には、内側から糸巻き痕・木柄・樹皮巻き痕を明確に観察することができる。糸巻き痕については、たすきがけ状に巻かれている様子を観察することができる(第429図)。

M168も頸部から茎にかけて残存している。残存長は6.80cmである。頸部は2.15cm残存し、横断面は $8\,\text{mm} \times 4\,\text{mm}$ の長方形をなしている。茎との境は角関となっており、その幅は $8\,\text{mm}$ である。茎は4.65cmを測り、横断面は $2.5\,\text{mm} \times 2.5$ mmの方形をなしている。鉄地の周囲には木質と樹皮巻き痕が認められ、最も良好に残存する茎付近の径は8.5mmである。

M169は頸部から茎にかけて残存する。残存長は9.30cmである。頸部は6.00cm 残存し、横断面は4.5mm×3 nm の長方形をなしている。茎との境は台形関をなし、その幅は7 mmを測る。茎は3.30cm 残存し、横断面は4 mm×6.5 mmとほぼ方形をなしている。関部付近を中心に木柄が遺存し、その表面には樹皮巻き痕を観察することができる。樹皮巻きを含めた茎の径は7 mm~6.5 mmである。

第429図 M167茎

M170は鏃身から頸部にかけて残存する。残存長は3.35cm である。鏃身は1.20cm 残存し、幅は 1 cmを 測る。横断面は平造で、中央部の厚さは 2 mmである。頸部との境は角関をなし、その幅は9.5mmである。頸部は2.15cm残存し、横断面は5.5mm× 4 mmの長方形である。

M171は頸部の一部である。残存長は1.80cmである。横断面は6.5mm×3mmの長方形をなしている。 M172とM173は頸部片である。M172は残存長3.40cmを測り、横断面は5.5mm×4mmの長方形をなしている。 M173は残存長3.05cmを測る。横断面は5.5mm×3.5mmの長方形をなしている。

M174は茎の一部である。残存長は3.60cmで、横断面は3mm×2.5mmの方形に近い形である。表面に木質の遺存は認められない。

M175とM176は茎先端部である。M175は残存長3.30cmを測り、横断面は $4 \, \text{mm} \times 2.5 \, \text{mm}$ の長方形をなしている。全面に木質の遺存が認められる。M176は残存長1.40cmを測り、横断面は $2 \, \text{mm} \times 3 \, \text{mm}$ の長方形をなしている。表面に木質の遺存が認められるとともに、一部に糸巻き痕が認められる。

刀子 M158~M161の4点出土している。

M158は切先で3.55cm残存する。最大幅は1.90cmで、背幅は3.5mmである。表面に付着物が認められ、 鹿角の可能性も考えられる。

M159は刃部から茎にかけて残存する。残存長は4.30cmである。刃部は3.70cm残存し、横断面は鋭角三角形をなす。背幅は3mmである。茎との境は直角をなす片関で、その幅は7mmである。茎は6mm残存し、横断面は3mm×1.5mmの長方形をなしている。

M160は茎の先端を欠くがほぼ完存する。残存長13.90cmを測る。刃部は7.60cmを測り、中央部における幅は1.05cmである。背幅は2.5mmである。茎との境は直角をなす片関となっており、背部側に認められる。関部における幅は1.60cmである。茎は6.30cm残存し、横断面は3.8mm×8.5mmの長方形をなしている。茎表面には鹿角が遺存し、他の箇所については木質および樹皮巻きが認められる。

M161はほぼ完存し、全長19.10cmを測る。刃部は12.40cmを測り、中央部における幅は1.30cmである。背幅は3 mmである。茎との境は両関で、背側は直角となっている。刃部側は斜行している。関幅は1.70cmである。茎は6.70cmを測り、横断面は9.5mm×3 mmの長方形をなしている。端部付近

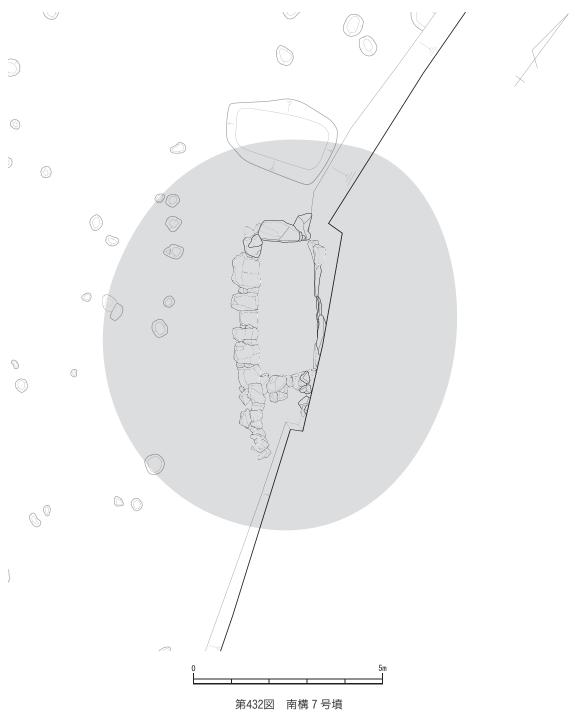
第430図 M161刃部囲蛹殼

に目釘穴が認められ、釘自体も穴に通された状態で残存している。 釘は7mm残存し、その径は2mmである。関部付近と目釘穴付近には 鹿角の遺存が認められ、刃部には囲蛹殻が10点以上認められる(第 430図・第526図)。

鉄鐸 M177の1点出土している。開口部をのぞいてほぼ完存する。残存長5.15cmを測り、開口部側の残存径は2.10cmである。厚さ1mmの鉄板を円錐状に巻き付けて造られ、閉じ合わせ痕が顕著に認められる(写真図版314)。頂部には径4mmの懸通孔が開けられてい

第431図 M177布目

る。表面には布目が顕著に遺存する(第431図)とともに、囲蛹殻も顕著に認められる(第527図 写真図版 314)。


6. 小 結

副葬された遺物から判断して、初葬・追葬とも古墳群2期に位置付けられる(第6章第2節)。石室については残存状況が良好ではないため明確にできないが、竪穴系横口式石室と考えられる。

第8節 南構7号墳(図版 $107\sim110$ 写真図版 $317\sim338$ 附表 $94\sim96\cdot101\cdot107$)

1. 検出状況

第9次調査で検出された古墳である。北地区南東部にあたる。南構6号墳の南東13mに位置する(第353図)。石室の東側は調査区外にあたるが、墓道と石室全体が検出されている。墓道から石室まで検出されており、石室としては南構古墳群のなかでは最も良好な状態で検出された古墳である(第433図)。また東側壁上面のレベルは、調査前現況地盤から20cm下げたレベルにあたることから、調査前の状態になる開墾が及ぶまで石室・墳丘が遺存していたものと考えられる。調査区東壁断面および遺構の空白地帯から復元される墳丘の規模は、主軸方向で10m、その直交方向で9mである(第432図)。

2. 墓 壙

全体的にクロボク層のなかにあったため、平面的に検出することは困難であった。この結果、検出できたのは奥壁側と西側壁の一部に限られる(第433図)。奥壁側では、奥壁裏面から主軸方向で60cm、深さ15cmの規模で検出されている。南西側壁では、奥壁側から2石目においてその輪郭と相似形をなすように検出されている。石室主軸方向で90cm、その直交方向で55cmを測り、検出面からの深さは7cm~12cmである。検出した範囲では明確な平面形とはなっていない。

3. 石 室

概 要 平面形はほぼ北西 - 南東方向に主軸をもつ長方形をなしている(第433図)。その主軸方向はN 37°00′Wを示している。主軸方向に平行する側壁が直交する方向の石積みを挟む形態をなし、この北西側を玄室とし、南東側を羨道・墓道としている。

玄室は面を有する石材により4面が取り囲まれ、比較的整った平面形をなしている。羨道・墓道が南東側で検出されていることから、北西側が奥壁となる。石材は全て墓壙底部に置かれており、設置のための穴・溝等は認められない。壁面4面に囲まれた規模は主軸方向で3.56mを測る。その直交方向の規模は、奥壁沿いで1.27m、中央部で1.57m、南東壁沿いで1.50mである。これをもとにした石室の面積は5.05㎡である。


壁 面 4面を構成する石材は全て溶岩が使用されている。北東側壁が2段にわたり残存するが、他は 基底石のみの残存である。30cm以上の石材が組み合わされているが、部分的に石材間に10cm~20cm大の 礫が咬まされていた。

奥壁は2石からなるが、南西側の1石が3/4を占めている。幅1.10m、高さ55cmを測り、内側のみ面を有している。もう1石は幅40cmで、内側に面を有している。西側壁・東側壁との接合は、石材の角がそれぞれ接するように置かれている。

南西側壁はすべて基底石のみの残存である。7石からなり、全て長方体を意識した形状となっている。特に石室側は面を有するように加工が施されている。石材の規模は、幅30cmから90cm大からなり、40cm大が平均的な大きさである。高さについても30cmから50cmの規模であるが、多くは30cm大に揃えられている。

東側壁は玄門付近を除いては2段からなる。基底石は6石からなり、長方体を意識した石材が使われている。石室側は加工が施され、面が作られている。西側壁と比較して横長の石材の使用が目立つ傾向にあり、その幅は60cmから75cmを測る。60cm大が平均的である。高さについても30cmから50cmの規模からなるが、50cm大が平均的と、南西側壁より高い傾向にある。2段目の石材についても4石残存しており、いずれの石材も横長の傾向にある。ただし、その形態は長方体から逸脱した形状の石材も認められる。幅が50cm~110cm、高さが30cm~50cmを測り、基底石より大型の傾向が認められる。長方体傾向にある石材については、面をなすよう加工が加えられている。2段目石材上端部と床面(礫床上面)との比高は最大で95cmである。

玄門部については基底石と2段目の石材が残存していた(第434図)。基底石は幅20cm・50cm・70cmの3石からなり、高さは3石とも40cmを測る。3石とも石室側は面をなすよう加工が加えられている。2段目に用いられている石材は6石からなるが、50cm大の1石をのぞいてはいずれも20cm大と小型の石材である。長方体傾向にはないが、石室内側は面をなしている。東側壁の2段目の石材と比較して明らか

第433図 南構 7 号墳平面図・立面図

に小型であることから、閉塞石の可能性が考えられる。

玄門部の南側70cmの墓道上には、30cm大の石が3石以上、玄門部と平行するように並べられていた (第434図)。閉塞石の一部の可能性も考えられる。上端部のレベルは、玄門部の基底石上端とほぼ同レベルである。よって、上記石列上端部を含む墓道南東端部と玄門部基底石上端を結ぶレベルが、当初の墓道のレベルであった可能性も考えられる。

なお側壁との関係であるが、南西側壁とは墓道から連続する石列に直交するように玄門側の石材が置かれている。南東側については調査区境にあたり、十分観察することができなかった。

床 面 初葬面の1面が認められた。全面に礫が敷き並べられていた。礫は全て溶岩からなり、その規模は10cm~20cm大で、特に10cm大が中心をなしている。礫は重ねられることなく、その上面のレベルが一定になるように、かつ隙間がないように並べられていた(写真図版322)。その上面の標高は、主軸ライン上奥壁付近で29.50m、中央部で29.48m、玄門付近で29.50mとほぼ水平である。

墓 道 南西側壁の延長部を中心に検出され、その長さは3.00mを測る。墓道底部は、検出範囲ではほぼ平坦で、その標高は玄門部付近で29.57m、南東端部で29.73mである。玄門部付近の標高は玄室内の標高とほぼ同じであるが、南東側ほど標高が高くなり、南東端部の標高は玄門部基底石上端部のレベル29.80mとほぼ一致する。主軸ライン上における奥壁内側から墓道南東端までの長さは6.95mである。

なお墓道の南西側は石積みとなっているが、玄門部から南東側1m強を境に様相が大きく異なっている。玄門部側は側壁と同規模・同形態の石材が使用され、南西側壁の南東側へ直線的に伸びている。この箇所においては南西側壁の延長上にあり、石材が2段分残存している。基底石は50cm~60cm大と北西側壁と同規模で、長方体を意識した石材である。また内側が面をなすよう加工が加えられている。2段目の石材についても基底石よりやや小型であるが、内側が面をなすよう加工が加えられている。その規

模は幅が30cmから50cmである。最も 良好に残存する2段目石材上端と墓 道との比高は75cmである。

ところがこれより南東側については、石材の規模・形態・積み方等が異なっている。まず石材の規模が20 cm大から40cm大と小型となり、その形態も長方体傾向にはない。その並びも西側壁の延長上よりやや東側に屈曲している。墓道側にわずかに面が認められる程度である。さらに、より南東側では検出された基底石のレベルでは石材は使用されず墳丘となっている。上端のレベルが玄門北西側の2段目上端とレベル的にほぼ一致する。

— 459 —

4. 遺 物

(1)概 要

玄室内と羨道部から出土している。玄室内においては、礫床直上から出土した一群(初葬面出土遺物)と礫床から遊離して出土した一群(上層出土遺物)に分離することができる。羨道部から出土した遺物は 土器に限られ、遊離した状態で出土している。

(2)初葬面出土遺物

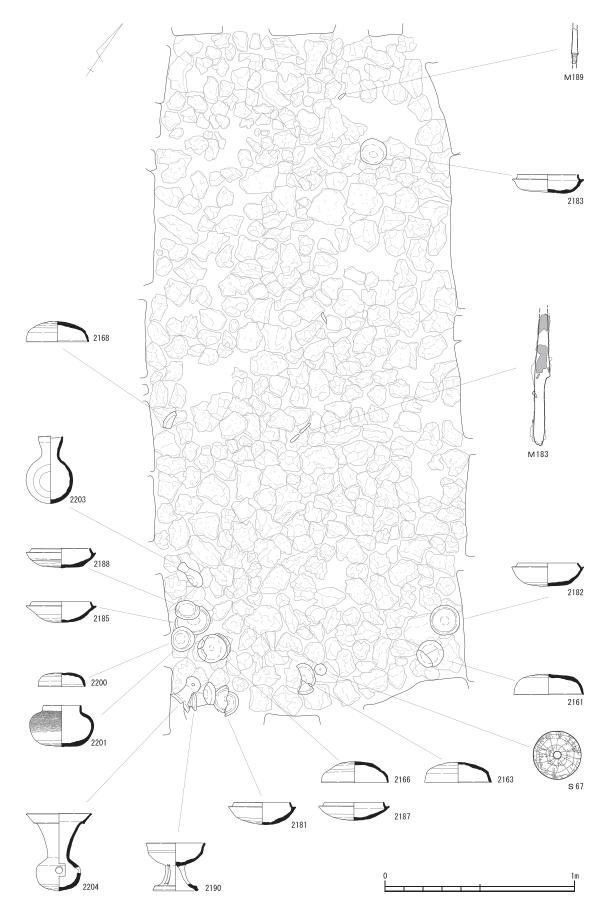
出土状況 確実に初葬時に副葬されたと判断される遺物群である。須恵器・金属製品・石製品が出土している(第438図)。玄門側に集中し、特に南隅からまとまって出土している。まず杯(2187)と杯蓋(2166)が重なり、セットの状態で出土している。壺(2201)と壺蓋(2200)についてもセットとなった状態で出土している(第435図)。玄門付近中央部では、S67が玄室南東端中央部、杯蓋2163の北東側から近接して出土している(写真図版323)。東隅においては須恵器の杯(2182)と杯蓋(2161)が近接し

第435図 2200・2201出土状況

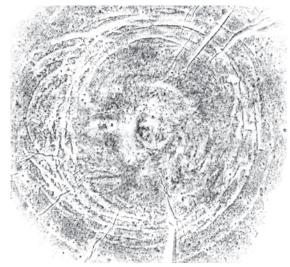
て出土している。セットで置かれていた可能性が考えられる。この他、刀子(M183)が玄室中央部から、 須恵器の杯(2183)が北東部から出土している。

須恵器 杯蓋・杯・高杯・曃・壺蓋・壺・提瓶が出土している。

杯蓋 2161・2163・2166・2168の4個体が出土している。2161は杯蓋gに、2163は杯蓋cに、2166は杯蓋mに、2168は杯蓋dに分類される。


2161は天井部の1/2が回転へラ削りにより仕上げられているが、やや粗い仕上げで、部分的にヘラの当たりが不十分な箇所も認められる。2163は端面がわずかに凹線状をなしている。天井部と口縁部の境に明確な稜が認められる。天井部の2/3の範囲が回転へラ削りの後ナデにより仕上げられている。天井部内面には部分的ではあるが仕上げナデが認められる。2166は口縁部に端面は認められず、端部が丸く仕上げられている。天井部の2/3が回転へラ削りにより仕上げられている。天井部内面には当て具痕が認められる(第436図・第437図)。2168の口縁部内端面は、他の個体と比べてわずかに内傾する。天井部

第436図 2166内面



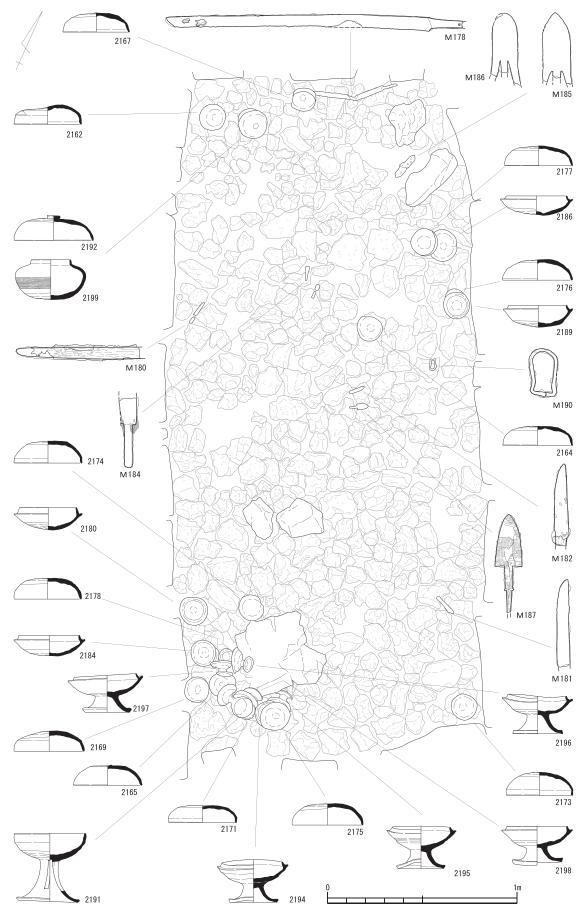
第437図 2166内面拓影

第438図 初葬面遺物出土状況

第439図 2187内面

第440図 2187内面拓影

の2/3が回転ヘラ削りにより仕上げられている。天井部内面には仕上げナデが加えられている。


杯 2181~2183・2185・2187・2188の6個体が出土している。2181が杯C2に、2182と2188が杯C3に、2183が杯g1に、2185と2187が杯C8に分類される。

2181は口縁部が斜上方に直線的にのび、底部が弧状をなしている。底部の1/2の範囲が回転へラ削りにより仕上げられている。他は内外面とも回転ナデにより仕上げられている。2182は口縁部が斜上方に直線的にのび、口径に対して器高が高い傾向にある。底部1/2が回転へラ削りにより仕上げられている。2183は口縁部が外反気味に上方に立ち上がり、口径に対して器高が低い傾向にある。底部は回転へラ切りにより切り離し後にナデを加え、その後中央部を除いて底部の1/2の範囲までが退化削りにより仕上げられている。2185は形態的には2181に近いが、口縁部がやや外反傾向にある。底部の2/3が回転へラ削りにより仕上げられ、底部内面には当て具が認められる。2187は底部が回転へラ削りにより仕上げられているが、自然釉が厚く付着しているため詳細は不明である。へラ削りは底部の2/3までおよんでいるものと考えられる。底部内面には当て具痕が顕著に認められる(第439図・第440図)。2188は口縁部が直線的に斜上方に伸びている。口縁部を含め、全体的に器壁が厚い傾向にある。底部の2/3以上が回転へラ削りにより仕上げられ、底部内面には当て具痕が認められる。

高杯 2190の1個体で、無蓋高杯Bbに分類される。脚高5.55cmの短脚高杯で、脚部には三方に長方形の透かしが開けられている。透かしはヘラにより開けられているが、その上端は杯部まで及んでいる。このことから、透かしは杯部との接合後に開けられたものと考えられる。杯部は椀形をなすが、口縁部が外反傾向にあるのに対して、体部は内湾傾向にある。両者の境外面には1条の凹線が認められる。脚部・杯部とも内外面は回転ナデにより仕上げられている。

嘘 2204の1個体である。ほぼ完存する個体で、Aaタイプに分類される。球形の体部に外反する頸部・直線的な口縁部がのびている。体部は口径に対して明らかに小型で、底部は回転へラ削りにより仕上げられている。体部中位外面は回転へラナデにより仕上げられ、径1.5cmの透かしが開けられている。他は内外面とも回転ナデにより仕上げられている。頸部外面には絞り痕が認められる。

壺蓋 2200の1個体である。次の2201とセットとなる個体である。口径9.75cmと、杯蓋と比較して明らかに小型である。口縁部にはわずかに内傾する端面が認められる。天井部と口縁部の境をなす稜も比

第441図 上層面遺物出土状況

較的顕著である。天井部2/3を回転ヘラ削りの後ナデにより、他は回転ナデにより仕上げられている。

壺 2201の1個体である。2200の蓋とセットをなし、口縁部が短く直立する短頸壺である。体部は扁球形をなし、底部が静止ヘラ削り後ナデ、他は回転ナデにより仕上げられている。体部上半部外面にはカキ目が加えられている。底部内面には当て具痕が認められる。

提瓶 2203の1個体で完存する。器高14.30cmと小型の製品である。体部正面は回転ヘラ切り後ナデ が加えられ、その周囲が回転ヘラ削りにより仕上げられている。その裏面には円形の充填痕が認められ る。他は回転ナデにより仕上げられている。

金属製品 刀子と鉄鏃が各1点出土している。

刀子 M183の1点が出土している。M183は刃先を欠く以外完存し、残存長は13.95cmである。刃部は6.75cm残存し、中央部における刃幅は1.20cmである。背幅は4mmである。腹部の一部には鹿角の遺存が認められる。茎との境は片関をなし、背部側に認められる。その幅は1.90cmである。茎は7.20cmを測り、横断面は1.05cm×3.5mmの長方形をなしている。表面には木質の遺存が部分的に認められる。

鉄鏃 M189の1点が出土している。M189は頸部から茎にかけて残存し、3.80cm残存する。頸部は2.75cm残存し、横断面は5.5mm×5mmの長方形をなしている。頸部との境は台形関をなし、その幅は7mmを測る。茎は1.05cm残存し、横断面は5mm×3.5mmの長方形をなしている。全面に木質および一部に糸巻きの遺存が認められる。

上面全面が磨き上げられ、細筋の線刻が施されている(写真図版334)。基本的には蜘蛛の巣状をなすもので、まず放射状の線刻を施し、これに直交する線刻が3重に施されている。その後放射方向の短いタッチの線刻もしくは擦痕が多数施されている。線刻は全体的にやや稚拙である。裏面についても擦痕が多く認められるが、磨きは認められない。側面においても横方向の擦痕が認められる。

(3)上層面出土遺物

出土状況 土器と金属製品が出土している(第441図)。平面的には、奥壁沿い・北東側壁沿い北東半・南隅の大きく3か所から集中して出土している。特に南隅に最も多く集中している。これらの遺物は、礫床からわずかに遊離して出土したものと、30cm以上遊離して出土したもの(2167・2162・2177・M 178・M185)との2者が認められる。後者については、玄室内が荒らされたことに起因するものと考えられる。特に鉄刀(M178)の出土状況(写真図版320)は、これを如実に物語っている。

この他、玄室内を検出するにあたって数点の須恵器と土師器が出土している。これらの土器について も、玄室内が荒らされた際に遊離したものと考えられる。

須恵器 杯蓋・杯・高杯蓋・高杯・壺が出土している。

杯蓋 11点(2162・2164・2165・2167・2169・2172・2174~2178)出土している。2162が杯蓋 e に、2165が杯蓋 p に、2164と2167が杯蓋 j に、2169が杯蓋 h に、2172と2174が杯蓋mに、2175が杯蓋 o に、2176が杯蓋 x に、2177が杯蓋 k に、2178が杯蓋 r に分類される。

2162は明確に内傾する端面をなし、中央部が凹線状に窪んでいる。天井部2/3を回転ヘラ削り後、内外

面とも回転ナデにより仕上げられている。2167 は、2162ほど端面は明確でない。天井部外面の 1/2の範囲に回転ヘラ削りが施され、天井部内面 には当て具痕が明確に認められる(第442図)。

2174もわずかに端面が認められ、内面に稜が認められる。天井部の約1/2の範囲が回転へラ削りにより仕上げられ、ヘラ記号が認められる。天井部内面には弱い仕上げナデが加えられている。

2164と2177は、口縁端部がやや強い回転ナデにより器壁が薄く仕上げられている。天井部外面の2/3に丁寧な回転ヘラ削りが施され、他は内外面とも回転ナデにより仕上げられている。両個体とも天井部内面には当て具痕が認められる(第443図・第444図)。

第442図 2167内面拓影

2169・2171・2173・2178は天井部に稜は認められない。天井部外面の1/2に回転へラ削りが施され、2173を除く内面には仕上げナデが加えられている。2175は天井部の1/3を回転へラ削り後ナデが加えられている。2165は天井部の1/3がヘラ切り後未調整である。他は内外面とも回転ナデにより仕上げられ、最後に天井部内面に仕上げナデが加えられている。2176も天井部の1/3が回転へラ削りにより仕上げられているが、中心部分は退化削りで未調整のままである。

杯 2180・2184・2186・2189の4点が出土している。2180が杯c2に、2184が杯e4に、2186が杯c5に、2189がc6にそれぞれ分類される。

2180は口縁部の立ち上がりが直線的で、やや高い傾向にある。底部の約1/2が回転へラ削りにより仕上げられ、最後に底部内面に仕上げナデが加えられている。2184は、2180と比べて口縁部の立ち上がりが短い傾向にある。底部の2/3が回転へラ削りにより仕上げられている。底部内面には当て具痕が認められる。2188と2189は、口縁部の特徴が2180と2184の中間的である。底部の1/2が回転へラ削りにより仕上げられている。また2186の底部内面にも当て具痕が認められる。

第443図 2164内面

第444図 2164内面拓影

第445図 2194接合面(左側:脚部上面 右側:杯部下面)

高杯蓋 2192の1点が出土している。天井の1/2を回転へラ削り後釦形のつまみが貼り付けられ、他は回転ナデにより仕上げられている。天井部内面には仕上げナデが加えられている。

高杯 2191・2194~2198の6個体が出土している。2191が無蓋高杯Dに、2194~2196・2198が有蓋高杯Ccに、2197が有蓋高杯Caに分類される。

2191と2195を除いて内外面とも回転ナデを基調として仕上げられ、杯部外面下半は回転へラ削りにより仕上げられている。2191は脚高8.85cmを測る。杯部は椀形をなし、内外面とも回転ナデを基調とし、杯部外面下半部のみ回転へラ削りにより仕上げられている。脚部には長方形の透かしが2方に開けられている。透かしはヘラにより切られ、その切り残しが内面に認められる。端部は斜上方に摘まみだされている。

2194~2198は短脚の有蓋高杯で、脚部に透かしは認められない。2194は脚高4.35cmを測り、口縁部は わずかに上方に立ち上がる。全体的に歪みが顕著である。脚部と杯部が別につくられ、接合されている (第445図)。2195は脚高4.00cmを測り、口縁部は短く外反気味に立ち上がる。杯部外面は強い回転ナデ により2条の凹線状をなしている。全体的に歪みが顕著である。2196は脚高4.00cmを測り、口縁部は短 く立ち上がり、脚端部は下方に摘まみだされている。2197は脚高3.50cmを測り、口縁部は短く直線的に のび、脚端部は斜上方に摘まみだされている。脚部は全体的に器壁が厚い傾向にある。2198は脚高4.15 cmを測り、脚端部は上下方向に拡張され明確な端面を有する。口縁部は短く直線的に上方に立ち上が る。脚底部の歪みが比較的顕著である。

壺 2199の1点が出土している。完存する壺で、扁球形の体部に口縁部が短く直立している。底部は回転へラ削りにより仕上げられ、他は回転ナデにより仕上げられている。最後に体部中位にカキ目が施されている。

土師器 杯(2207)が出土している。2207は杯Cbに分類されるもので、体部から口縁部にかけて残存する。体部内面には縦方向の暗文が認められる。

金属製品 鉄刀・刀子・鉄鏃・馬具が出土している。

鉄刀 M178の1点である。茎の先端を欠く以外はほぼ完存する。残存長は63.10cmである。ただし、 出土した際に屈折した状態であった(写真図版320)。刃部は55.80cmを測り、中央部における刃幅は2.15 cmである。背幅は 6 mmである。茎との境は均等な両関となっており、その幅は2.90cmである。茎は7.30 cm残存し、先端部付近には径 5 mmの目釘穴が開けられている。茎の横断面は目釘穴付近で1.40cm×3 mmの長方形をなしている。全面に木質の付着が認められる。

刀子 M179~M182・M184の5点出土している。

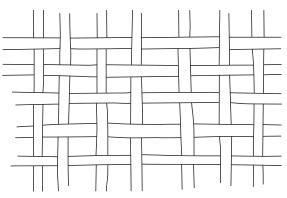
M179は切先を除いて完存する。残存長は14.30cmを測る。中央部における刃幅は1.30cmを測り、背幅は5 mmである。茎との境は均等な両関となっており、その幅は1.65cmである。茎は5.80cmを測り、横断面は茎付近で8.5mm×5.5mm、茎尻付近で6 mm×3.5mmの長方形をなしている。茎の表面には木質の遺存が認められ、さらに関部付近および茎尻部に鹿角の遺存も認められる。鹿角は、厚さが最も良好な箇所で7 mmを測る(写真図版336)。

M180とM181は刃部のみ残存する。M180は残存長13.20cmを測る。背幅は4mm~4.5mmを測り、刃幅は最大で1.25cmである。刃部のほぼ全面に木質の遺存が認められ、最も良好な箇所で3mmの厚さが認められる。M181は残存長9.20cmを測る。中央部における刃幅は1.25cmを測り、背幅は5mmである。

M182は刃部から茎の一部にかけて残存する。残存長は8.70cmである。刃部は全長7.20cmを測り、中央部における幅は1.40cmを測る。背幅は4mmである。茎との境は均等な両関をなし、その幅は1.80cmである。茎は1.50cm残存し、横断面は1.15cm×4.5mmの長方形をなしている。茎全面に木質の遺存が認められる。

M184は刃部の一部と茎が残存する。刃部は2.90cm残存し、刃幅は1.80cmを測る。背幅は7mmである。茎との境は均等な両関をなし、その幅は1.60cmを測る。茎は4.50cmを測り、横断面は8mm×3mmの長方形をなしている。関部付近には鹿角の遺存が認められる。さらに刃部腹部には囲蛹殻が10点以上認められる(第528図 写真図版337)。

鉄鏃 M185~M189の5点出土している。


5点は有頸式の鉄鏃である。M185は鏃身を中心に残存し、残存長は7.10cmである。鏃身は逆刺を有する柳葉形をなすが、逆刺の先端を欠く。逆刺の残存長は1.35cmである。鏃身の中央部における幅は2.80 cmを測り、横断面は平造である。中央部における厚さは2.5mmである。頸部は7mm残存し、横断面は8 mm×3mmの長方形をなしている。

M186は鏃身を中心に残存し、残存長は7.60cmである。鏃身は逆刺を有する柳葉形をなしている。鏃身中央部における幅は2.40cmを測る。横断面は平造で、中央部における厚さは2mmである。逆刺の残存長は2.60cmである。頸部は1.25cm残存し、横断面は8mm×3.5mmの長方形をなしている。

M187は短頸式鉄鏃で、茎先端をわずかに欠く。残存長は10.40cmである。鏃身の平面形は三角形で、

第446図 M187布目

第447図 M187織の復元

全長5.50cmを測る。最大幅は2.90cmで、横断面は平造である。中央部における幅は6 mmである。鏃身関は角関をなしている。頸部は2.50cmを測り、横断面は7 mm×3.5 mmの長方形をなしている。茎との境は棘関となっており、その幅は9 mmである。茎は2.45cm残存し、横断面は4 mm×3 mmの長方形をなしている。鏃身から頸部にかけて布の遺存が顕著に認められる(第446図)。平織りであることが観察できる(第447図)。布の遺存は片面のみである。

M188は頸部から茎にかけて残存する。頸部が2.95cm残存し、横断面は5.5mm×3mmの長方形をなしている。茎との境は棘関をなし、その幅は9.5mmを測る。茎は1.65cm 残存し、横断面は3.5mm×2.5mmの長方形である。

M189は頸部から茎にかけて残存し、残存長は3.80cmである。茎に木質と糸巻き痕が遺存している。頸部の横断面は4mm×5mm、茎の横断面は3.5mm×4.5mmを測る。

馬具 M190の絞具 1 点が出土している。縁金は完存するが、刺金・軸金は認められない。全長5.20cm を測る。縁金はU字形をなし、その幅は3.20cmと横棒の幅とほぼ同規模である。横断面は 3 mm×3.5mmの 方形をなしている。横棒は中央部で途切れ、両端が重複している。横断面は4.5mm×2.5mmの長方形をなしている。

(4)その他

上面出土土器 石室内および羨道部の検出中に出土した土器である。須恵器の杯・高杯・壺が出土している。

杯 2179の1個体である。杯a2に分類される個体である。玄門部の閉塞石を取り除き、さらに掘り下げていった際に出土した土器である。口縁端部に明確な端面を有し、明らかに他の土器より古相を示す 土器である。確実に当墳に伴う土器であるかについては検討を要する土器である。底部の2/3が回転へ ラ削りにより仕上げられ、他は回転ナデにより仕上げられている。

高杯 2193の1個体である。杯部のみ残存し、有蓋高杯Caに分類される。羨道部の調査において出土 した土器である。脚部の剥離痕が認められたことから高杯と判断している。杯底部外面が回転へラ削り 後ナデにより仕上げられている以外は、内外面とも回転ナデにより仕上げられている。

壺 2202の1個体で、玄室の調査中に出土した土器である。短頸壺の上半部である。内外面とも回転 ナデにより仕上げられ、頸部には重ね焼き痕が認められる。胎土の特徴から陶邑産の可能性が考えられ る。

玄門部出土土器 玄門部を検出中に出土した土器である。土師器の杯(2208)が出土している。杯Cbに分類されるものである。体部内外面が横方向のヘラミガキにより仕上げられ、その後内面には縦方向の暗文が施されている。最後に口縁部が内外面とも横ナデにより仕上げられている。

羨道部出土土器 羨道部から出土した土器である。須恵器と土師器が出土している。

須恵器 2170・2171・2173の3個体が該当する。2170が杯蓋ℓに、2171と2173が杯蓋mに分類される。2170は天井部外面の1/3が回転へラ削りにより仕上げられている。2171と2173は一括で出土しているが、その層位は羨道部底部より明らかに遊離した状態である。両個体とも形態的特徴は一致し、天井部の1/3が回転へラ削りにより仕上げられ、他は回転ナデにより仕上げられている。2173の天井部には火襷痕が認められる。

土師器 2209の1個体が該当する。杯Cbに分類されるものである。体部内外面が横方向のヘラミガキ

により仕上げられ、その後内面に縦方向の暗文が施されている。横方向のヘラミガキは口縁部外面にも 施されている。

閉塞部出土土器 閉塞石に混じって出土した土器である。高坏の脚端部(2210)が出土している。外面は 縦方向のヘラミガキ、内面はナデにより仕上げられている。内面端部のナデは指オサエの後に施されて いる。

墳丘内出土土器 基底石の取り外し中に出土した土器である。土師器の甕(2206)が出土している。2206 は口縁部を中心に残存する。体部内面は横方向のヘラ削りにより仕上げられ、その後口縁部内外面が横 ナデにより仕上げられている。

周辺部出土遺物 石室の周辺部から土器と金属製品(M191)が出土している。当該古墳にともなう遺物の可能性が考えられるため、ここで報告する。

土器は土師器の甕(2205)が出土している。甕Cgに分類されるもので、口縁部を中心に残存する。体部内面を横方向のヘラ削り、外面をハケにより仕上げ、最後に口縁部内外面が横ナデにより仕上げられている。

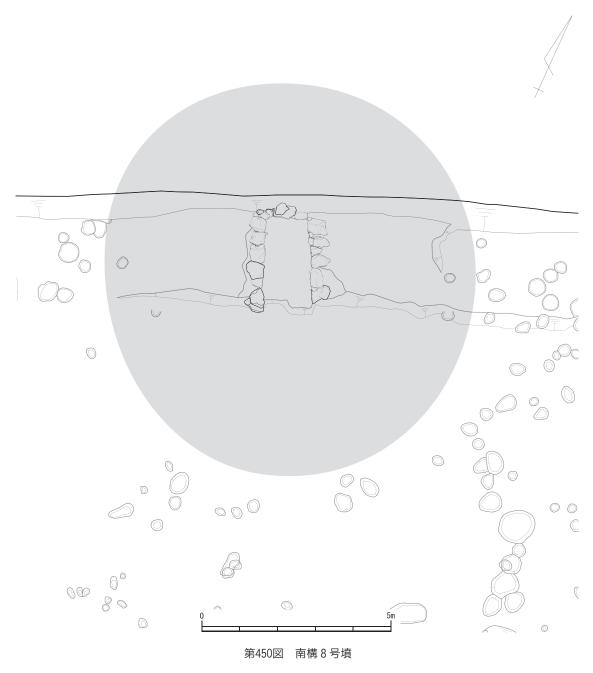
M191は刀子で、刃部の1/2以上を欠く。残存長は8.20cmである。刃部は2.60cm残存し、刃幅は1.15cmを測る。背幅は5mmである。茎との境は均等な両関をなし、その幅は1.30cmである。茎は5.60cmを測り、中央部における横断面は5.5mm×3.5mmの長方形をなしている。茎表面には、内側から木質・樹皮巻き・鹿角の遺存が認められる(写真図版338)。

5. 小 結

時 期 出土遺物から判断して、初葬が古墳群 1期に、追葬が古墳群4期1段階に位置付けられる(第6章第2節)。

竪穴系横口式石室 墓壙の特徴から、本石室についても竪穴系横口式石室に分類されるものと考えられる。

第448図 石室の実測

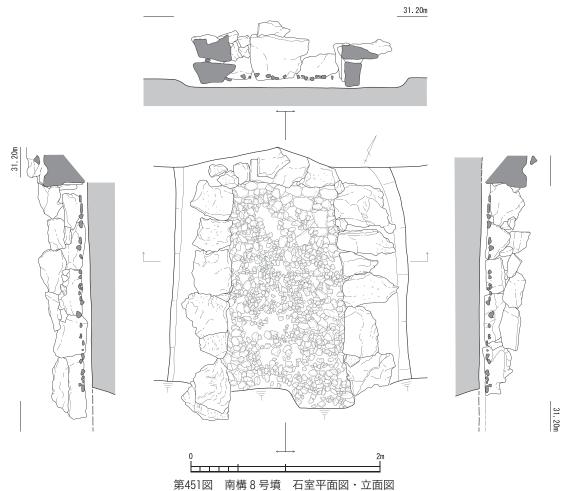

第9節 南構8号墳(図版110·111 写真図版339~348 附表96·107)

1. 検出状況

第5次調査で検出された古墳である。南地区北端中央部にあたる。南構5号墳の南東側17m、同9号墳の西側13m、南構10号墳の北東側18m、同11号墳の北西側20mに位置する(第353図)。墳丘北側は現道下にあり(第449図)、南側は後世の攪乱を受け、南北両側とも未検出である。調査区北壁での墳丘断面の観察結果、及び石室周辺遺構の空白地帯の状況(第450図)から復元される墳丘規模は、主軸方向で10.10m、その直交方向で9.50mである。

第449図 南構 8 号墳埋没状況

2. 墓 壙


東西両側は検出されているが、先述したように南北両側については未検出である(第449図・第451図)。他の石室同様墓壙を有し、墓壙内に石室が造られている。検出面における規模は、主軸方向で2.40 m検出し、その直交方向については肩部間で2.45mを測る。東西の掘り方のラインは比較的直線的で、全体的に整った平面形をなしていたものと考えられる。横断面は逆台形をなし、墓壙底部は平坦に仕上げられている。墓壙底部の標高は中央部で30.44mを測り、検出面からの深さは西側で8cm、東側で10cmである。

3. 墳 丘

墳丘がわずかに検出されている。これは、北側調査区壁面において埋没状況を観察することができたことによるものである。これによると、石室主軸直交方向の墳丘規模は6.25mと復元することができる。確認された墳丘の高さは、基盤層上面(黒ボク層上面)から55cmを測る。

4. 石 室

概 要 平面形は長方形をなし、南北方向に主軸をとり(第451図)、その方位はN24°00″Wを示している。壁面は南側を除く3面が検出されている。墓壙底部上を整地後基底石が置かれており、設置のための穴・溝等は認められない。壁面に囲まれた床面は主軸方向で2.43m残存し、その直交方向は北壁付近で1.20m、南端付近で1.30mと、南側ほど広くなる傾向が認められる。

— 471 —

壁 面 3面を構成する石材は全て溶岩が使用されている。各石材の石室内面側は全体的に加工が加えられ、ほぼ垂直な面をなしている。3面とも2段まで残存する。

北壁は中央部に突出した規模の石材が置かれている。幅50cm、高さ45cmを測り、高さは側壁の2段分に相当する。上記石材の両側にはやや小型の石材が置かれている。最も良好に残存する箇所における墓壙底からの高さおよび礫床上面からの高さは、それぞれ71cm・57cmである。

西側壁は2.50m残存し、5石の基底石が横置きされている。南端の石材が最大で、幅70cm、高さ15cmを測る。各基底石の底部はほぼ水平に揃えられている。2段目の石材についても基底石よりやや小型で、横置きされている。基底石との間には隙間が目立ち、各所に小礫が入れ込まれている。最も良好に残存する箇所における墓壙底からの高さおよび礫床上面からの高さは、それぞれ53cm・43cmである。

東側壁は2.25m残存し、5石の基底石が横置きされている。石材の幅については南端が最大で、50cmを測る。西側壁同様、基底石の底部はほぼ水平に揃えられている。2段目の石材についても横置きに据えられ、基底石との間には隙間が目立つ。隙間には小礫が咬まされている。最も良好に残存する箇所における墓壙底からの高さおよび礫床上面からの高さは、それぞれ50cm・40cmである。

礫 床 墓壙底に約5cm~10cmの整地後、礫が敷き並べられていた(第452図)。礫は主に河原石が用いられ、数石に限り溶岩が認められた。礫が検出されなかった箇所も認められるが、当初は全面に敷き並べられていたものと考えられる。礫床に用いられた礫は5cm~20cm大の規模で、10cm以下が平均的な規模である。20cm前後の礫については北壁付近に集中している。これらの礫床は扁平な石材が用いられ、平坦な面を上側にして並べられている(写真図版339・340)。さらに小規模な礫床も含め、全体的に上面のレベルがほぼ一定となるように並べられている。その上面の標高は30.55m~30.60mである。

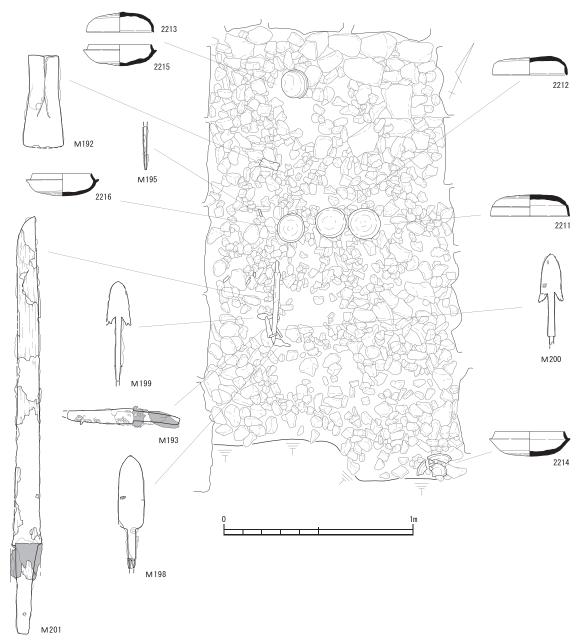
5. 出土遺物

出土状況 礫床直上から土器と金属製品が出土している(第453図・第454図)。玉類の出土は認められなかった。なお、以下の出土状況から判断して追葬はなかったものと考えられる。

土器は全て須恵器である。石室北西隅付近で杯蓋(2213)と杯(2215)が、中央部で杯蓋と杯3個体(2211・2212・2216)が、南東隅で杯(2214)1個体が出土している。北西隅では、杯蓋2213と杯2215がセットの状態で出土している。土器取り上げの際に杯内の混入土を観察したが、供献されたもの等は確認できなかった。2211・2212・2216の3個体については、主軸に直交するように3個体が直列した状態で置かれていた。中央の2212が石室主軸ライン上にあたる。石室のより短辺側にあることから、土器枕として理解できるような置かれ方である。しかし、想定される石室規模から判断すると、石室のほぼ中央付近にあたるものと考えられる。

金属製品については石室西半のみから出土している。いずれも礫床直上、もしくは礫床の隙間に落ち込んだ状態で出土している。まず石室中央やや北よりの位置では鉄斧M192が出土している。南半では、鉄刀(M201)が3点の杯蓋が並列している箇所の南西側で出土している。上記の土器と直交方向、つまり石室主軸と同方向に切先を南側にして出土している。刃は西側に向けられている。この刀の切先付近からは、鉄鏃が3点(M198~M200)と刀子1点(M193)が出土している。出土状況から判断して、副葬後若干動かされているものと考えられる。他に鉄鏃の茎(M195)が2216の西側から出土している。

土 器 須恵器のみが出土している。器種としては杯蓋と杯が出土している。


杯蓋 2211~2213の3個体出土している。全て完存し、2211と2213が杯蓋dに、2212が杯蓋eに分類

される。2211は口縁部の端面が明瞭で、天井部外面の1/3にヘラ削りが及んでいる。2212は口縁部内端部が沈線状をなし、端面の痕跡をとどめている。天井部のヘラ削りは2/3に及んでいる。2213は端面が明確で、天井部のヘラ削りは2/3に及んでいる。

杯 2214~2216の3個体が出土している。2214を 除いて完存し、2214が杯c4に、2215が杯c5に、2216 が杯c3に分類される。いずれも口縁端部は丸くおさ められ、底部のヘラ削りは2/3に及んでいる。

第453図 石室の調査

第454図 遺物出土位置

金属製品 鉄刀・刀子・鉄鏃・鉄斧が出土している。

鉄刀 M201の1点出土している。完存し、全長は44.15cmである。刃部は34.55 cmを測り、中央における刃幅は2.10cmである。背幅は7 mmである。刃部のほぼ全面に木質が遺存し、その厚さは最大で2 mmを測る。茎との境は均等な両関をなし、その幅は3.10cmである。

茎は9.60cmを測り、茎尻近くに径2mmの目釘穴が開けられている。茎尻は1文字尻となっており、その幅は1.30cmを測る。茎の横断面は1.35cm×4.5mmの長方形をなしている。関部付近を中心に、木質およびその周囲に鹿角が良好な状態で遺存している(第455図)。鹿角の厚みは最大で9mmを測り、鹿角を含めた関部付近の横断面は2.80cm×3.20cmの楕円形をなしている。

第455図 M201関部

第456図 M193囲蛹殼(左側:刃部 右側:関部)

刀子 M193の1点が出土している。

M193は刃先を欠くがほぼ完存し、残存長11.90cmを測る。刃部は6.95cm残存し、中央部における刃幅は1.30cmである。背幅は3.5mmである。茎との境は均等な両関をなし、その幅は1.50cmを測る。茎は4.95cmを測り、横断面は1cm×5mmの長方形をなしている。茎のほぼ全面に鹿角の遺存が認められ、特に関部付近においては良好な状態で遺存している。その厚さは、刃部側で6.5mm、腹部側で3.5mmを測る。鹿角を含めた背部側から刃部側までの規模は2.00cmである。この他、刃部の背と腹部に囲蛹殻が顕著に認められる(第456図・第530図)。

鉄鏃 7点(M194~M200)出土している。

M194は有頸式鉄鏃で、頸部から茎にかけて残存している。残存長は 6.75cmである。頸部は3.55cm残存し、横断面は7.2mm×4mmの長方形をなしている。茎との境は角関となっており、その幅は9mmである。茎は3.20 cmを測り、横断面は5mm×4mmの長方形をなしている。表面には鹿角の遺存が認められる。頸部には囲蛹殻が1点認められる。

M195は茎のみ残存する。残存長は4.60cmを測り、横断面は $4 \text{ mm} \times 2 \text{ mm}$ の長方形をなしている。全面に木質の遺存が認められる。

M196は茎の先端部である。残存長は3.50cmで、断面は4.5mm×6.5mmの 長方形をなしている。表面には木質が遺存し、一部に横方向の樹皮巻きが 認められる。

M197は有頸式鉄鏃で、頸部から茎にかけて残存する。残存長は3.70cmである。頸部は1.20cm残存し、断面は $3\,\text{mm} \times 5.5\,\text{mm}$ の長方形をなしている。茎との境は棘関をなし、その幅は $8\,\text{mm}$ である。茎は2.50cm残存し、断面は $2\,\text{mm} \times 3\,\text{mm}$ の長方形をなしている。表面には木質が遺存し、横方向の糸巻き痕が認められる(写真図版347)。木質まで含めた断面は、 $6\,\text{mm} \times 6.5\,\text{mm}$ の長方形をなしている。

M198は短頸式の鉄鏃である。鏃身から茎の基部まで残存し、残存長は11.90cmを測る。鏃身は先端をわずかに欠くが完存し、全長は7.70cmで、最大幅は2.90cmを測る。平面形は柳葉形をなし、横断面は平造で、中央部の厚さは3mmである。頸部との境は撫関となっている。頸部は3.30cmを測り、横断面は8.5mm×4mmの長方形をなしている。茎との境は関が認められない。茎は9mm残存し、幅は4.50mmである。表面には一部樹皮巻が遺存

第457図 M198囲蛹殻

第458図 M198茎

している(第458図)。鏃身の両面の一部に布目が認められるとともに、1面に囲蛹殼が多く認められる (第457図・第531図)。

M199はほぼ完存する有頸式の鉄鏃である。全長は8.55cmである。鏃身は逆刺を有する柳葉形をなし、全長4.60cmを測る。逆刺は先端をわずかに欠くが、ほぼ完存し9mmを測る。鏃身中央部における幅は2.20cmを測り、横断面は平造である。中央部における厚さは3.5mmである。頸部は5.30cmを測り、横断面は5.5mm×4mmの長方形をなしている。茎との境は棘関をなし、その幅は7mmである。茎は1.55cm残存する。

M200は有頸式鉄鏃で、鏃身から茎の一部にかけて残存する。残存長は9.60cmである。鏃身は柳葉形をなし、逆刺を有する。逆刺まで含めた鏃身長は5.00cmである。横断面は平造であるが、中央部に鎬は認められない。鏃身中央部における幅は2.60cmを測り、中心部の厚さは3.5mmである。頸部は4.65cmを測り、横断面は6mm×4mmの長方形をなしている。茎との境は角関をなし、その幅は7.5mmである。茎は9.5mm残存する。鏃身の一部に囲蛹殻が認められる(第459図・第532図)。

鉄斧 1点(M192)出土している。M192は完存する袋状鉄斧で 第459図 M200囲蛹殻 ある。全長9.80cmを測る。袋部は、厚さ 4 mm~ 5 mmの鉄板からなり、横断面は外縁で3.35cm×2.60cmの 楕円形をなしている。刃部は幅4.25cmを測り、刃こぼれが認められる。

6. 小 結

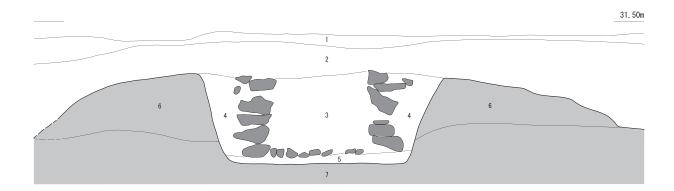
時期出土遺物から判断して、古墳群1期に位置付けられる(第6章第2節)。

竪穴系横口式石室 墓壙および石室の特徴から、本石室についても竪穴系横口式石室に分類されるものと考えられる。

第10節 南構 9 号墳(写真図版349~352)

1. 検出状況

第5次調査で検出された古墳である。南地区北端中央部にあたる。南構3号墳の南西側18m、同8号墳の東側13m、同11号墳の北西側10mに位置する(第353図)。石室の北側は現道下に及び、南側についても防火水槽の設置により壊されており、南北両側とも未検出である。南側については、小口側の石積みまでは検出することができた。他の古墳とは異なり墳丘まで検出されている。この結果、石積みが3段まで残存していた。


2. 墳 丘

当墳は墳丘を検出できた数少ない古墳である。これは、調査区北壁において埋没状況を観察することができたことによるものである(第461図)。これによると、石室主軸の直交方向(東西方向)の墳丘規模は6.20mと復元することができる。石室自体は墳丘中央部よりやや西側に偏っている。墳丘の残存高は、基盤層から70cmを測る。より上側については石室は残存せず、後世の土地利用により土壌化し、観察することはできない。

3. 墓 壙

東西両側は検出されているが、南北両側については未検出である(第462図)。検出面における規模は主軸方向で2.50m検出し、その直交方向については肩部間で2.50mを測る。東西の掘り方のラインは直線的ではなく、かつ平行しない。このため整った平面形ではなかった可能性が考えられる。横断面は逆台形をなし、墓壙底部は平坦に仕上げられている。検出面からの深さは、西側で65cm、東側で53cmを測る。墓壙底部の標高は中央部で30.05mである。

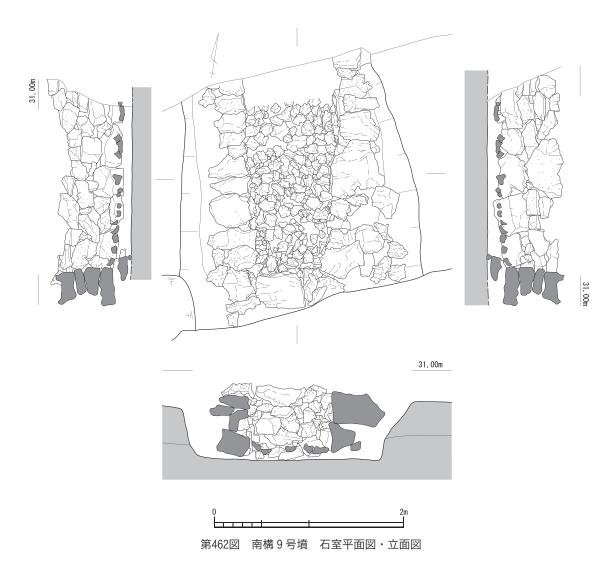
- 1. 表土・整地層
- 3. 石室内埋土
- 6. 黒色極細砂(墳丘盛土)

- 2. 暗黒灰色中礫混じり極細砂 (土壌層:黒ボク層)
- 4. 黒灰色中礫混じり極細砂 (墓塘内埋土)
- 7. 暗黄褐色大礫混じり細砂~極細砂(基盤層)
- 5. 黒灰色極細砂 (墓壙内整地層)

第461図 南構 9 号墳 墳丘埋没状況

4. 石 室

概 要 平面形は長方形をなし、南北方向に主軸を取り(第462図)、石室の主軸方向はN8°00′Wを示している。壁面は北側を除く3面が検出されている。墓壙底部上を整地後、基底石が置かれており、設置のための穴・溝等は認められない。壁面については東西南の3面からなり、北壁については現道下にあたり未検出である。


壁面に囲まれた床面は、主軸方向で2.00m検出し、その直交方向は北側で1.00m、南端で75cmを測り、 北側ほど幅が広くなる傾向が認められる。

壁 面 3面を構成する石材は、いずれも溶岩が使用されている。他の石室と比較して石積みの残存が 良好で、3段から5段残存している。3面とも石材の用石法が異なる点が特徴的である。基底石の底部 はほぼ一定で、その標高は30.10m前後を測る。

南壁 検出面以下については完存する。最大で5段の石積みが確認できるが、基底石は明確ではない。 全体的に積まれた石相互の隙間が目立つ傾向にある。後述する西壁・東壁と比較して石材の規模が小型 で、明確な基底石は認められない。逆に最上段中央の石材が最大規模となっている。積み方も異なる。

以上から、南壁については閉塞石として積まれた可能性が考えられる。ただし最下段と2段目設置後に礫床が敷かれていることから、少なくとも上記2段の石材については閉塞石ではなく、当初から設置されていた基底石に相当するものと考えられる。これを支持するように、下2段を除く石材については西側壁・東側壁と噛み合っていない(写真図版351)。また最下段の石材は墓壙底に直接置かれており、墓壙底から80cm、礫床上面から60cmの高さまで検出されている。

西側壁 2 mにおよび残存する。 3 段から 5 段の石積みが認められるが、隙間が比較的顕著である。

用材方法としては横積み・小口積みが混在している。検出した西側壁北端で、墓壙底から90cm、礫床面から74cmの高さまで残存する。最下段の石の規模が最大で、上段ほど小型となる傾向が認められる。 基底石の規模は、最大で幅40cm・高さ20cm、もしくは幅・高さとも30cmである。

東側壁 2.30mにおよび残存する。石材は2段もしくは3段に積まれているが、隙間も目立つ傾向にある。西側壁と比較して全体的に大型の石材が使用されている。石材の規模は幅60cm~90cm、高さ50cm~70cmを測る。基本的に基底石が大型の傾向にあるが、中央部においては2段目の石材が最大規模となっている。ほとんどが横積みである。残存する東側壁の高さは、中央部において墓壙底から80cm、礫床面から60cmである。

礫 床 墓壙底を約5cm~10cmの整地後、礫(溶岩)が敷き並べられている(第461図)。その並べ方は丁寧とはいえず、礫相互の隙間も認められるとともに、礫相互の重なりも多く認められる。特に石室南端においては、南壁最下段および2段目の石材の上側に礫が敷かれている(第463図)。また西側壁と東側壁との関係については、両壁設置後に礫が敷かれている。

礫床に用いられた礫は10cm~30cm大の溶岩で、15cm大が平均的な大きさである。15cmを超える礫床については、平坦な面を上側にして並べられ、全体的に上面のレベルがほぼ一定している。その標高は30.35mである。

第463図 南構 9 号墳 礫床と基底石

5. 出土遺物

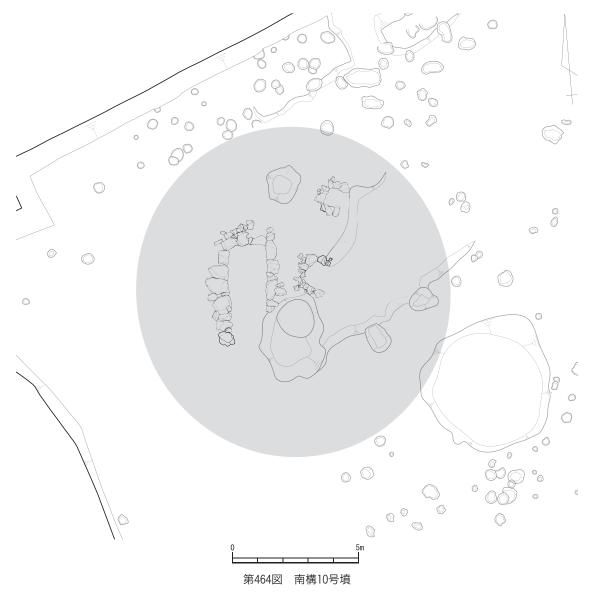
石室内・墳丘内および墳丘周辺のいずれからも遺物は出土していない。

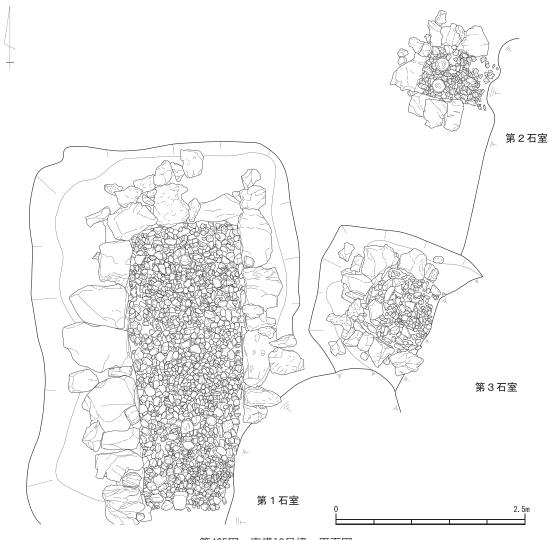
6. 小 結

時 期 遺物が出土していないため、遺物から時期を判断することは困難である。石室の主軸方向が 南構 1 号墳とほぼ一致することから、古墳群 4 期に位置付けられる(第 6 章第 2 節)。

竪穴系横口式石室 南壁の基底石を除いた石については閉塞された石であると判断した。よって石室の入り口が南側と判断することができる。南側の下側2段の石材は墓壙内にあると考えられことから、本石室についても竪穴系横口式石室と考えられる。

第11節 南構10号墳(図版112~114 写真図版353~372 附表96·97·107·108·113·114)


1. 検出状況


(1)概 要

第1次調査で検出された古墳である。南地区北西隅にあたる。南構 5 号墳の南側20m、南構 8 号墳の 南西側10mに位置する(第353図)。

墳丘を検出することはできなかったが、近接した位置で3基の石室を検出した。これら3基の石室についてそれぞれ別の墳丘に伴うと判断すると、近接し過ぎるため別々の墳丘とすることは困難である。このため、これら3基の石室が同一の墳丘に伴うものと判断したものである。そこで3基の石室について、第1石室・第2石室・第3石室と呼称し報告していく(第465図)。

復元された墳丘は東側を中心に後世の攪乱を受けている。このため、第2石室と第3石室については一部を検出できたにとどまる。他の遺構の空白地帯から復元される墳丘規模は、主軸方向で13.00m、その直交方向で12.00mである。

第465図 南構10号墳 平面図

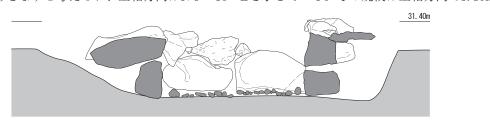
(2)石 室

第1石室は第2石室・第3石室の西側に近接して位置する(第465図)。その主軸方向は、第2石室とは76°、第3石室とは58°30′違えている。南東部においては後世の攪乱を受けているため、南側から南東隅にかけては未検出である。

2. 第1石室

(1)概 要

ほぼ南北方向に主軸を取り、南側を除く3面と床面が残存している(第466図)。ただし東壁については 南側の一部を欠く。床面については礫が敷かれている。その範囲については、南壁が残存しないものの、 南端部の残存状況が直線的であることから、当初の範囲が残存していたものと考えられる。各壁の基底 石は墓壙底部に置かれており、設置のための穴・溝等は認められない。


(2)墓 壙

南東部を除いて検出することができた。墓壙の平面形は長方形をなすものと考えられ、その規模は石室主軸方向で4.80m残存し、その直交方向で3.50mを測る。墓壙断面は逆台形をなし、中央部における

検出面からの深さは50cmである。墓壙内には基底石を据えるための溝・穴等は認められなかった。

(3)石 室

概 要 石室は墓壙内に築かれていた。各辺とも基底石とその上に積み上げられた石が残存していた (写真図版356)。いずれも溶岩が用いられている。各壁を構成する石材については、全体的に加工が加 えられている。これらの石材に囲まれた範囲の中には礫が敷き詰められていた。礫床の検出状況から平 面形は長方形をなすと考えられ、主軸方向はN5°30′Eを示している。その規模は主軸方向で3.80m

第466図 南構10号墳 第1石室平面図・立面図

を測り、その直交方向は北壁付近で1.45mを測る。一方南端では1.05mを測り、南側ほど幅が狭くなる傾向が認められる。ただし中央部は幅が1.50mとやや広くなっている。石室の幅の平均値と主軸方向の規模をもとにした石室内の面積は5.06㎡である。

西側壁 ほぼ全体が残存しているものと考えている。全体的に2段に積まれている。石材相互の隙間は目立たなく、全体的に丁寧に積まれている。基底石は、幅50cm~70cm、高さ25cm~30cmからなるほぼ同規模の石材が用いられている。基底石と2段目の石材について、その規模に差は認められない。2段目の方がより規模の大きな石材が用いられている箇所も認められる。なお基底石は横長に置かれているが、2段目については小口積みの傾向が認められる。

北壁 基底石 2 石と一部その上に積まれた石からなる。基底石は幅80cmと70cmの石材が横長に置かれている。

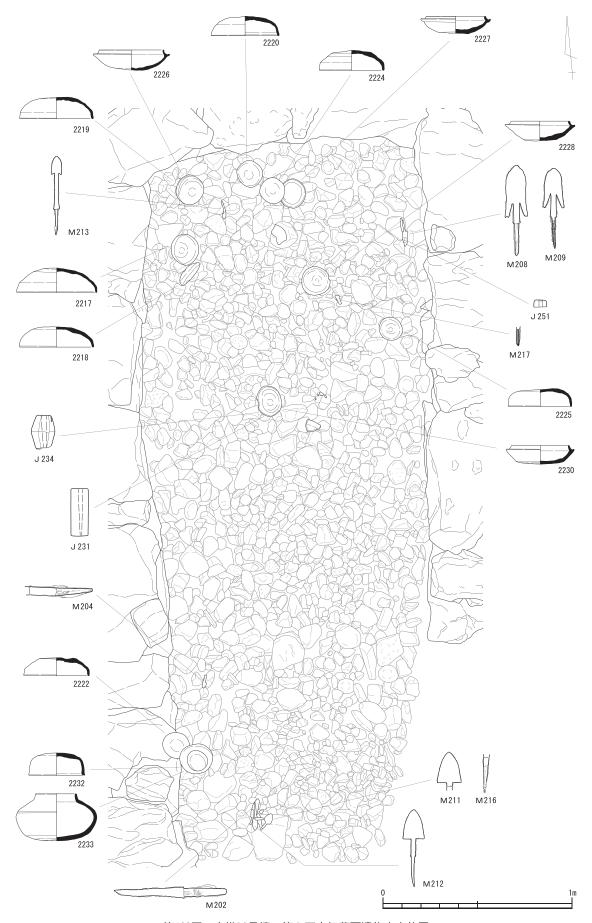
東側壁 北壁から2.60m南側まで残存していた。残存範囲においては2段目まで積まれた状態で検出されている。北端については、北壁側面と東側壁石材正面が接する形で石材が置かれている。基底石は4石からなるが、北側においては隙間が目立つ。さらに基底石と2段目の石材相互の隙間も目立ち、西側壁と比較して雑な積み方である。また、基底石・2段目とも横長に積まれる箇所と、小口積み傾向にある箇所とが混在している。

ところで石室の南側、礫床南端からやや離れた位置に1石の溶岩が存在する。その位置から判断して 南壁の一部の可能性も考えられる。しかし他の石材の表面には加工痕が認められるのに対して、加工が 全く認められない。このため、この石については石室とは関係ないものと考えたい。

礫 床 先述したように、築造当初の範囲が検出されているものと考えている。礫の大半は河原石が用いられている。極一部に溶岩の使用が認められる。10cm未満の礫が大半を占め、この中に10cm~15cm大の礫が多少混在している。後者の礫については扁平傾向にあるものが用いられ、全体として礫床上面が面をなすように敷かれている。

なお、これらの礫層の上層からやや大型の礫が少なからず検出されている(写真図版355)。石室の石材よりは小型であることから、追葬時の礫層の一部と考えられる。礫の大きさは20cm~40cmを測り、30cm大が最も多く認められる。大半が溶岩からなるが、一部河原石も混入している。

(4)出土遺物


初葬時と追葬時の遺物からなる。

初葬時副葬品 土器・金属製品・玉類が出土している(第468図)。いずれも礫床直上から出土している。

土 器 須恵器に限られ、大半が石室北半から出土している。このなかで、2217~2220・2224・2226・2227が石室北西隅から、2225と2228が石室北東部から、2230が中央部付近から出土している(第468図)。この他、南西隅付近では壺(2233)と蓋(2232)がセットとなった状態で出土している(写真図版358)。さらに、このセットと近接して杯蓋2222が出土している。

第467図 南構10号墳 第1石室実測作業

第468図 南構10号墳 第1石室初葬面遺物出土位置

土器 須恵器のみが出土している。器種としては杯蓋・杯・壺蓋・壺が出土している。

杯蓋 2217~2220・2222・2224・2225の7個体が出土している。2217が杯蓋mに、2218と2219が杯蓋 qに、2220が杯蓋 kに、2222と2224が杯蓋 tに、2225が杯蓋 j に分類される。

2217の天井部は2/3が回転へラ削りにより仕上げられている。2218と2219の天井部は1/3強がヘラ切り後未調整のままである。2220は天井部の釉の付着が顕著なため十分に調整を観察することはできないが、2/3がヘラ切り未調整と考えられる。2222は天井部1/3がヘラ切り後ナデにより仕上げられている。天井部に対して口縁部が直立している。器壁が一定していない点も特徴的である。2224は天井部に対して口縁部が直立している。天井部の1/3がヘラ削りにより仕上げられるとともに、補助ケズリが認められる。2225は、口縁部内端部がわずかに端面の痕跡をとどめている。天井部の1/2にヘラ削りが及んでいる。

杯 2226~2228・2230の4個体が出土している。2226が杯j4に、2227が杯j2に、2228が杯h3に、2230が杯c6に分類される。

2226と2227は底部の1/3がヘラ切り後未調整である。2228は底部の1/3をヘラ切り後ナデが加えられている。2230は底部の2/3が丁寧なヘラ削りにより仕上げられている。

壺蓋 2232の1個体が出土している。杯を逆にした形態でつまみをもたない。天井部の2/3が回転へ ラ削りにより仕上げられている。口縁端部は、外端部を中心としたナデにより明確な端面となっている。

壺 2233の1個体が出土している。完存する短頸壺で、扁球形の体部に口縁部が内傾して立ち上がる。底部外面が回転へラ削りによる以外、回転ナデにより仕上げられている。体部最大径部のやや上側に1条の沈線が認められる。肩部の重ね焼き痕が2232と一致することから(写真図版365)、2232とセットで焼かれたことが理解できる。

金属製品 鉄鏃・刀子・鉄針が石室北半と南西隅付近から出土している。北半では、北西隅付近でM 213が、北東隅でM208とM209が側壁に平行した状態で出土している。南端付近からは、M202・M 211・M212・M216が集中して出土している(写真図版358)。この他、M204が2232(蓋)と2233(壺)がセットで出土した地点の北側から出土している。

鉄鏃 M206~M209・M211~M213・M215・M216の9点出土している。

M206は完存する有頸式鉄鏃である。全長15.00cmを測る。ただし鏃身の一部に後世の衝撃により亀裂

が入り、一部歪んでいる。鏃身は逆刺を有する柳葉形をなしている。 逆刺を含めた鏃身長は6.70cmを測り、逆刺間の幅は3.10cmである。逆 刺の残存長は2.50cmである。鏃身は平造で鎬は認められない。その幅 は2.00cmを測り、中央部の厚さは3mmである。頸部は4.55cmを測り、 樹皮巻きが残存する(第469図)。断面は7mm×4mmの長方形をなしてい る。茎との境は角関をなし、その幅は9mmを測り、茎とは4mmの段と なっている。茎は全長6.30cmを測り、ほぼ全面に木質が残存してい る。断面は3.5mm×3mmの長方形をなしている。

M207は有頸式鉄鏃で完存する。全長14.80cmを測る。鏃身は逆刺を有する柳葉形をなし、鏃身長は9.30cmを測る。鏃身は平造で、中央部における幅は3.50cmを測る。鎬は認められずその厚さは5mmである。また逆刺の長さは2.30cmである。頸部は長さ2.80cmを測り、横断面は

第469図 M206頸部

4 mm×8 mmの長方形をなしている。茎との境は台形関をなし、その幅は1.05cmである。茎とは両側とも1.5mmの段差を有している。茎部は全長5.30cmを測り、全面に木質が遺存している。全体的に木質の遺存状況が良好で、茎先端部においては木質が当初の状態で観察でき(写真図版371)、8 mmから8.5mmの断面円形の矢柄を復元することができる。木質の厚さは2 mmである。木質を除く茎の断面は5.5mm×4 mmの長方形をなしている。

M208は完存する有頸式鉄鏃で、全長14.45cmを測る。鏃身は逆刺を有する柳葉形で、逆刺を含めた鏃身長は8.40cmである。逆刺の長さは2.20cmを測る。鏃身は平造で鎬は認められない。鏃身中央部における幅は3.20cmを測り、厚さは4mmである。

頸部は全長3.15cmを測り、横断面は1.10cm×4.5mmの長方形をなしている。茎部との境は棘関をなし、その幅は1.20cmを測る。茎部は全長5.15cmを測り、全面に木質の付着が認められる。横断面は5mm×4mmの方形に近い長方形をなしている。

M209はほぼ完存する短頸式鉄鏃である。全長12.85cmを測る。鏃身は逆刺を有する柳葉形で、逆刺を

含めた鏃身長は6.40cmである。また逆刺の長さは2.30cmである。鏃身は平造で、中央部における幅は2.60cmを測る。鎬は認められずその厚さは4.5mmである。

頸部は長さ3.70cmを測り、横断面は $8 \, \text{mm} \times 5 \, \text{mm}$ の長方形をなしている。茎との境は台形関をなし、その幅は $9.5 \, \text{mm}$ である。茎とは両側とも $2 \, \text{mm}$ の段差を有している。

茎部は全長5.05cmを測り、横断面は4mm×3.5mmの長方形をなしている。全面に木質が遺存している。さらに下半部においては木質の表面に糸巻きを観察することができる。茎の主軸に対して襷がけ状に巻かれている(第470図)。

M211は無頸式の鉄鏃である。鏃身と茎の一部が残存する。鏃身は平面三角形をなし、長さ3.90cm、基部幅3.90cmを測る。横断面はレンズ状をなし、鎬は認められない。中央部の厚さは3mmである。茎は5.5mm残存し、横断面は4.5mm×9mmの長方形をなしている。

第470図 M209茎

M212は完存する有頸式鉄鏃である。全長12.35cmを測る。鏃身は三角形をなし、全長は4.70cmである。鏃身は平造で鎬は認められない。最大幅は3.50cmを測り、中央部における厚さは3.5mmである。頸部は2.85cmを測り、横断面は $4\,\mathrm{mm}\times 6.5\,\mathrm{mm}$ の長方形をなしている。茎との境は棘関をなしている。頸部に対して両側に $1\,\mathrm{mm}$ 突出し、その幅は $9\,\mathrm{mm}$ を測る。茎部は4.80cmを測り、横断面は $3\,\mathrm{mm}\times 4\,\mathrm{mm}$ の長方形をなしている。

M213は有頸式の鉄鏃でほぼ完存する。全長12.35cmを測る。鏃身は逆刺を有する柳葉形をなし、全長2.95cmを測る。鏃身は平造で鎬は認められない。その幅は1.65cmを測り、その厚さは2mmである。頸部は全長5.80cmを測り、断面は3mm×6mmの長方形をなしている。茎部との境は台形関をなし、その幅は1.00cmを測る。茎部の長さは3.75cmを測り、先端部には木質の付着が認められる。横断面は径4mmの円形をなしている。

M215は頸部から茎にかけて残存する。残存長7.35cmを測る。頸部は1.30cm残存し、断面は7.5mm×4 mmの長方形をなしている。茎との境は角関をなし、その幅は8 mmである。茎部は、頸部に対してそれぞれ 2 mm・1.5mmの幅を落とし、全長6.10cmを測る。横断面は 3 mm×3 mmの方形をなし、先端は先細りと

なっている。茎全面に木質の遺存が確認できるとともに、上半部には糸巻きが良好に遺存している(第471図)。糸巻きを含めた横断面は9mm×7.5mmの楕円形をなしている。また、この糸巻きは漆状のもので固められている。

M216はM211と同地点から出土しており、M211の茎の先端と考えられる。 刀子 M202~M205の4点が出土している。

M202は完存し、全長18.00cmを測る。刃部は全長11.15cmを測り、最大幅は関部にあり1.80cmを測る。断面は鋭角な三角形をなし、背幅は4mmを測る。関部は両関に分類され、刃部と茎の幅は背側・刃側ともに2mmの段差が認められる。茎は全長6.85cmを測り、横断面は7mm×1.30cmの長方形をなしている。茎の各処に鹿角の遺存が認められ、鹿角の遺存しない箇所については木質と糸巻きを確認することができる。糸巻き後に鹿角を装着した様子が理解できる。

M203は完存する製品で、全長9.35cmを測る。刃部は4.75cmを測り、背幅は4.5mm、関部における刃幅は1.80cmである。刃部と茎との境は両関をなし、背側で2.5mm、刃側で2mmの段となっている。茎は全長4.60cmと、刃部長とほぼ

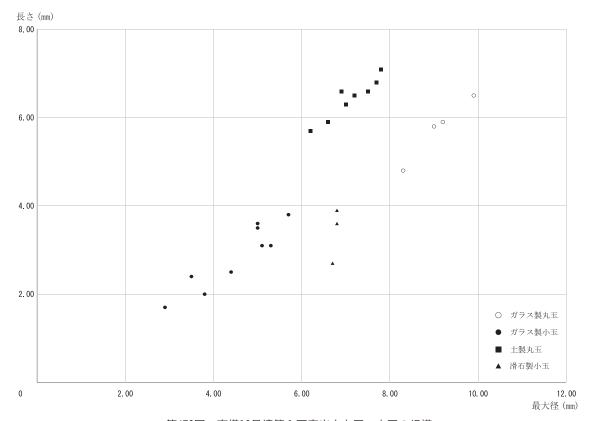
第471図 M215茎

同規模である。茎尻ほど幅を減じる傾向にあり、茎尻は斜行している。横断面も関部付近で9.5mm×5mmの長方形をなしているが、茎尻付近では4mm×4.5mmと円形傾向にある。関部付近は全体的に遺存状況が良好で、地金の周囲には木質が、その周囲には柄縁金具が遺存している(写真図版368)。また茎全体に木質の遺存が認められる。

M204は刃部の1/2を欠く。刃部は4.25cm残存し、胸幅は3.5mmを測る。茎部は5.90cmを測り、両面に 木質の残存が認められる。刃部と茎の境には関は認められない。

M205は刃部と茎の両端を欠く。残存長は8.85cmである。刃部は4.95cm残存する。横断面は鋭角な三角形をなし、刃幅は関部で1.35cm、背幅は3.5mmを測る。関部は背側を抉るタイプである。茎は3.90cm残存し、全面に糸巻き状の痕跡および木質の遺存が認められる。木質を除いた横断面は8.5mm×5 mmの長方形をなしている。

鉄針 M217の1点出土している。2本が錆により錆着した状態で出土している。2本とも先端部を中心に残存し、各鉢の残存長は1.80cmと1.70cmである。径は1.5mmである。


玉 類 管玉・切子玉・算盤玉・丸玉・小玉・臼玉が出土している。石室北半で数点(J231・J234・J251)が散在した状態で出土している。この中でJ231とJ234が石室中央部の須恵器2230の下側から、J251がM208・M209の下側から出土している。

管玉 J231~J233の3点出土している。いずれも碧玉製であるが、規模は一定していない。J231とJ232の穿孔は片面穿孔により、終孔面には割れ円錐が認められる(第472図)。割れ円錐は最終的に研磨により仕上げられている。J233については一部を欠くため明確にできないが、残存する範囲では穴の径は一定している。

切子玉 碧玉製のJ234が1点出土している。六角錐台を底部で合わせた形態で、各面の規模は不均等でやや雑なつくりとなっている。 片面穿孔で、終孔面には割れ円錐が認められる。

第472図 J232割れ円錐

第473図 南構10号墳第1石室出土丸玉・小玉の規模

算盤玉 水晶製の J 235が 1 点出土している。穿孔は片面穿孔によっており、割れ円錐が認められる。 丸玉 J 236~ J 239・ J 253~ J 260の12点である。 J 236~ J 239がガラス製、 J 253~ J 260が土製で ある。材質単位で規模が揃っており、大きなものからガラス製・土製の順となっている(第473図)。 J 236と J 239についてはソーダ石灰ガラス製との分析結果が出ている(第5章第4節)。

小玉 J 240~ J 249の10点である。いずれもガラス製である。J 247についてはソーダ石灰ガラス製との分析結果が出ている(第5章第4節)。

臼玉 J 250~ J 252の 3 点で、滑石製である。

追葬時副葬品 土器と金属製品が出土している(第474図)。追葬時の礫と混在した状態で出土しており、 副葬当初の位置は保たれていないものと考えられる。

土器 須恵器に限られ、杯蓋・杯・高杯が出土している。2221・2223・2229・2231の4点が出土している。2223は北東隅付近、2221は石室中央部、2229と2231は南半東壁際から出土している。

杯蓋 2221と2223の2点出土している。2221は杯蓋qに分類される。天井部1/3がヘラ切り後ナデにより仕上げられている。2223は杯蓋jに分類される。天井部1/3がヘラ削りにより仕上げられ、口縁部内端部はわずかに端面の痕跡をとどめている。

杯 2229の1点出土している。2229は杯h3に分類される。底部の1/3にヘラ削りが及ぶとともに、補助ケズリも認められる。

高杯 2231の1個体である。無蓋高杯Gbに分類され、杯底部に脚部との接合痕が認められる。

金属製品 鉄鏃が2点(M210・M214)出土している。2点は石室南端から出土している。

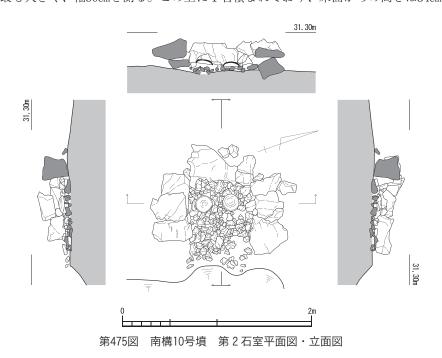
M210は有頸式鉄鏃である。鏃身と頸部の一部が残存し、残存長は6.30cmである。鏃身は逆刺を有する柳葉形で、逆刺を含めた鏃身長は6.30cmである。鏃身は平造で鎬は認められない。幅2.90cmを測り、

第474図 南構10号墳第1石室追葬面遺物出土位置

中央部での厚さは3mmである。頸部は1cm残存し、横断面は7.5mm×2.5mmの長方形をなしている。

M214は有頸式鉄鏃である。鏃身と頸部は完存し、茎の一部が残存する。鏃身は柳葉形をなし、わずかに逆刺を有する。鏃身長2.70cm、鏃身幅1.60cmを測る。鏃身は平造で、中央部には鎬は認められない。中央部における厚さは2mmである。頸部は全長6.20cmを測り、断面は5mm×3.5mmの方形をなしている。茎との境は台形関をなし、茎側が各1.5mm狭くなっている。茎側の表裏両面に木質の付着が認められるが、木質の方向が異なる。茎の残存長は9mmを測り、断面は3.5mm×3.5mmの方形をなしている。

3. 第2石室


(1)検出状況

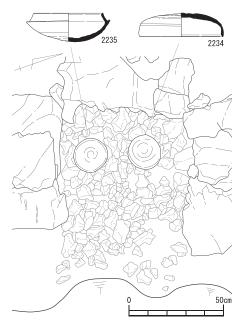
第1石室の北東側、第3石室の北側に位置する(第465図)。その主軸方向は第3石室とほぼ同じくし、 第1石室とは明らかに異なる。検出されたのは西側の一部に限られ、東側については後世の攪乱を受け ている。基底石底部まで掘り下げた状態で石室が明らかとなったため、掘り方は全く検出されていない。

(2)石 室

概 要 東側を除く3面と床面が検出されている(第475図)。後世に攪乱を受け、南北の壁面については一部の検出に限られる。各壁面の基底石は墓壙底部に置かれており、設置のための穴・溝等は認められない。残存状況から平面形は長方形と考えられる。ほぼ東西方向に主軸を取り、その主軸方向はN70°30′Wを示している。その規模は主軸方向で91cm残存し、その直交方向は北壁付近で65cmを測る。壁 面 各辺とも基底石と、その上に積み上げられた数石が残存していた(写真図版361)。全て溶岩が用いられている。各壁面を構成する石材については、石室内を向いた面については全体として平坦面となるように加工が加えられている。

南側壁 基底石 2 石とその上に積まれた 1 石からなる。基底石相互の隙間は目立つ傾向にある。西壁側の 1 石が最も大きく、幅50cmを測る。この上に 1 石積まれており、床面からの高さは34cmである。

— 491 —


西壁 基底石1石からなる。南側を基準に置かれており、 北壁西端の石材との隙間が顕著である。この上に20cm大の石 が小口積みされている。床面からの高さは30cmを測る。

北側壁 基底石3石からなる。東端の石が幅40cmを測り、 最大である。床面からの高さは20cmである。西端の石は西壁 北端の石と同規模で、小口積みされている。

礫 床 残存する石室内全面に礫が敷かれた状態で検出され ている。礫は10cm未満の溶岩からなる。これらの礫は1層か らなり、礫床からは追葬を確認することはできない。

(3)出土遺物

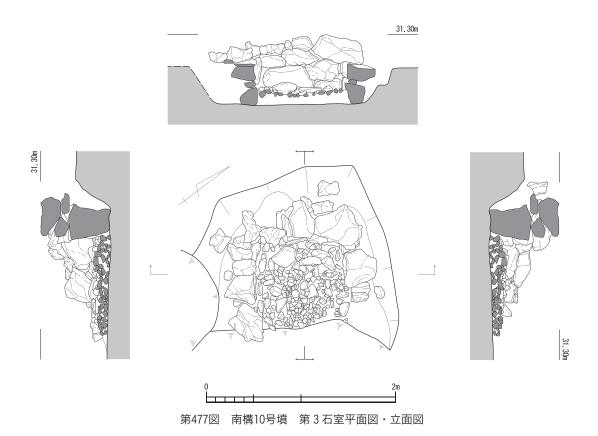
礫床直上から土器が 2点(2234・2235)出土している(第476 図)。石室西壁付近、石室主軸ラインを線対象とした位置に、 2個体が礫層上に置かれた状態で出土している。杯の2235は 第476図 南構10号墳 第2石室遺物出土位置 伏せられた状態で、2234の杯蓋は正位の状態で置かれていた。このような出土状況から、両個体は土器 枕として転用されたものと考えられる。

2234は完存する個体で、杯蓋 e に分類される。天井部の2/3が回転ヘラ削りにより仕上げられ、他は 回転ナデにより仕上げられている。口縁部には内傾する端面が認められる。2235も完存する杯である。 杯a3に分類され、口縁部は直線的に立ち上がり、端部には内傾する端面が認められる。底部の2/3が回 転へう削りにより、他は回転ナデにより仕上げられている。

なお副葬品の出土は認められなかった。

4. 第3石室

(1)検出状況


第1石室の東側に近接し、第2石室の南側に位置する(第465図)。その主軸方向は2号石室とほぼ同 じくし、1号石室とは明らかに異なる。検出されたのは西側の一部に限られ、東側については後世の攪 乱を受けている。また南側掘り方の一部も後世の攪乱を受けている。

(2)墓

残存する範囲において石室は検出面から掘り下げられている。平面形は全体的に歪んだ形状をなして いるが、基本的には隅丸長方形をなすものと考えられる(第477図)。墓壙の規模は、主軸方向で1.70m、 その直交方向で1.90m残存している。横断面は逆台形をなし、底部は平坦面をなしている。検出面から の深さは40cmを測り、その標高は30.58mである。

(3)石 室

概 要 東側を除く3面と床面が残存していた(第477図)。ただし壁面については、西壁を除いては一 部の残存に限られる。各壁の基底石は墓壙底部に置かれており、設置のための穴・溝等は認められな い。残存状況から平面形は長方形をなしていたものと考えられる。ほぼ東西方向に主軸を取り、その主

軸方向はN53°00′Wを示している。その規模は主軸方向で96cm残存し、その直交方向は西壁付近で96cmを測る。

壁 面 各辺とも基底石とその上に積み上げられた数石が残存していた(写真図版362)。いずれも溶岩が用いられている。各壁面を構成する石材については、石室内側の面については全体として面となるように加工が加えられている。

南側壁 基底石3石を中心に残存していた。最西端の基底石上には小規模な礫が残存していた。西側の2石の規模は幅30cm~35cm、高さ30cm~40cmを測るのに対して、東側の石材は高さ10cmと極端に低くなっている。

西壁 基底石 2 石からなり、その上に 2 段にわたり石が積み上げられていた。南側の基底石は幅50 cm、高さ30cmを測るのに対して、北側の基底石は明らかに小型である。基本的に横長に積まれている。 残存する 3 辺のなかでは最も良好に残存し、墓壙底からの残存高は75cmである。

北側壁 基底石 2 石が残存していた。西端の石は幅35cm・高さ20cmの規模からなるが、その東側の 1 石は幅20cm・高さ15cmと明らかに小型である。西端においては 2 段目まで残存する。

礫 床 残存する石室内全面に礫が敷かれた状態で検出されている。礫は全て河原石からなり、他の石室の礫床とは明らかに異なる。これらの礫は基本的に2層に分けて敷かれた状況で、少なくとも1回の追葬を確認することができる。ただし第477図横断面においては、下層の礫層を記録することはできなかった。上層・下層とも10cm未満の礫が多く使用されている。部分的に15cm~25cm大の礫も認められるが、扁平な石が選ばれている。2層ともその上面をそろえるように並べられていた。

(4)出土遺物

礫床直上から土器・金属製品・玉類が出土している(第478図)。上層の礫層上から出土していることか

第478図 南構10号墳 第3石室遺物出土位置

ら追葬に伴う副葬品と考えられる(第479図)。さらに、側石上から土師器の杯(2238)が出土している。

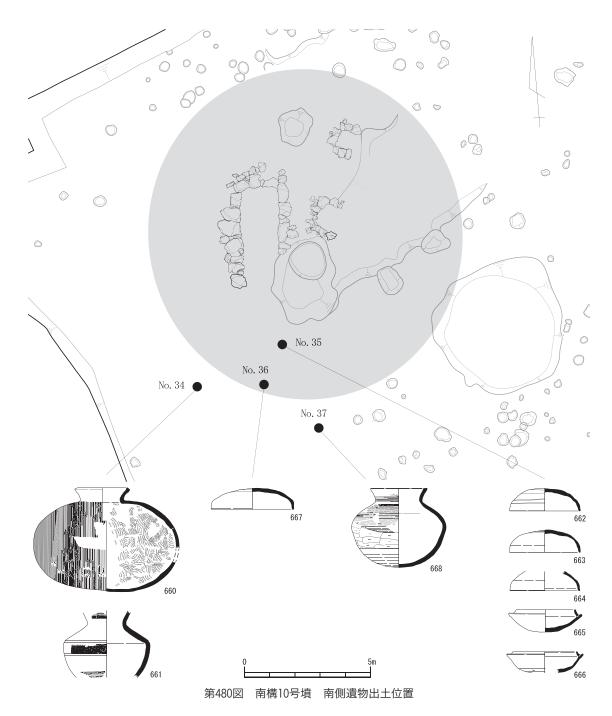
土 器 須恵器の杯蓋(2236)と杯(2237)が北西隅付近から、両個体がセットとなった状態で出土している。2236は杯蓋 e に分類され、口縁部内端部に端面の痕跡が明確に認められる。天井部の2/3が回転へラ削りにより仕上げられている。2237は杯c6に分類され、底部の1/2強が回転へラ削りにより仕上げられている。

2238は杯Cと考えられ、底部から体部にかけて残存している。外面は指オサエの後ナデにより仕上げられ、内面は横方向のヘラミガキの後放射状の暗文が施されている。

金属製品 刀子(M218)が石室主軸ライン上から出土している。

M218は完存し、全長15.25cmを測る。刃部は全長10.10cmを測り、背幅は4.5mmである。刃部の一部に

木質の付着が認められ、鞘の一部と考えられる。茎との境は両関をなし、その幅は1.80cmである。両側とも3mmの段差となっている。茎は全長5.15cmを測り、断面は1.10cm×5.5mmの長方形をなしている。全面に木質の付着が認められる。


玉 類 J261~ J263の3点出土している。J261は碧玉製の切子玉で、片面穿孔により割れ円錐が認められる。J262とJ263は滑石製の臼玉である。

第479図 南構10号墳 第3石室出土遺物

5. その他

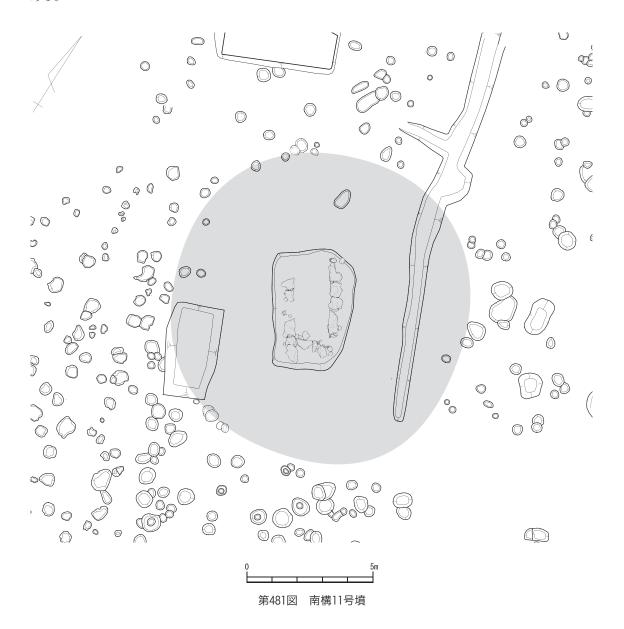
第1石室の南側から当該期の遺物が出土している(第480図)。No34~No36地点として報告した(第3章 第8節)ものである。その位置関係から当墳に関連する遺物として再度報告する。4地点(No34~No37地点)から須恵器が出土している(第480図)。No34地点は第1石室開口部の南西4.50mに位置し、平瓶(660)と広口壺(661)が出土している。No35地点は同石室開口部南側2.70mに位置し、杯蓋(662・663・664)・杯(665)・高杯(666)が出土している。No36地点は同石室開口部南側3.80mに位置し、杯蓋(667)

が出土している。No.37地点は同石室開口部の南東側6.00mに位置し、短頸壺(668)が出土している。

6. 小 結

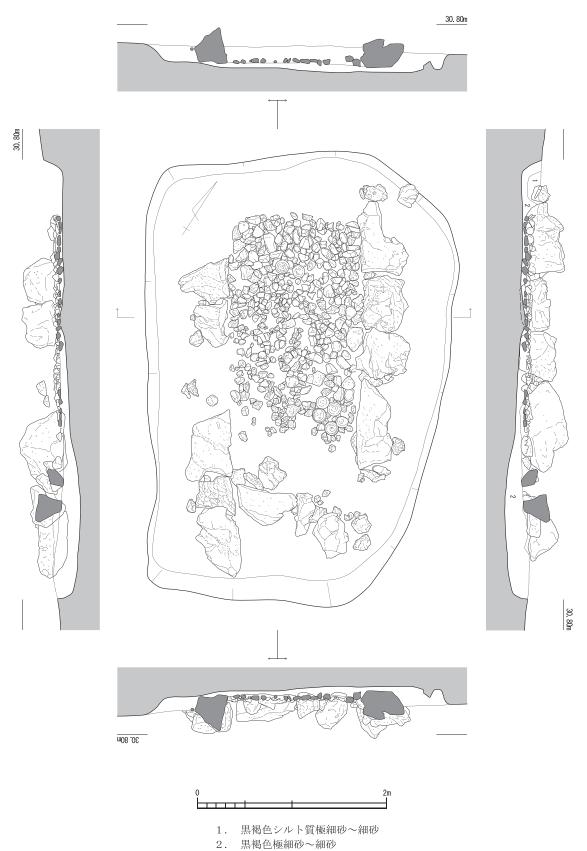
時期 第1石室初葬が古墳群3期、同追葬が4期1段階、第2石室が古墳群1期、第3石室が古墳群2期に位置付けられる(第6章第2節)。

竪穴系横口式石室 石室の構造については残存状況が良好ではなかったが、わずかに墓壙を検出していることから竪穴系横口式石室と考えられる。頭位については、第1石室は玉類の出土位置から北側と、第2石室は土器枕の位置から西側と考えられる。第3石室については明確にすることはできない。


第12節 南構11号墳(図版115 写真図版373~380 附表97·108)

1. 概 要

第2次調査で明らかとなった古墳である。南地区北部中央にあたる。南構8号墳の南東側12m、南構9号墳の南東側5mに位置する(第353図)。ほぼ全体が検出されている。石室を中心とした遺構空白域から、墳丘規模は主軸方向で12.00m、その直交方向で11.50mと復元できる(第481図)。


2. 墓 壙

全体が検出されている。平面形は北側ほど幅が広い傾向にあり、隅丸台形傾向にある(第482図)。主軸方向で4.70mを測り、その直交方向は、北辺付近で3.32m、南辺付近で2.45mを測る。横断面は逆台形をなし、底部は平坦である。検出面からの深さは20cmを測り、墓壙中央部における標高は30.35mである。

3. 石 室

概 要 基底石と礫床が残存していた(第482図)。基底石は全て墓壙底部に置かれており、設置のための 穴・溝等は認められない。礫床の残存状況から平面形は長方形をなすものと考えられるが、北西側の石

— 497 —

第482図 南構11号墳 平面図・立面図

材は全く残存していなかった。基底石の底部はほぼ一定で、その標高は30.40m~30.30mを測る。残存する礫床の範囲が石室規模である判断すると、主軸方向で2.95mを測り、その直交方向は北西壁付近・南東壁付近ともに1.35mを測る。これらを基準とした床面の面積は3.98㎡である。主軸方向は北西-南東方向にとり、その方位はN33°00′Wを示している。残存する石材は全て溶岩が用いられている(第483図)。

壁面 北西壁を除く3面で基底石のみ残存していた。

第483図 南構11号墳 石材取りあげ作業

北東側壁 当石室のなかでも最も良好で、4石が残存していた。幅が50cmから1mの石材が横長に置かれている。基底石の高さには差が認められ、30cm~50cmを測る。これらの石材は石室内側の面が加工され、全体的に整った面をなしている。南西側壁の状況から、南東壁より南東側まで存在した可能性が考えられ、さらに2石はあったものと考えられる。

南東壁 南東半の石材については、その位置から基底石ではなく控えの可能性も考えられる。南西側の1石については基底石と考えられ、石室内側の面は加工されている。

南西側壁 南東側を中心に5石残存し、北西壁側は残存していなかった。南東側は南東壁より南東側まで延びている。両側壁が小口壁をH形に挟み込む用材法である。他の壁面同様、石室側の面については加工が認められる。使用されている石材の規模およびその並べ方については、北東側壁と同様である。 礫 床 石室内全面に礫が敷かれていたものと考えられるが、南東壁付近は残存していなかった。基底石が残存しない北側については、その北端が直線的であることから、石室の北端を示しているものと考えられる。5cm~10cm大の礫(溶岩)が使用されている。礫は1層からなり、その上面を揃えるように並べられている。このため追葬の痕跡を確認することはできなかった。

第484図 南構11号墳出土遺物

4. 出土遺物

礫床直上から土器と金属製品が出土している(第484図・第488図)。土器は、主軸ライン上北半で2個 体(2240・2243)がセットで、東隅付近で5個体(2239・2241・2242・2244・2245)が出土している。前者 については、その出土状況から判断して土器枕として転用されていた可能性が考えられる。

金属製品については、西隅付近からM223とM224が、土器枕と考えられる須恵器の南側からM219 が、中央部やや東よりからM220~M222が出土している。

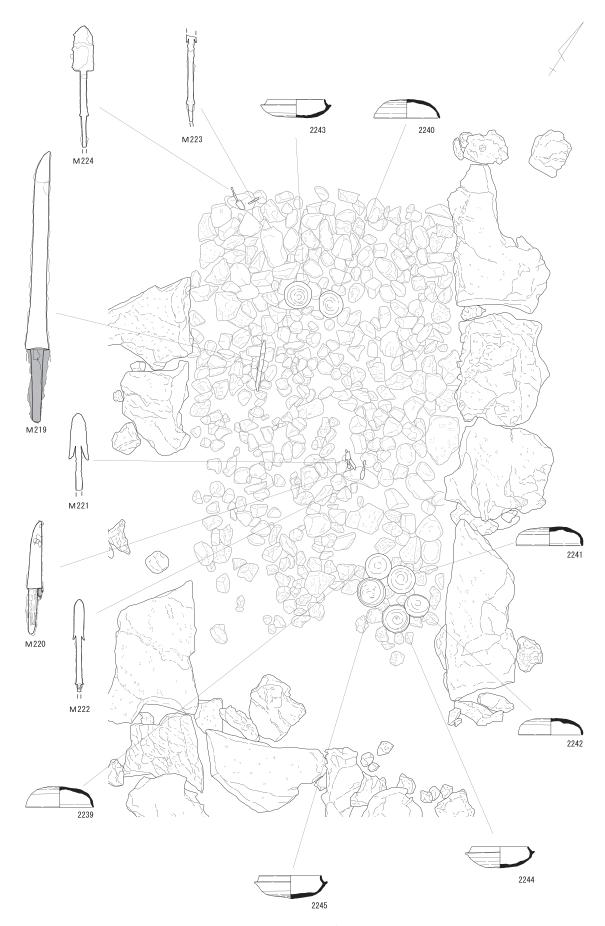
器 須恵器のみが出土している。器種としては杯蓋と杯が出土している。

杯蓋 2239~2242の4個体が出土している。2239と2241が杯蓋eに、2240が杯蓋iに、2242が杯蓋x に分類される。2239と2241は口縁部内端部に端面の痕跡が明確に認められ、天井部の2/3が強い回転へ ラ削りにより仕上げられている。2240は口縁部内端部に端面の痕跡がわずかに認められ、天井部の2/3 が回転へラ削りにより仕上げられている。2242は口縁部内端部が丸くおさめられ、天井部には退化削り が認められる。

杯 2243~2245の3個体が出土している。2243と2245が杯c2に、2244が杯c3に分類される。2243と 2245は、底部の2/3が回転ヘラ削りにより仕上げられている。また2245の内面には当て具痕が認められ る(第485図・第486図)。2244は、底部のほとんどが回転へラ削りにより仕上げられている。

第485図 2245内面

第486図 2245内面拓影


金属製品 刀子と鉄鏃が出土している。

刀子 2点(M219・M220)出土している。

M219はほぼ完存し、全長28.80cmを測る。刃部は21.00cmを測り、中央部における 刃幅は1.65cmである。背幅は5mmで、布目が認められる(第487図)。茎との境は均等 な両関をなし、関部を中心に刃幅が増している。その幅は2.45cmを測る。茎は7.80 cmを測り、わずかに反った状態で出土している。横断面は1.30cm×7.5mmの長方形を なしている。関部付近を中心に鹿角が比較的良好に遺存し、その厚さは1cmを測る。 M220は完存し、全長12.15cmを測る。刃部は全長7.20cmを測り、刃幅は中央部で

1.25cmを測る。横断面は鋭角な三角形をなし、背幅は3.5mmを測る。茎との境は均等 な両関をなし、その幅は1.55cmである。茎は全長4.95cmを測り、ほぼ全面に木質の 第487図 M219布目

第488図 南構11号墳 遺物出土位置

遺存が認められる。さらに関部付近には、その一部の外側に鹿角の遺存が認められる(写真図版379)。 茎本体の横断面は $9\,\text{mm} \times 5\,\text{mm}$ の長方形をなし、さらに背部においてはその外側に厚さ $2\,\text{mm}$ の木質と $2.5\,\text{mm}$ の鹿角で覆われている。

鉄鏃 5点(M221~M225)出土している。

M221は有頸式と考えられる。頸部の一部まで残存し、茎は残存しない。残存長は8.10cmである。鏃身は逆刺を有する柳葉形をなし、全長は4.95cmである。逆刺の長さは1.50cmである。鏃身は平造で、幅1.65cm、中央部の厚さ2mmを測る。頸部は4.20cm残存し、横断面は6mm×4mmの長方形をなしている。

M222とM223は有頸式鉄鏃である。M222は茎の先端を除いて残存する。残存長は9.80cmを測る。鏃身は逆刺を有する柳葉形をなし、鏃身長は4.30cmを測る。逆刺の長さは3 mmである。横断面は浅い蒲鉾形をなす片丸造である。幅は1.00cm、中央部における厚さは2 mmを測る。頸部は6.10cmを測り、横断面は5 mm×3 mmの長方形をなしている。茎との境は棘関で、その幅は9 mmを測る。茎は8 mm残存し、横断面は4 mm×3 mmの長方形をなしている。全面に木質が遺存し、木質を含めた断面の規模は6 mm×3.5 mmである。

M223は鏃身の基部から茎にかけて残存する。残存長は9.20cmである。鏃身は8.5mm残存し、逆刺を有する柳葉形と考えられる。基部での幅は1.10cmで、厚さは2mmである。頸部は完存し、長さ8.75cmを測る。横断面は6.5mm×3mmの長方形をなしている。茎との境は台形関をなし、その幅は9mmである。茎は1.85cm残存し、横断面は4mm×2.5mmの長方形である。木質の遺存は認められない。

M224は茎の先端を欠くが、ほぼ完存する有頸式鉄鏃である。残存長は12.85cmである。鏃身は長三角形をなし、全長4.80cmを測る。横断面は平造で、幅は2.15cm、厚さは 4 mmを測る。頸部は4.70cmを測り、横断面は 6 mm× 4 mmの長方形である。茎との境は台形関をなし、その幅は1.00cmである。茎は3.35cm残存し、横断面は 4 mm×3.5mmの方形をなしている。木質の遺存は認められない。

M225は茎の先端である。残存長1.70cmを測り、断面は $3 \, \text{mm} \times 2.5 \, \text{mm}$ の円形である。全面に木質の付着が認められる。

5. 小 結

時期は、出土遺物から古墳群4期1段階に位置付けられる(第6章第2節)。石室は竪穴系横口式石室と考えられる。また土器枕の位置から判断して、北側に頭位が考えられる。

第13節 小 結

1. はじめに

南構古墳群は、前節までに報告してきたように11基からなる古墳群である。各古墳の概要をまとめたのが第10表である。本節では、墳丘・埋葬施設・副葬品・時期についての概要をまとめていく。なお時期等の詳細については、第6章第2節で検討することとする。

2. 墳丘について

墳丘を検出できたのは南構1号墳に限られる。この他南構9号墳についても墳丘の一部を、南構7号墳と同8号墳については調査区の壁面において墳丘断面を確認している。ただし本章第1節でも報告したように、石室周囲に遺構の空白域を確認することができ、この範囲が墳丘範囲と理解している。

これらの成果を総合すると、検出した南構古墳群11基は全て円墳であったものと考えられる。規模については、南構 1 号墳が最大で13.70m×15.60mを測る。これに続く規模としては、南構 5 号墳・同11号墳で径12m前後となっている。さらには南構 3 号墳・同 6 号墳が11m前後である。最も小型のものは南構 4 号墳で10m以下の規模である。

3. 埋葬施設

ここでは石室形態・石室規模・石室用材・主軸方向についてまとめておきたい(第671図~第674図)。

(1)石室形態

南構1号墳は片袖式の横穴式石室である。他の石室については、まず南構7号墳はその特徴から竪穴系横口式石室と考えられる。他の石室についても、玄門・墓道は明らかにされていないが同様の構造と考えられる。以上から、南構1号墳を除く石室については全て竪穴系横口式石室と判断される。

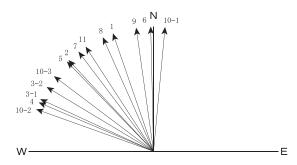
(2)石室規模

石室の特徴が異なるため単純な比較は危険であるが、南構 1 号墳の石室面積が10.45㎡と最大規模である。続く石室規模は南構10号墳第 1 石室の5.60㎡、同 5 号墳の5.41㎡と、1 号墳の規模が突出している。石室主軸の規模が南構 1 号墳で5.50㎡であるのに対して、これに続くのが南構 5 号墳の4.40㎡であることからも、その突出度は明らかである。

一方、南構3号墳第2石室については主軸規模から、同10号墳第2石室・第3石室については石室幅から、小型であることは明らかである。単純に判断して小児用と考えられる。

(3)石室用材

いずれの石室においても使用された石材は溶岩である点は共通している。遺跡内の基盤層中に多く認められ(第3章第1節)、最も入手容易な石材であったと考えられる。


一方礫床については、すべての石室で認められる点は共通しているが、溶岩と河原石の2者が認められる。溶岩の入手先については先の通りである。河原石については古墳群の南側を流れる稲葉川からの入手が可能である(第5章第7節)。したがって石材の入手は容易であったと考えられる。つまり、溶岩と河原石の入手にあたっての大きな差異は認められない。

(4)石室主軸方向

各石室の主軸方向をまとめたのが第489図である。ほぼ南北方向から北西 - 南東方向を基本としている。より詳しくみると、①南構 6 号墳・同 9 号墳・同10号墳第1 石室、②南構 1 号墳・同 8 号墳、③南

構2号墳・同5号墳・同7号墳・同11号墳、④南 構3号墳第1石室・第2石室・同4号墳・同10号 墳第2石室・同第3石室にグルーピングすること ができる。③と④についてはさらに2グループに 細分可能である。

入口については、南構1号墳はその復元結果から入口が南東側であることが明らかとなっている。南構7号墳についても墓道が石室南東側で検

第489図 石室の主軸方向(数字は古墳番号)

出されている。同8号墳においても南側の石積みの下段と上段に差が認められ、上段が側壁と一体となっていないことから閉塞石の可能性が考えられた。以上から8号墳についても南側が入口と考えられる。

頭位についても、明らかにできたのは南構 2 号墳・同 3 号墳第 1 石室・同 4 号墳・同 5 号墳・同 6 号墳・同 8 号墳・同10号墳第 1 石室・同第 2 石室・同11号墳に限られるが、いずれも北西側を示している。

したがって、不明の古墳も含め、基本的には南側から南東方向に開口していたものと考えられる。後述するが(第8章第1節)、集落の方向を示している。

4. 副 葬 品

(1)副葬内容

南構 3 号墳第 2 石室・同 9 号墳を除く各石室で副葬が認められた(第10表)。副葬品としては、土器・ 金属製品・玉類・石製品が挙げられる。

(2)土 器

副葬された土器の特徴としては、第一に全て須恵器に限られ土師器は認められない。次に器種としては、杯蓋・杯・高杯蓋・高杯・壺蓋・壺・廛・提瓶が出土している。そして土器が副葬された石室では、必ず杯蓋と杯のセットが含まれている。この中には土器枕として転用された例(南構 4 号墳・南構 5 号墳・南構 8 号墳・南構10号墳第 2 石室・南構11号墳)も含まれる。続いて高杯の副葬が多く認められる。壺については短頸壺と長頸壺に限られ、短頸壺は蓋とセットで出土している。 健は南構 1 号墳初葬面と同7号墳初葬面、提瓶については南構7号墳初葬面に限られる。

一方甕が副葬された例は認められない。ただし南構1号墳南側の前庭部において7個体分の甕が出土 している。これについては石室入口部へ据え置かれたものと考えられる。

(3)金属製品

多くの石室への副葬が認められる。副葬された金属製品としては、武器類・工具類・装身具類・馬具類他に分類できる。武器類は鉄刀と鉄鏃が、工具類は刀子・鉄針・鉄斧が、装身具類としては耳環が、他としては鉄鐸が出土している。このなかで最も多いのが鉄鏃で、ついで刀子となっている。金属製品

第10表 古墳一覧表

古	墳	名	墳丘規模 (m)	石室名	石室種	石室 石材	石室主軸方向		室 規 直交方向	模面積	追葬	埋葬面	頭位
			10.70					(m)	(m)	(m²)		初葬面	_
南構	1号	·墳	13. 70 × 15. 60	_	横穴式石 室	_	N19° 00″ W	5. 50	1. 90	10.45	有 (2回)	第1次追葬面	_
												第2次追葬面	_
南樺	2 号	·墳	(10.10) ×	_	竪穴系横	溶岩	N43° 00″ W	3. 20	1.20~	3. 84	有	初葬面	-
		- '	(9. 50)		口式石室				1. 30		(1回)	第1次追葬面	北西
			(11.50)	第1石室	竪穴系横 口式石室	溶岩	N65° 30″ W	3. 20	1.00~	3. 39	有、	初葬面	-
南構	3号	·墳	× (11. 80)	初工石主		1070	1100 00 11	5. 20	1. 12	0.00	(1回)	第1次追葬面	西
			(11.00)	第2石室	竪穴系横 口式石室	溶岩	N59° 00″ W	1.56	0.66~ 0.76	1.02	無	初葬面	_
南構	4号	·墳	(9.00) × (8.30)	_	竪穴系横 口式石室	溶岩	N67° 00″ W	3. 10	1.00	3. 10	無	初葬面	西
南構	5号	·墳	(12.80) × (11.90)	-	竪穴系横 口式石室	溶岩	N44° 00″ W	4. 40	1.10~ 1.36	5. 41	無	初葬面	北西
南構	∮6号	·墳	(11.50) × (10.50)	-	竪穴系横 口式石室	溶岩	N01° 30″ W	(4. 30)	1. 20	-	有 (1回)	初葬面 第1次追葬面	- 北
南構	7号	·墳	(10. 10) × (9. 00)	_	竪穴系横 口式石室	溶岩	N37° 00″ W	3. 56	1.27~ 1.57	5. 05	有 (1回)	初葬面 第1次追葬面	-
南構	8号	·墳	(10.10) × (9.50)	_	竪穴系横 口式石室	溶岩	N24° 00″ W	(2.43)	1.20~ 1.30	-	無	初葬面	_
南構	9号	·墳	(6. 20) ×	-	竪穴系横 口式石室	溶岩	N08° 00″ W	(2. 20)	0.75~ 1.00	_	無	初葬面	-
									1.45~		有	初葬面	北
				第1石室	竪穴系横 口式石室	溶岩	N05° 30″ E	3. 80	1.50	5. 06	(1回)	第1次追葬面	_
南構	10号	·墳	(13. 00) ×	第2石室	竪穴系横 口式石室	溶岩	N70° 30″ W	(0.91)	0. 65	_	無	初葬面	西
			(12.00)	## a == 11		VF 111		(0.00)			有	初葬面	-
				第3石室	竪穴系横 口式石室	溶岩	N53° 00″ W	(0.96)	0. 96	_	(1回)	第1次追葬面	_
南構	11号	·墳	(12.00) × (11.50)	_	竪穴系横口式石室	溶岩	N33° 00″ W	2. 95	1. 35	3. 98	無	初葬面	北

が副葬された石室では、南構10号墳第3石室を除いて必ず鉄鏃の副葬が認められる。鉄刀は南構1号墳第2追葬面・同5号墳・同7号墳第1次追葬面・同8号墳から出土している。馬具の副葬は、南構1号墳初葬面と第1次追葬面および同7号墳第1次追葬面に限られる。

詳細については第6章第3節にて検討する。

(4)玉 類

勾玉・管玉・切子玉・算盤玉・丸玉・小玉・臼玉の副葬が認められる。玉類が副葬された石室としては、南構1号墳初葬面・同2号墳第1次追葬面・同3号墳第1石室第1次追葬面・同4号墳・同6号墳第1次追葬面・同10号墳第1石室初葬面があげられる。管玉と丸玉が最も多くの石室に副葬されている。詳細については第6章第4節にて検討する。

礫床		副葬品				
石材	土 器	金属製品	玉	石製品	時 期	特記事項
	杯蓋・杯・高杯・腿・壺	鉄鏃・馬具	勾玉		古墳群4期	
河原石 溶岩	杯蓋・杯	鉄鏃・馬具	_	_	古墳群4期	外護列石
	-	鉄刀・鉄鏃	-	_	古墳群4期	
溶岩	杯蓋・杯	鉄鏃	-	-	十-1李	
溶岩	杯蓋・杯・高杯蓋・高杯	耳環・鉄鏃・刀子	勾玉・管玉・切子玉・ 丸玉・小玉・臼玉	-	古墳群4期	
溶岩		鉄鏃	_	-	古墳群2期	
溶岩	杯蓋・杯・高杯蓋・高杯・壺	鉄鏃・刀子	勾玉·切子玉·丸玉· 小玉	紡錘車	古墳群4期	
溶岩	-	_	_	_	古墳群4期	
溶岩+河原石	杯蓋・杯	_	白玉	-	古墳群4期	土器枕
溶岩+ 河原石	杯蓋・杯・高杯	鉄刀・鉄鏃・鉄針	_	-	古墳群 3 期	土器枕
溶岩	_		_	_	古墳群2期	
河原石 溶岩	杯蓋・杯	鉄鏃・刀子・鉄鐸	管玉・算盤玉・丸玉	_	古墳群2期	
溶岩	杯蓋・杯・高杯・ 鴎 ・壺蓋・壺・ 提瓶	鉄鏃・刀子	_	紡錘車	古墳群1期	墓道
	杯蓋・杯・高杯蓋・高杯・壺	鉄刀・鉄鏃・刀子・馬具	_		古墳群4期	
河原石	杯蓋・杯	鉄刀・鉄鏃・刀子・鉄斧	_	-	古墳群1期	土器枕
溶岩	-	-	-	-	古墳群4期	
河原石	杯蓋・杯・壺蓋・壺	鉄鏃・刀子・鉄針	管玉・切子玉・算盤玉・ 丸玉・小玉・臼玉	_	古墳群3期	
溶岩+ 河原石	杯蓋・杯・高杯	鉄鏃	-	_	古墳群4期	
溶岩	杯蓋・杯	_	_	_	古墳群1期	土器枕
河原石	-	_	_		古墳群2期	
河原石	杯蓋・杯	刀子	切子玉・臼玉	_		
溶岩	杯蓋・杯	鉄鏃・刀子	-	_	古墳群4期	土器枕

(5)石 製品

南構3号墳第1石室第1次追葬面・同7号墳初葬面から石製紡錘車が各1点出土している。詳細については第6章第6節で検討する。

5. 時期

副葬された土器の検討から、古墳群 1 期(TK210型式)から同 4 期(TK217型式)にかけて築造されている。詳細は第 7 章第 2 節にて検討する。

6. 小 結

以上11基が明らかとなった南構古墳群の概要であるが、南構1号墳が多くの点において傑出している。詳細は第7章2節で検討したい。

7. その他

最後に、古墳群中から出土した遺物のなかで古墳に副葬されたと考えられるが該当する古墳を特定できない遺物について、ここで報告する。対象となるのは金属製品 3 点である。刀子 $(M226\cdot M227)$ と鉄鏃(M228)である。

M226はほぼ完存する。切先と茎先端をわずかに欠き、残存長は10.05cmである。刃部は4.60cm残存し、最大幅は関部で1.15cmである。背幅は3.5mmである。茎との境は均等な両関となっている。茎は5.45cm残存し、横断面は6.5mm×3.5mmである。木質の付着は認められない。

M227は刃部から茎にかけて残存する。残存長は4.50cmである。刃部は1.80cm残存し、刃幅は1.90cm、背幅は3.5mmである。茎との境は斜行する片関となっており、その幅は1.90cmである。茎は2.70cm 残存し、横断面は8.5mm×3mmの長方形をなしている。

M228は鉄鏃の茎と考える。5.35cm残存し、断面は5mm×4.5mmの長方形をなしている。

第490図 南構古墳群出土装飾類

第5章 分析・鑑定

第1節 土師器付着物の材質分析

藤根 久(パレオ・ラボ)

1. はじめに

豊岡市日高町久斗・祢布に位置する南構遺跡の調査において、黒色物が付着した土師器が出土した。 ここでは、これらの黒色付着物の赤外分光分析を行ない、付着物の材質について検討した。なお、同じ 時期の土師器の塗膜分析も行われている(本章第2節参照)。

2. 試料と方法

分析試料は、土師器杯5点である(第11表 第493図・第494図)。

赤外分光分析では、手術用メスを用いて付着物

第11表 南構遺跡出土土師器と付着物の特徴

を表面から薄く削り取り、厚さ1 mm程度に裁断した臭化カリウム(KBr)結晶板に押しつぶして挟み、油圧プレス器を用いて約7トンで加圧整形した。測定は、フーリエ変換型顕微赤外分光光度計

分析 No.	報告 番号	種別	器種	採取位置	付着物の特徴				
1	1326	土師器	杯A	口縁部内面	黒色、光沢、凹凸、肥厚				
2	1355	土師器	杯A	口縁部内面	黒色、光沢、凹凸、肥厚				
3	1330	土師器	杯	口縁部内面	黒色、光沢、縮皺、肥厚				
4	1585	土師器	杯	口縁部内面	黒色、光沢、縮皺、肥厚				
5	1584	土師器	杯	口縁部内面	黒色、光沢、凹凸、肥厚				

(日本分光(株)製FT/IR-410、IRT-30-16)を用いて、透過法により赤外吸収スペクトルを測定した。なお、同定では、生漆等と比較した。

3. 結果および考察

以下に、各試料の特徴と赤外分光分析の結果について述べる。 なお、第491図 $-1 \sim 3$ および第492図 $-4 \cdot 5$ の赤外吸収スペクトル図の縦軸は透過率(%R)、横軸は波数(Wavenumber (cm $^{-1}$);カイザー)であり、吸収スペクトルに示した数字は、生漆の主な赤外吸収位置を示す(第12表)。

[土師器杯A(分析No.1)]

付着物は、口縁部内面に付着する光沢のある黒色物であり、凹凸のある肥厚した付着物である(第493図 - 1a · 1b)。

赤外分光分析では、炭化水素の吸収(生漆の吸収No.1 およびNo.2)が認められ、生漆を特徴づけるウルシオールの吸収(吸収No.7 とNo.8)が確認された(第491図 - 1)。

第12表 生漆の赤外吸収位置とその強度

吸収No.		生 漆	
19X 4X 1VO.	位置	強度	ウルシ成分
1	2925.48	28.5337	
2	2854.13	36.2174	
3	1710.55	42.0346	
4	1633.41	48.8327	
5	1454.06	47.1946	
6	1351.86	50.8030	ウルシオール
7	1270.86	46.3336	ウルシオール
8	1218.79	47.5362	ウルシオール
9	1087.66	53.8428	· · · · · · · · · · · · · · · · · · ·
10	727.03	75.3890	

以上の結果から、付着物は漆と考えられる。なお、No.7とNo.8の吸収位置が少し低い側にずれているのは、夾雑物によるずれと考えられる。

[土師器杯A(分析No.2)]

付着物は、口縁部内面に付着する光沢のある黒色物であり、凹凸のある肥厚した付着物である(第493 図 - 2 a · 2 b)。

赤外分光分析では、炭化水素の吸収(生漆の吸収 $N_0.1$ および $N_0.2$)が認められ、生漆を特徴づけるウルシオールの吸収(吸収 $N_0.7$ と $N_0.8$)が確認された(第491 $\mathbb{Z}-2$)。

以上の結果から、付着物は漆と考えられる。なお、No.7とNo.8の吸収位置が少し低い側にずれているのは、夾雑物によるずれと考えられる。

[土師器杯(分析No.3)]

付着物は、口縁部内面に付着する光沢のある黒色物であり、縮皺のある肥厚した付着物である(第493 図 - 3 a · 3 b)。

赤外分光分析では、炭化水素の吸収(生漆の吸収N0.1 およびN0.2)が認められ、生漆を特徴づけるウルシオールの吸収(吸収N0.7 とN0.8)が確認された(第491図-3)。

以上の結果から、付着物は漆と考えられる。なお、No.7とNo.8の吸収位置が少し低い側にずれているのは、夾雑物によるずれと考えられる。

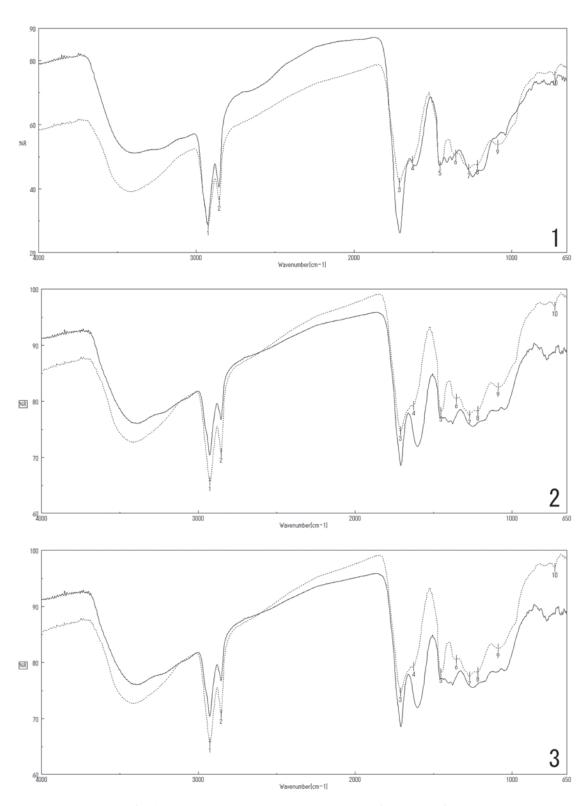
[土師器杯(分析No.4)]

付着物は、口縁部内面に付着する光沢のある黒色物であり、縮皺のある肥厚した付着物である(第494図-4a・4b)。

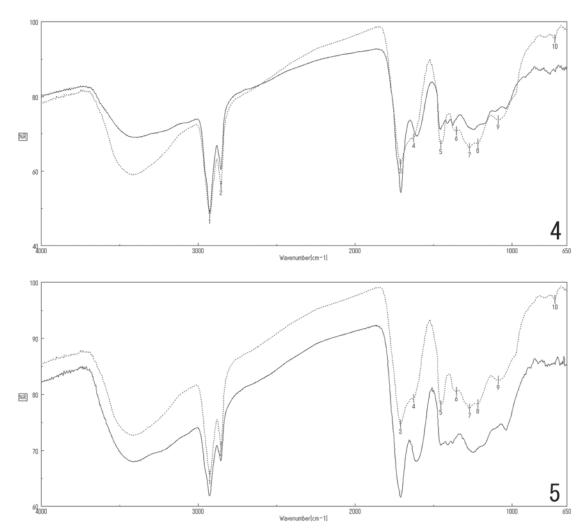
赤外分光分析では、炭化水素の吸収(生漆の吸収 $N_0.1$ および $N_0.2$)が認められ、生漆を特徴づけるウルシオールの吸収(吸収 $N_0.7$ と $N_0.8$)が確認された(第492 $\mathbf{Z} = 4$)。

以上の結果から、付着物は漆と考えられる。なお、No.7とNo.8の吸収位置が少し低い側にずれているのは、夾雑物によるずれと考えられる。

「土師器杯(分析№5)]

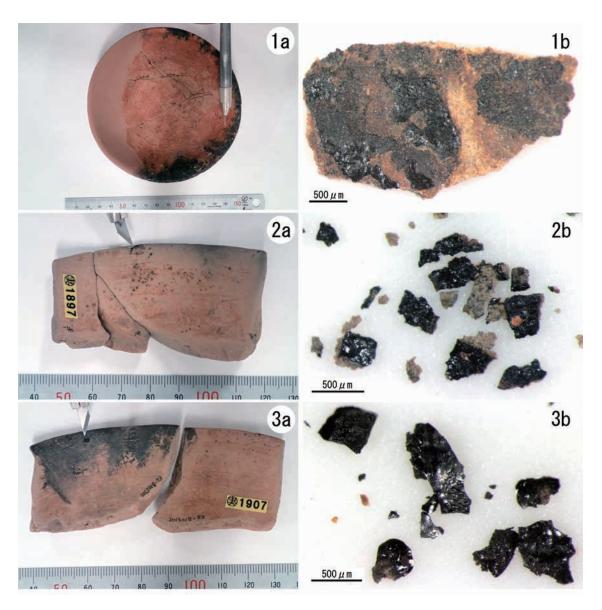

付着物は、口縁部内面に付着する光沢のある黒色物であり、凹凸のある肥厚した付着物である(第494図-5a・5b)。

赤外分光分析では、炭化水素の吸収(生漆の吸収 $N_0.1$ および $N_0.2$)が認められ、生漆を特徴づけるウルシオールの吸収(吸収 $N_0.7$ と $N_0.8$)が確認された(第492 $\mathbb{Z} = 5$)。

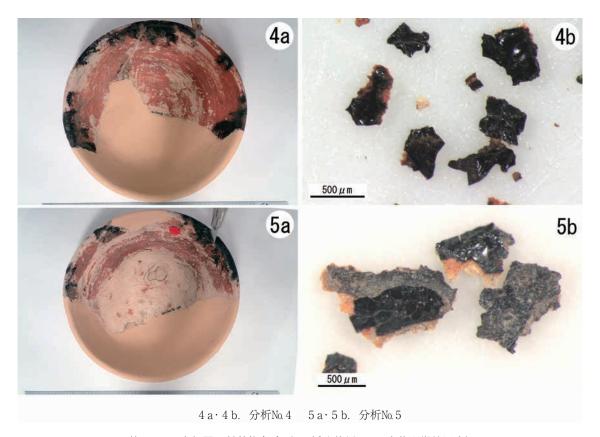

以上の結果から、付着物は漆と考えられる。なお、No.7とNo.8の吸収位置が少し低い側にずれているのは、夾雑物によるずれと考えられる。

4. おわりに

南構遺跡出土土師器に付着する黒色物の赤外分光分析を行った。その結果、いずれの黒色物も漆と考えられる。ただし、夾雑物の影響によりウルシオールの吸収位置にずれが生じていた。



(実線:黒色付着物、点線:生漆、数字:生漆の赤外吸収位置)1.分析No.1 (土師器杯A) 2.分析No.2 (土師器杯A) 3.分析No.3 (土師器杯)第491図 黒色付着物の赤外吸収スペクトル図(1)


(実線: 黒色付着物、点線: 生漆、数字: 生漆の赤外吸収位置)4. 分析No. 4 (土師器杯) 5. 分析No. 5 (土師器杯)

第492図 黒色付着物の赤外吸収スペクトル図(2)

 $1 \, a \cdot 1 \, b$. 分析No. 1 $2 \, a \cdot 2 \, b$. 分析No. 2 $3 \, a \cdot 3 \, b$. 分析No. 3

第493図 土師器と付着物(1) (a:採取位置、b:実体顕微鏡写真)

第494図 土師器と付着物(2)(a:採取位置、b:実体顕微鏡写真)

第2節 南構遺跡出土の漆塗土器の塗膜分析

竹原弘展・藤根 久・米田恭子(パレオ・ラボ)

1. はじめに

豊岡市日高町久斗・祢布に所在する南構遺跡の発掘調査で出土した漆塗とみられる土器について、塗 膜薄片を作製し、塗膜構造と材料について検討した。

2. 試料と方法

分析対象は、漆塗とみられる土師器 2 点であ

第13表 分析対象一覧

る(第13表 第496図 - 1 a、2 a)。時期は、いずれも古代とみられている。分析No.1 は、土師器皿の底部付近で、内面に光沢のある黒色塗膜

分析 No.	報告 番号	種別	器種	
1	1316	土師器	杯(底部)	内面に光沢のある黒色塗膜
2	2251	土師器	高坏	内面に光沢のある黒色塗膜

が少量ながら残存している。分析No.2は、土師器高坏で、内面に光沢のある黒色塗膜が残っている。分析No.1は小型グラインダーで黒色塗膜の付着した胎土を少量切り取り、分析No.2は胎土より浮き上がっていた黒色塗膜を少量採取し、分析試料とした。採取試料を第496図-1b、2bに示す。

分析は、漆成分を調べるために、表面塗膜について、赤外分光分析を行った。また、塗膜構造を調べるために薄片を作製して、光学顕微鏡と走査型電子顕微鏡による観察、およびX線分析を行った。

赤外分光分析は、手術用メスを用いて塗膜表面から薄く削り 第14表 生漆の赤外線吸収位置とその強度

取った試料を、厚さ1 mm程度に裁断した臭化カリウム(KBr)結晶板に押し潰して挟み、油圧プレス器を用いて約7トンで加圧整形し、測定試料とした。分析装置は日本分光株式会社製フーリエ変換型顕微赤外分光光度計FT/IR-410、IRT-30-16を使用して、透過法により赤外吸収スペクトルを測定し、生漆等の吸収スペクトルと比較した。

塗膜観察用の薄片は、高透明エポキシ樹脂を使用して包埋し、 薄片作製機および精密研磨フィルム(#1000)を用いて厚さ約50μ m前後に仕上げ、まず走査型電子顕微鏡(日本電子株式会社製JSM -5900LV)による反射電子像観察を行った。さらに、赤色塗膜層

吸収No.	生 漆										
Ŋ Х 4Χ1V0.	位置	強度	ウルシ成分								
1	2925.48	28.5337									
2	2854.13	36.2174									
3	1710.55	42.0346									
4	1633.41	48.8327									
5	1454.06	47.1946									
6	1351.86	50.8030	ウルシオール								
7	1270.86	46.3336	ウルシオール								
8	1218.79	47.5362	ウルシオール								
9	1087.66	53.8428									
10	727.03	75.3890									

や無機質の下地層等を対象として、電子顕微鏡に付属するエネルギー分散型X線分析装置(同JED - 2200)による定性・簡易定量分析を行った。その後、再度精密研磨フィルム(#1000)を用いて厚さ約20μm前後に調整した後、生物顕微鏡を用いて塗膜構造の観察を行った。

分析にあたっては、竹原が試料採取、藤根が赤外分光分析、米田・竹原が薄片作製、竹原が顕微鏡観察とX線分析を行い、竹原が報告をまとめた。

3. 結果および考察

第496図-1c、2cに塗膜薄片の生物顕微鏡写真を、第496図-1d、2dに走査型電子顕微鏡反射電子像を示す。第495図に赤外吸収スペクトルを示す。第495図の縦軸は透過率(%R)、横軸は波数(Wavenumber

(cm⁻¹);カイザー)を示す。各スペクトルはノーマライズしてあり、吸収スペクトルに示した数字は、 生漆の赤外吸収位置を示す(第14表)。また、今回の試料からは赤色顔料層や無機質材料を用いた下地層 は確認されなかったが、参考までにX線分析の結果を第15表に示す。

以下に、塗膜の分析結果について述べる。各塗膜の特徴を第16表にまとめた。

「分析No.1 (土師器杯内面の黒色塗膜)]

塗膜薄片では、土器胎土a層、黒色漆層c層 が観察された(第496図-1c、1d)。

赤外分光分析では、炭化水素の吸収(生漆の吸収No.1 およびNo.2)が認められるが、生漆を特徴づけるウルシオールの吸収(吸収No.6 ~

第15表 X線分析結果(mass%)

分析 No.	塗膜層	С	Al ₂ O ₃	SiO ₂	CaO	Fe ₂ O ₃
1	c層	62.03	7. 20	18.85	3. 38	8. 54
1	a層	53. 20	6.07	29. 11		11. 61
2	c 2 層	89. 71	_	3. 39	3. 16	3. 74
_ Z	a層	53. 93	8. 13	28. 10	_	9.84

No.8)は明瞭ではない(第495図 -1)。 $1034cm^{-1}$ 付近に大きな吸収が見られるが、漆の劣化に伴うゴム質の吸収と思われる。以上の結果から、塗膜は漆と考えられる。

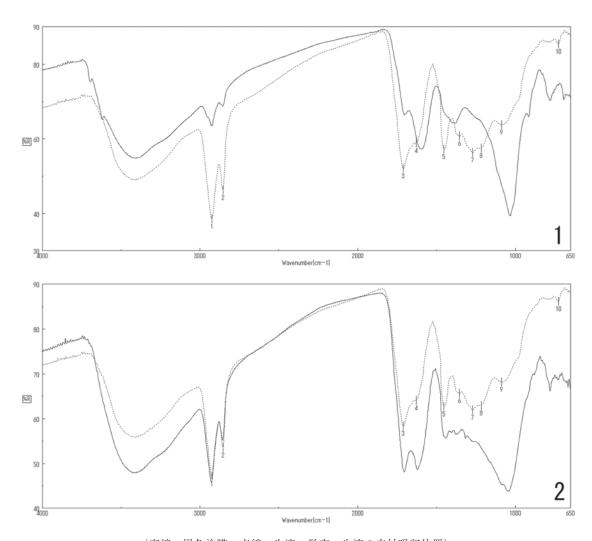
黒色漆層c層は、反射電子像(第496図 - 1d)では包埋樹脂部の輝度と同程度かやや暗いくらいであり、無機質の材料は殆ど混ざっていない有機質主体の層と考えられる。なお、塗膜が薄かったため、X線分析の結果は胎土a層の影響をかなり受けていると考えられる。生物顕微鏡観察ではc層は黒色であり、例えば煤などの有機系の黒色顔料が混和されている可能性が考えられる。

[分析No.2(土師器高坏内面の黒色塗膜)]

塗膜薄片では、土器胎土 a 層、黒色漆層c1層、透明漆層c2層が観察された(第496図 - 2c、2d)。

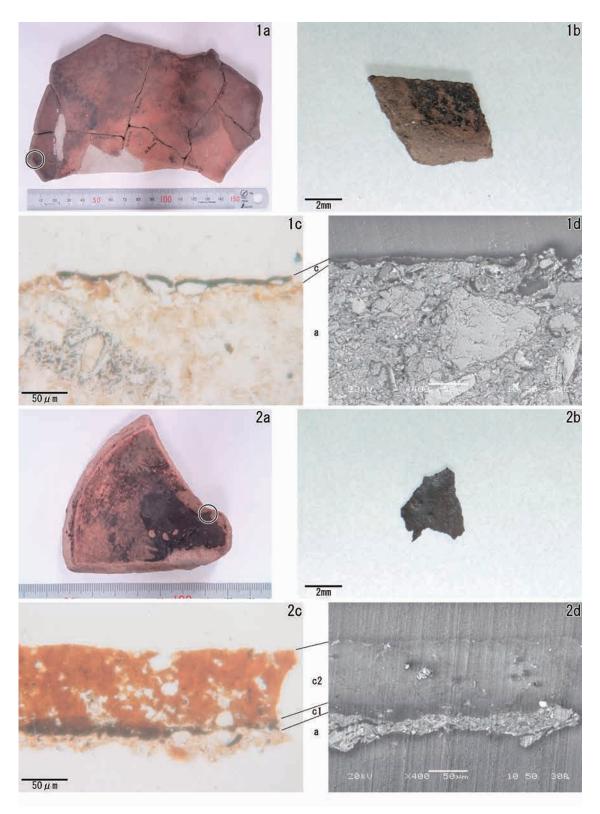
赤外分光分析では、炭化水素の吸収(生漆の吸収 $N_0.1$ および $N_0.2$)が認められ、生漆を特徴づけるウルシオールの吸収(吸収 $N_0.7$)がわずかにみられる(第495図 -2)。 $1038cm^{-1}$ 付近に大きな吸収が見られるが、漆の劣化に伴うゴム質の吸収と思われる。以上の結果から、塗膜は漆と考えられる。

黒色漆層c1層、透明漆層c2層は、反射電子像(第496図 - 1d)では包埋樹脂部の輝度と同程度かやや暗いくらいであり、無機質の材料は殆ど混ざっていない有機質主体の層と考えられる。生物顕微鏡観察ではc1層は黒色であり、例えば煤などの有機系の黒色顔料が混和されている可能性が考えられる。また、c2層にも少量ながら、黒色物の混和が観察された。


4. おわりに

漆塗土器 2 点について塗膜分析を 行い、塗膜構造や材料について検討 した。その結果、分析No.1 の土師器 皿内面の黒色塗膜は、黒色漆層 1 層

第16表 塗膜分析結果


	分析No.	資料	下地	塗膜層				
Γ	1	土師器皿内面黒色塗膜	_	1層	黒色漆層			
	2	土師器高坏内面黒色塗膜	_	2層	黒色漆層、透明漆層			

が塗られる構造と考えられた。分析No.2の土師器高坏内面の黒色塗膜は、黒色漆層と透明漆層が各1層 塗られる構造と考えられた。

(実線:黒色塗膜、点線:生漆、数字:生漆の赤外吸収位置) 1.分析No.1 土師器内面の黒色塗膜 2.分析No.2 土師器高杯内面の黒色塗膜

第495図 黒色塗膜の赤外吸収スペクトル

(a)、採取試料 (b)、塗膜構造 (c)、生物顕微鏡 (d)、反射電子像 1.分析No.1 土師器内面の黒色塗膜 2.分析No.2 土師器高杯内面の黒色塗膜

第496図 漆塗土器の試料採取位置

第3節 南構遺跡出土の須恵器蓋の内面に付着する赤色顔料の分析

竹原弘展(パレオ・ラボ)

1. はじめに

豊岡市日高町久斗・祢布に所在する南構遺跡より出土した奈良時代の須恵器蓋の内面に付着する赤色 顔料について、蛍光X線分析を行い、顔料の種類を検討した。

2. 試料と方法

分析対象は、I地区の遺構P053より出土した須恵器蓋(392)の内面に付着する赤色顔料である(第497図 - 1)。時期は、奈良時代とみられている。実体顕微鏡下で、セロハンテープに赤色部分を極微量採取して、分析試料とした。

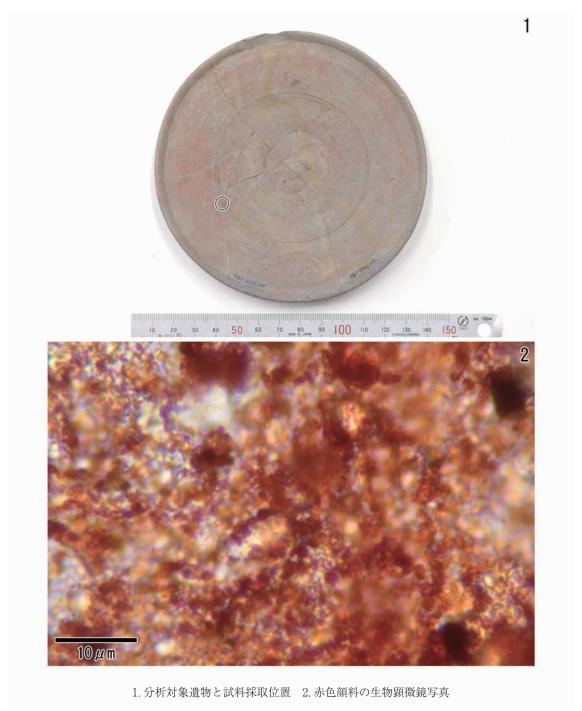
分析装置は、エネルギー分散型蛍光X線分析装置である株式会社堀場製作所製分析顕微鏡XGT -5000 Type II を使用した。装置の仕様は、X線管が最大50kV·1 mAのロジウムターゲット、X線ビーム径が 100μ mまたは 10μ m、検出器は高純度Si検出器(Xerophy)である。検出可能元素はナトリウム~ウランであるが、ナトリウム、マグネシウムといった軽元素は蛍光X線分析装置の性質上、検出感度が悪い。

本分析での測定条件は、50kV、1.00mA(自動設定による)、ビーム径 $100 \mu m$ 、測定時間500sに設定した。定量分析は、標準試料を用いないファンダメンタル・パラメータ法(FP法)による半定量分析を装置付属ソフトで行った。

さらに蛍光X線分析用に採取した試料を観察試料として生物顕微鏡で赤色顔料の粒子形状を確認した。

3. 結果

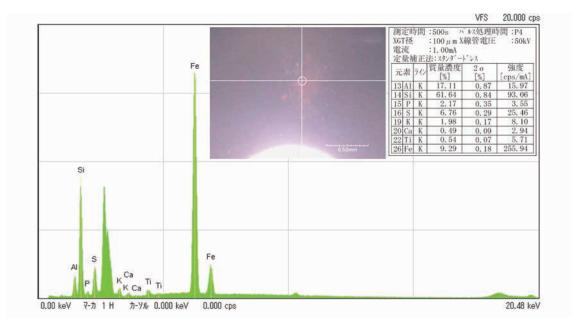
分析により得られたスペクトルおよびFP法による半定量分析結果を第498図に示す。


ケイ素(Si)、アルミニウム(Al)、鉄(Fe) が主に検出され、ほかにリン(P)、硫黄(S)、カリウム(K)、カルシウム(Ca)、チタン(Ti) が検出された。

生物顕微鏡観察により得られた画像を第497図-2に示す。赤色パイプ状の粒子は観察されなかった。

4. 考 察

赤色顔料の代表的なものとしては、朱(水銀朱)とベンガラが挙げられる。水銀朱は硫化水銀(HgS)で、鉱物としては辰砂と呼ばれ、産出地はある程度限定される。ベンガラは、狭義には三酸化二鉄(Fe2O3、鉱物名は赤鉄鉱)を指すが、広義には鉄(Π)の発色に伴う赤色顔料全般を指し(成瀬,2004)、広範な地域で採取可能である。また、ベンガラは直径約1 μ mのパイプ状の粒子形状からなるものも多く報告されている。このパイプ状の粒子形状は鉄バクテリア起源であると判明しており(岡田,1997)、含水水酸化鉄を焼いて得た赤鉄鉱がこのような形状を示す(成瀬,1998)。鉄バクテリア起源のパイプ状粒子は、湿地などで採集できる。


今回分析した試料からは、ケイ素など土中成分に由来すると考えられる元素は検出されたものの、水銀は検出されなかった。一方で鉄が検出されているため、赤い発色は鉄によるものと推定できる。すなわち、顔料としてはベンガラにあたる。パイプ状粒子は観察されず、いわゆるパイプ状ベンガラではなかった(第497図 -2)。

第497図 赤色顔料分析

5. おわりに

須恵器蓋内面に付着する赤色顔料を分析した結果、鉄 (Π) による発色と推定された。顔料としてはベンガラにあたる。

第498図 赤色顔料の蛍光X線分析結果

引用文献

成瀬正和 (1998) 縄文時代の赤色顔料 I 一赤彩土器一. 考古学ジャーナル, 438, 10-14.

成瀬正和(2004)正倉院宝物に用いられた無機顔料.正倉院紀要,26,13-61.

岡田文男(1997)パイプ状ベンガラ粒子の復元.日本文化財科学会第14回大会研究発表要旨集,38-39.

第4節 南構遺跡出土ガラス製玉の蛍光X線分析

竹原弘展(パレオ・ラボ)

1. はじめに

豊岡市日高町久斗・祢布に所在する南構遺跡より出土した古墳時代のガラス製玉について、蛍光X線 分析による元素分析を行い、材質の検討を行った。

2. 試料と方法

分析対象は、南構遺跡より出土したガラス製の玉25点である(第17表)。時期は、古墳時代である。

分析装置はエスアイアイ・ナノテクノロジー株式会社製のエネルギー分散型蛍光X線分析計SEA1200VXを使用した。装置の仕様は、X線管が最大50kV、1000μAのロジウム(Rh)ターゲット、X線照射径が8mまたは1mm、X線検出器はSDD検出器である。また、複数の一次フィルタが内蔵されており、適宜選択、挿入することでS/N比の改善が図れる。検出可能元素はナトリウム(Na)~ウラン(U)であるが、ナトリウム、マグネシウム(Mg)、アルミニウム(Al)といった軽元素は、蛍光X線分析装置の性質上、検出感度が悪い。

測定条件は、管電圧・一次フィルタの組み合わせが15kV(一次フィルタ無し)・50kV(一次フィルタPb測定用・Cd測定用)の計3条件で、測定時間は各条件500~1700s、管電流自動設定、照射径1mm、試料室内雰囲気真空に設定した。定量分析は、酸化物の形で算出し、ノンスタンダードFP法による半定量分析を行った。得られる半定量値は、同装置での測定結果を相対的に比較するための値である。

試料は、実体顕微鏡下での観察後、非破壊で測定した。実体顕微鏡

第17表 分析対象一覧

却什么	∠ 2.∃Ⅲ	月月 4 番	
報告No.	色調	器種	古墳名
J 9	青紺	丸玉	南構 2 号墳
J12	青緑	丸玉	南構 2 号墳
J15	青紺	丸玉	南構 2 号墳
J17	青緑	小玉	南構 2 号墳
J20	青緑	小玉	南構 2 号墳
J21	青紺	小玉	南構 2 号墳
J28	青緑	小玉	南構 2 号墳
J29	青紺	小玉	南構 2 号墳
J31	青紺	小玉	南構 2 号墳
J110	青紺	丸玉	南構 2 号墳
J117	青紺	丸玉	南構 3 号墳
J118	青紺	丸玉	南構 3 号墳
J126	青紺	丸玉	南構 3 号墳
J127	青紺	丸玉	南構 3 号墳
J128	青紺	丸玉	南構 3 号墳
J164	金	丸玉	南構 6 号墳
J165	青緑	丸玉	南構 6 号墳
J166	青緑	丸玉	南構 6 号墳
J236	青紺	丸玉	南構10号墳
J239	青紺	丸玉	南構10号墳
J240	青紺	小玉	南構10号墳
J243	青緑	小玉	南構10号墳
J245	青緑	小玉	南構10号墳
J247	黄	小玉	南構10号墳
J248	青緑	小玉	南構10号墳

観察は、エタノール浸漬状態で透過光下で行った。なお、ガラス製遺物は、透明で風化がないように見える箇所でも表面の風化が進んでおり、ナトリウム (NaO_2) 、カリウム (K_2O) の減少など表面の化学組成に変化が生じている(肥塚, 1997)。人為的に露出させた完全な新鮮面でない場合は、測定結果の解釈の際に風化の影響を考慮する必要がある。

3. 分析結果

実体顕微鏡写真を、第499図・第500図に示す。いずれもガラス中に気泡が多くみられた。

蛍光X線分析により得られた判定量値を第18表に示す。表では、考察で述べる化学組成上の分類に従い、試料の順番を並べ替えてある。分析の結果、25点いずれもアルカリ金属とケイ素 (SiO_2) を主成分とするアルカリ珪酸塩ガラスに属するガラスと確認された。

検出できた元素は試料によって異なるが、ナトリウム (NaO_2) 、マグネシウム(MgO)、アルミニウム (Al_2O_3) 、ケイ素 (SiO_2) 、リン (P_2O_5) 、硫黄 (SO_3) 、カリウム (K_2O) 、カルシウム(CaO)、チタン (TiO_2) 、クロム (Cr_2O_3) 、マンガン(MnO)、鉄 (Fe_2O_3) 、コバルト(CoO)、ニッケル(NiO)、銅(CuO)、

亜鉛(ZnO)、ヒ素 (As_2O_3) 、臭素(Br)、ルビジウム (Rb_2O) 、ストロンチウム(SrO)、イットリウム (Y_2O_3) 、ジルコニウム (ZrO_2) 、モリブデン (MoO_3) 、スズ (SnO_2) 、アンチモン (Sb_2O_3) 、バリウム(BaO)、鉛(PbO) の合計27元素である。

4. 考 察

実体顕微鏡観察の結果、玉には気泡が多く観察されたが、J166、239を除く23点は、孔に対して平行に伸びた気泡や気泡列が観察された。これら23点のうち、J164を除く22点はガラスを管状に引き伸ばした後、管を切って製作する引き伸ばし法(管切り法)により製作されたと考えられる。J164は、内側と外側の二層構造を持つ金色のガラス玉で、重層ガラス玉と呼ばれるタイプである。J126は、亀裂が多く観

第18表 判定量分析結果(mass%)

報告 番号	色調	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₂ O5	SO ₃	K ₂ O	CaO	TiO ₂	Cr ₂ O ₃	MnO	Fe ₂ O ₃	CoO	NiO
J12	青緑	_	_	7.46	77.65	0.58	—	10.32	0.65	0. 22	_	_	0.79	—	_
J165	青緑		_	8. 79	74.42	0.69	_	10.45	0.56	0. 25	_	_	0.99	_	
J 9	青紺	_	2. 52	2. 51	80.96	0.73	0.62	2.32	6. 59	0. 17	_	0.27	2.75	0.11	_
J21	青紺	2.39	3. 70	3.80	72.85	0.80	0.36	3. 96	7.89	0. 15	0.08	0.12	2.65	0.14	—
J29	青紺	2.19	1.23	3.05	76.70	0.65	0.73	1.79	7.45	0.17	_	0.53	3.60	0. 23	_
J31	青紺	_	1.70	3. 53	78. 19	0.81	0.90	2.17	8.51	0.16	_	0.60	2.54	0.17	_
J117	青紺	_	2.04	1.09	84.69	0.69	0.75	1.90	5. 65	0. 20	_	0.17	2.30	0.11	_
J118	青紺	_	2.81	4.61	76.60	0.75	0.69	2.66	7.51	0.19	_	0.09	2.87	0.20	0.01
J126	青紺	_	1.93	4. 59	80. 56	0.75	0.63	1.88	6. 14	0. 13	_	0.08	2. 22	0.13	_
J127	青紺	_	3.09	1.77	78. 96	0.69	0.69	2.82	7.80	0. 18	_	0.36	2. 99	0.16	_
J128	青紺		2.07	2. 21	81.44	0.67	0.65	2.43	6.62	0.16	_	0.29	2. 27	0.13	_
J236	青紺		1.43	1.49	81.37	1.10	0.84	1.37	7.01	0.18	_	0.33	3. 19	0.18	_
J15	青紺		0.67	4. 93	80. 18	0.72	0. 93	1.13	7. 27	0.30	_	0.72	2.32	0.08	_
J110	青紺	_	0.44	4. 63	84. 74	0.75	0.50	0. 27	5.06	0. 22	_	0. 20	2.30	0. 20	_
J239	青紺	_	0.68	5. 00	79. 50	0. 53	0.76	0.65	6. 41	0. 16	_	0. 59	4. 07	0. 29	_
J240	淡青		2.40	7. 72	75. 46	1.56	0.40	3. 62	5. 82	0. 32	_	0.09	1.64	0.03	_
J17	青緑	_	_	9. 07	76. 52	0. 91	0. 94	3. 81	2. 87	0. 19	_	_	2. 16	_	_
J20	青緑	5. 56	_	15. 02	63. 68	0. 71	0. 99	1. 76	5. 64	0. 44	_	0.07	3. 56	_	_
J28	青緑	_	_	9. 00	77. 96	0.42	0.79	2. 42	3. 53	0. 44	_	0. 07	2. 55	_	_
J166	青緑	_	_	7. 98	77. 73	0. 57	0.63	3. 27	2. 86	0. 47	_	0. 20	3. 10	_	_
J243	青緑	_	_	8. 57	73. 65	0.50	1. 04	2. 82	4. 17	0. 68	_	0. 56	4. 43	_	0.02
J245	青緑	_	_	12. 05	70. 17	0. 77	0. 97	3. 24	3. 23	0. 66	_	0.52	4. 80	_	0.02
J243 J248	青緑	4. 09	0.30	13. 89	64. 67	0.77	0. 80	2. 45	5. 15	0. 00	_	0. 32	4. 19		0.02
J247	黄	9. 85		15. 32	56. 66	0. 78	1. 35	1.89	3. 49	0. 46	_	0. 18	3. 85	_	_
J247 J164		9.00		9. 15	72. 59	0. 73	0.74	2. 52	5. 07	0. 40		0. 03	7. 04		
JIOT	<u> </u>			J. 10	14.00	0.75	U. 1 T	4.04				0.20	1.04		
起生.															世中
報告番号	色調	CuO	ZnO	As ₂ O ₃	Br	Rb ₂ O	SrO	Y ₂ O ₃	ZrO ₂	MoO3	SnO ₂	Sb ₂ O ₃	ВаО	PbO	推定 技法
番号			ZnO	As ₂ O ₃	Br			Y ₂ O ₃	ZrO ₂	MoO ₃			BaO		技法
番号 J12	青緑	1.96	_	_	_	0.06	_	_	ZrO ₂	MoO3 0. 01	0.12	0.01	_	0.13	技法 引伸
番号 J12 J165	青緑青緑	1. 96 2. 55	— 0. 01	As ₂ O ₃ — 0.03	_ _	0. 06 0. 07	_ _		ZrO ₂ 0. 03 0. 04	MoO ₃ 0. 01 0. 01	0. 12 0. 21	0. 01 0. 01		0. 13 0. 92	技法 引伸 引伸
番号 J12 J165 J 9	青緑 青緑 青紺	1. 96 2. 55 0. 17	0. 01 —	0.03 —		0. 06 0. 07 —	— — 0.09	_ _ _	ZrO ₂ 0. 03 0. 04 0. 03	MoO ₃ 0. 01 0. 01 —	0. 12 0. 21 0. 01	0. 01 0. 01 —	_ _ _	0. 13 0. 92 0. 15	技法 引伸 引伸 引伸
番号 J12 J165 J 9 J21	青緑 青緑 青紺	1. 96 2. 55 0. 17 0. 23	0.01 —	_		0.06 0.07 —	 0.09 0.15		ZrO ₂ 0. 03 0. 04 0. 03 0. 04	MoO ₃ 0. 01 0. 01 — —	0. 12 0. 21 0. 01 0. 01	0. 01 0. 01 —		0. 13 0. 92 0. 15 0. 46	技法 引伸 引伸 引伸 引伸
番号 J12 J165 J 9 J21 J29	青緑 青緑 青紺 青紺	1. 96 2. 55 0. 17 0. 23 0. 31	0. 01 0. 01	0.03 — — —		0. 06 0. 07 — — —	0.09 0.15 0.13		ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06	MoO ₃ 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01	0. 01 0. 01 — —		0. 13 0. 92 0. 15 0. 46 0. 36	技法 引伸 引伸 引伸 引伸 引伸
番号 J12 J165 J 9 J21 J29 J31	青緑 青緑 青紺 青紺	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18		- 0.03 - - - -		0.06 0.07 — — —	 0. 09 0. 15 0. 13 0. 15		ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07	MoO3 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01	0. 01 0. 01 — — —		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30	技法 引伸 引伸 引伸 引伸 引伸
番号 J12 J165 J 9 J21 J29 J31 J117	青緑 青紺 青紺 青紺	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12	 0.01 0.01 	- 0.03 - - - - -		0.06 0.07 — — — —	 0.09 0.15 0.13 0.15 0.12		ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07 0. 04	MoO ₃ 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 -	0. 01 0. 01 — — — —	 0. 21 0. 82 	0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13	技法 引伸 引伸 引伸 引伸 引伸 引伸
番号 J12 J165 J 9 J21 J29 J31 J117 J118	青緑 青紺 青紺 青紺 青紺 青紺	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44	0. 01 0. 01 0. 01 0. 01	- 0.03 - - - -		0.06 0.07 — — — — —	 0.09 0.15 0.13 0.15 0.12 0.09		ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07 0. 04 0. 02	MoO ₃ 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 	0. 01 0. 01 — — — — —	0. 21 0. 82 -	0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43	技法 引伸 引伸 引伸 引伸 引伸 引伸
番号 J12 J165 J 9 J21 J29 J31 J117 J118 J126	青緑緑 甜 甜 甜 甜 甜 甜 甜 甜 甜 甜 甜 甜	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34		- 0.03 - - - - -		0.06 0.07 — — — —		— — — — — — —	ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07 0. 04 0. 02 0. 02	MoO ₃ 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01	0. 01 0. 01 — — — — — —	 0. 21 0. 82 	0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51	技法 引伸 引伸 引伸 引伸 引伸 引伸 ?
番号 J12 J165 J9 J21 J29 J31 J117 J118 J126 J127	青緑緑 紺 紺 紺 紺 紺 紺 紺 紺 紺 紺 紺 紺 紺 紺 紺 紺 紺 紺	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17				0.06 0.07 ——————————————————————————————————			ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07 0. 04 0. 02 0. 02 0. 04	MoO ₃ 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 	0. 01 0. 01 — — — — — —		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17	技術 引伸 引伸 引伸 引伸 引伸 引伸
番号 J12 J165 J 9 J21 J29 J31 J117 J118 J126 J127 J128	青禄 甜甜 甜甜 甜甜 甜甜 甜甜 甜 甜 甜 甜 甜 甜 甜 甜 甜 甜 甜	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17 0. 17		- 0.03 - - - - -		0.06 0.07 		- - - - - - - - - -	ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07 0. 04 0. 02 0. 02 0. 04 0. 03	MoO ₃ 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 	0. 01 0. 01 ————————————————————————————————————		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17	技術 明伸 明伸 明伸 明伸 明伸 明伸 明伸 明明 明明 明明 明明 明明 明明
番号 J12 J165 J9 J21 J29 J31 J117 J118 J126 J127 J128 J236	青禄緑紺紺紺紺紺紺紺紺紺紺紺 青青青青	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17 0. 17				0.06 0.07 		- - - - - - - - - -	ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07 0. 04 0. 02 0. 02 0. 04 0. 03 0. 04	MoO ₃ 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01	0.01 0.01 		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17 0. 18	技法 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸
番号 J12 J165 J9 J21 J29 J31 J117 J118 J126 J127 J128 J236 J15	青春精甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜甜	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17 0. 17 0. 33 0. 13	0.01 			0.06 0.07 ——————————————————————————————————			ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07 0. 04 0. 02 0. 02 0. 04 0. 03 0. 04 0. 03 0. 04 0. 03	MoO ₃ 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01	0. 01 0. 01 		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17 0. 18 0. 35 0. 12	技 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸
番号 J12 J165 J9 J21 J29 J31 J117 J118 J126 J127 J128 J236 J15 J110	青綠綠紺紺紺紺紺紺紺紺紺紺紺紺紺紺紺紺紺紺	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17 0. 17 0. 33 0. 13 0. 25				0.06 0.07 			ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07 0. 04 0. 02 0. 02 0. 04 0. 03 0. 04 0. 03 0. 04 0. 04 0. 04	MoO ₃ 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01	0. 01 0. 01 — — — — — — — — — — — — —		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17 0. 18 0. 35 0. 12 0. 31	技 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸
番号 J12 J165 J9 J21 J29 J31 J117 J118 J126 J127 J128 J236 J15 J110 J239	青春精維維維維維維維維維維維維維維維維維維維維維維維維維維維維維維維維維維維維	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17 0. 17 0. 33 0. 13 0. 25 0. 43	0.01 			0.06 0.07 ——————————————————————————————————			ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07 0. 04 0. 02 0. 02 0. 04 0. 03 0. 04 0. 03 0. 04 0. 04 0. 05	MoO ₃ 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01	0. 01 0. 01 0. 01		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17 0. 18 0. 35 0. 12 0. 31	技 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸
番号 J12 J165 J9 J21 J29 J31 J117 J118 J126 J127 J128 J236 J15 J110 J239 J240	青春精維維維維維維維維維維維維維維維維維維維維維維維維維維維維維維維維維維維維	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17 0. 17 0. 33 0. 13 0. 25 0. 43				0.06 0.07			ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07 0. 04 0. 02 0. 02 0. 04 0. 03 0. 04 0. 04 0. 04 0. 05 0. 02	MoO ₃ 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01	0. 01 0. 01 — — — — — — — — — — — — —		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17 0. 18 0. 35 0. 12 0. 31	技制 中 司 中 司 中 司 中 司 中 司 中 司 中 司 中 司 中 司 中
番号 J12 J165 J9 J21 J29 J31 J117 J118 J126 J127 J128 J236 J15 J110 J239 J240 J17	青青青青青青青青青青青青青淡青	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17 0. 17 0. 33 0. 25 0. 43 0. 10				0. 06 0. 07			ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07 0. 04 0. 02 0. 02 0. 04 0. 03 0. 04 0. 03 0. 04 0. 04 0. 04 0. 05 0. 02 0. 25	MoO3 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01	0. 01 0. 01 ————————————————————————————————————		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17 0. 18 0. 35 0. 12 0. 31 0. 43 0. 51 0. 25	技術 明伸 明伸 明伸 明明
番号 J12 J165 J9 J21 J29 J31 J117 J118 J126 J127 J128 J236 J15 J110 J239 J240 J17 J20	青青青青青青青青青青青青青青淡青青	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17 0. 17 0. 33 0. 25 0. 43 0. 10 1. 15				0. 06 0. 07			ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07 0. 04 0. 02 0. 02 0. 04 0. 03 0. 04 0. 04 0. 04 0. 05 0. 02 0. 25 0. 12	MoO ₃ 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01	0. 01 0. 01 — — — — — — — — — — — — —		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17 0. 18 0. 35 0. 12 0. 31 0. 43 0. 67	技 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸 引伸
番号 J12 J165 J 9 J21 J29 J31 J117 J118 J126 J127 J128 J236 J15 J110 J239 J240 J17 J20 J28	青青青青青青青青青青青青青青青	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17 0. 17 0. 33 0. 13 0. 25 0. 43 0. 10 1. 15 1. 09				0. 06 0. 07			ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07 0. 04 0. 02 0. 02 0. 04 0. 03 0. 04 0. 04 0. 04 0. 05 0. 02 0. 25 0. 12 0. 16	MoO3 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 02 0. 01 0. 02 0. 08	0. 01 0. 01 		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17 0. 18 0. 35 0. 12 0. 31 0. 43 0. 67 0. 28 0. 01	技 引伸 引伸 引伸 引伸 引伸 引伸中 引伸中 引伸中 引伸中
番号 J12 J165 J 9 J21 J29 J31 J117 J118 J126 J127 J128 J15 J110 J230 J17 J240 J17 J20 J28 J166	青青青青青青青青青青青青青青青青青青青青青	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17 0. 17 0. 33 0. 13 0. 25 0. 43 0. 10 1. 15 1. 09 1. 18				0. 06 0. 07			ZrO ₂ 0.03 0.04 0.03 0.04 0.06 0.07 0.04 0.02 0.02 0.04 0.03 0.04 0.04 0.05 0.02 0.05 0.02 0.05 0.05 0.05 0.05	MoO3 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 02 0. 01 0. 02 0. 08	0. 01 0. 01 		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17 0. 18 0. 35 0. 12 0. 31 0. 43 0. 67 0. 28 0. 01 0. 01	技制 明
番号 J12 J165 J 9 J21 J29 J31 J117 J128 J126 J15 J110 J239 J240 J166 J243	青青青青青青青青青青青青青青青淡青青青青青青	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17 0. 17 0. 33 0. 13 0. 25 0. 43 0. 10 1. 15 1. 09 1. 18 1. 28 2. 71				0. 06 0. 07			ZrO ₂ 0.03 0.04 0.03 0.04 0.06 0.07 0.04 0.02 0.02 0.04 0.03 0.04 0.04 0.05 0.02 0.25 0.12 0.16 0.30 0.18	MoO3 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 02 0. 01 0. 02 0. 03 0. 04 0. 02 0. 08 0. 00 0. 01 0. 01 0. 02 0. 08	0. 01 0. 01 0. 01		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17 0. 18 0. 35 0. 12 0. 31 0. 43 0. 67 0. 28 0. 01 0. 03 0. 03 0. 03 0. 03 0. 04 0. 05 0.	技 引伸
番号 J12 J165 J 9 J21 J29 J31 J117 J128 J126 J15 J110 J239 J240 J17 J20 J21 J20 J21 J21 J21 J21 J22 J31 J23 J31 J24 J31 J25 J31 J31 J31 J31 J31 J31 J31 J31	青青青青青青青青青青青青青青青淡青青青青青青青	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17 0. 17 0. 33 0. 13 0. 25 0. 43 0. 10 1. 15 1. 09 1. 18				0. 06 0. 07			ZrO ₂ 0.03 0.04 0.03 0.04 0.06 0.07 0.04 0.02 0.02 0.04 0.03 0.04 0.04 0.05 0.02 0.05 0.02 0.05 0.05 0.05 0.05	MoO ₃ 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 02 0. 01 0. 02 0. 08	0. 01 0. 01 0. 01		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17 0. 18 0. 35 0. 12 0. 31 0. 43 0. 67 0. 28 0. 01 0. 01	技 引 伸伸
番号 J12 J165 J 9 J21 J29 J31 J117 J128 J126 J15 J110 J239 J240 J17 J20 J28 J17 J20 J24 J17 J20 J21 J21 J21 J22 J23 J24 J24 J25 J27 J27 J28 J27 J28 J28 J29 J29 J29 J29 J29 J29 J29 J29	青青青青青青青青青青青青青青清清青青青青青青青青青	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17 0. 17 0. 33 0. 13 0. 25 0. 43 0. 10 1. 15 1. 09 1. 18 1. 28 2. 71				0. 06 0. 07			ZrO ₂ 0.03 0.04 0.03 0.04 0.06 0.07 0.04 0.02 0.02 0.04 0.03 0.04 0.04 0.05 0.02 0.25 0.12 0.16 0.30 0.18	MoO ₃ 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 02 0. 01 0. 02 0. 03 0. 02 0. 08 0. 00 0. 01 0. 02 0. 08 0. 00 0. 01 0. 01	0. 01 0. 01 0. 01		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17 0. 18 0. 35 0. 12 0. 31 0. 43 0. 67 0. 28 0. 01 0. 03 0. 03 0. 03 0. 03 0. 04 0. 05 0.	技 引伸
番号 J12 J165 J9 J21 J29 J31 J117 J128 J236 J15 J110 J239 J240 J17 J20 J28 J166 J17 J20 J28 J17 J29 J24 J17 J20 J21 J21 J23 J24 J24 J24 J24 J24 J24 J24 J24	青青青青青青青青青青青青青青青青青青青青青青青青青	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17 0. 17 0. 33 0. 13 0. 25 0. 43 0. 10 1. 15 1. 09 1. 18 1. 28 2. 71 2. 81				0. 06 0. 07			ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07 0. 04 0. 02 0. 02 0. 04 0. 03 0. 04 0. 04 0. 05 0. 02 0. 25 0. 12 0. 16 0. 30 0. 18 0. 20	MoO3 0.01 0.01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 02 0. 01 0. 02 0. 01 0. 02 0. 01 0. 02 0. 01 0. 02 0. 01 0. 02 0. 03	0. 01 0. 01		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17 0. 18 0. 35 0. 12 0. 31 0. 43 0. 67 0. 28 0. 01 0. 03 0. 03	技 引伸伸 可引伸伸伸 可引伸伸伸 ? 可引 一 可引
番号 J12 J165 J9 J21 J29 J31 J117 J126 J127 J128 J236 J15 J110 J239 J240 J17 J20 J21 J20 J21 J21 J21 J22 J31 J23 J31 J24 J31 J33 J34 J35 J35 J35 J36 J37 J37 J37 J37 J37 J37 J37 J37	青青青青青青青青青青青青青青青青青青青青青青青青青	1. 96 2. 55 0. 17 0. 23 0. 31 0. 18 0. 12 0. 44 0. 34 0. 17 0. 17 0. 33 0. 13 0. 25 0. 43 0. 10 1. 15 1. 09 1. 18 1. 28 2. 71 2. 81 1. 02				0. 06 0. 07			ZrO ₂ 0. 03 0. 04 0. 03 0. 04 0. 06 0. 07 0. 04 0. 02 0. 02 0. 04 0. 03 0. 04 0. 04 0. 05 0. 02 0. 25 0. 12 0. 16 0. 30 0. 18 0. 20 0. 18	MoO3 0. 01 0. 01	0. 12 0. 21 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 02 0. 01 0. 02 0. 08 0. 01 0. 02 0. 03 0. 03	0. 01		0. 13 0. 92 0. 15 0. 46 0. 36 0. 30 0. 13 0. 43 0. 51 0. 17 0. 18 0. 35 0. 12 0. 31 0. 43 0. 67 0. 28 0. 01 0. 01 0. 03	技 引伸

察され、鋳型法による製作も考えられたが、気泡列は亀裂を跨いで連なっており、引き伸ばし法による 製作と考えられる。J166は、規則的な気泡列などは観察できず、製作技法は不明であった。J239は規 則的な気泡列などはみられず、亀裂が多く観察されたため、鋳型法により製作された可能性がある。

古代のガラスについては、肥塚・田村・大賀(2010など)や、中井・阿部ら(白瀧ほか, 2012など)により、詳細に分類されている。今回分析した玉類を、化学組成に基づき、以下のとおり分類した。

・青緑色ガラス玉(K₂O-SiO₂系)(J12、J165)

J12、J165の2点は、カリウム(K_2O) が多く、カルシウム(CaO) とストロンチウム(SrO) が比較的少なく、ルビジウム(Rb_2O) が比較的多く検出されるといった特徴がみられ、基礎ガラスはカリガラス(K_2O-SiO_2 系)に分類されると考えられる。また、一般的な青紺色のカリガラスと比較すると、アルミニウム(Al_2O_3)が比較的多く、カルシウム(CaO)が比較的少ない傾向がみられる。

発色には、銅イオンと鉄イオンが主に影響していると推定される。青緑色のカリガラスは、銅(CuO) に加えてスズ(SnO₂)や鉛(PbO)も少量検出される傾向があり(肥塚, 1997)、今回分析した試料も同様であった。

・青紺色ガラス玉(Na₂O-CaO-SiO₂系)(J9、J15、J21、J29、J31、J110、J117、J118、 J126~128、J236、J239)

J9、J15、J21、J29、J31、J110、J117、J118、J126~128、J236、J239の13点は、ルビジウム (Rb_2O) とジルコニウム (ZrO_2) が少なく、ストロンチウム (SrO) が比較的多いなどの特徴により、基礎ガラスはアルミニウム (Al_2O_3) が比較的少なくカルシウム (CaO) の量が多いタイプである、ソーダ石灰ガラス $(Na_2O-CaO-SiO_2 \mathbb{R})$ に属すると考えられる。なお、主成分のひとつであるナトリウム (Na_2O) の含有量はそれほど多くないが、風化の影響を受けやすい元素である点や、蛍光X線での感度の悪い元素である点を考慮して、上述の他の元素の組成よりソーダ石灰ガラスと判断した。ナトリウムの含有量については、後述のアルミナソーダ石灰ガラスでも同様な判断を行っている。

青紺色の発色については、コバルトイオンが大きく影響していると推定される。

 $Na_2O-CaO-SiO_2$ 系のソーダ石灰ガラスは、西アジアやエジプトなど地中海周辺地域にみられ、「西方のガラス」と呼ばれる(肥塚、2003など)。さらに、 $Na_2O-CaO-SiO_2$ 系のソーダ石灰ガラスは、ナトリウム源にナトロンと呼ばれる天然ソーダを使用したと推定されるマグネシウム(MgO)、カリウム(K_2O)の少ないタイプと、ナトリウム源に植物灰を使用したと推定されるマグネシウム(MgO)、カリウム(K_2O)の多いタイプに分類されており(加藤ほか、2005など)、日本の $Na_2O-CaO-SiO_2$ 系のソーダ石灰ガラスにおいても両者の存在が明らかとなっている(田村ほか、2011)。今回分析した $Na_2O-CaO-SiO_2$ 系のソーダ石灰ガラスのうち、J15、J110、J239を除く10点はマグネシウム(MgO)、カリウム(K_2O)が比較的多い植物灰ガラスと考えられる。一方、J15、J110、J239の3点は、マグネシウム(MgO)、カリウム(K_2O)がやや少なめでナトロンガラスに分類されるが、少なくとも J15、J110の 2点は引き伸ばし法で製作されており、田村ら(2011)によるところのナトロン主体タイプにあたると考えられる。

・淡青色ガラス玉(Na₂O-CaO-SiO₂系またはNa₂O-Al₂O₃-CaO-SiO₂系)(J 240)

J 240は、ルビジウム (Rb_2O) とジルコニウム (ZrO_2) が少なく、ストロンチウム (SrO) が比較的多いなどの特徴がみられる一方で、アルミニウム (Al_2O_3) が多く、基礎ガラスはソーダ石灰ガラス $(Na_2O-CaO-SiO_2\mathbb{R})$ か、アルミナソーダ石灰ガラス $(Na_2O-Al_2O_3-CaO-SiO_2\mathbb{R})$ に属するか判断できなかった。

 $Na_2O-CaO-SiO_2$ 系のソーダ石灰ガラスであれば基本的には紺色系であるが、J 240はコバルト (CoO) の含有量がやや少ない。銅(CuO) の含有量も比較的少なく、淡い青色の発色には、鉄イオンに加えて、これらの少量のコバルトイオンと銅イオンが影響していると推定される。また、 $Na_2O-CaO-SiO_2$ 系のソーダ石灰ガラスであった場合は、マグネシウム(MgO)、カリウム (K_2O) が比較的多く、植物灰ガラスに属すると考えられる。

・青緑色ガラス玉(Na 2O – Al 2O3 – CaO – SiO 2系)(J17、J20、J28、J166、J243、J245、J248)

J17、J20、J28、J166、J243、J245、J248の7点は、アルミニウム (Al_2O_3) の量が多く、カルシウム(CaO)をある程度含有し、ルビジウム (Rb_2O) が少なく、ストロンチウム(SrO)とジルコニウム (ZrO_2) が比較的多いなどの特徴により、基礎ガラスはアルミナソーダ石灰ガラス $(Na_2O-Al_2O_3-CaO-SiO_2 系)$ に属すると考えられる。

発色には、銅イオンと鉄イオンが主に影響していると推定される。

・黄色ガラス玉(Na₂O-Al₂O₃-CaO-SiO₂系)(J247)

J247も、上述の青緑色ガラス小玉と同様にナトリウム (Na_2O) とアルミニウム (Al_2O_3) の量が多く、カルシウム (CaO) をある程度含有し、ルビジウム (Rb_2O) が少なくてストロンチウム (SrO)とジルコニウム (ZrO_2) が比較的多いなどの特徴により、基礎ガラスはアルミナソーダ石灰ガラス $(Na_2O-Al_2O_3-CaO-SiO_2$ 系) に属すると考えられる。

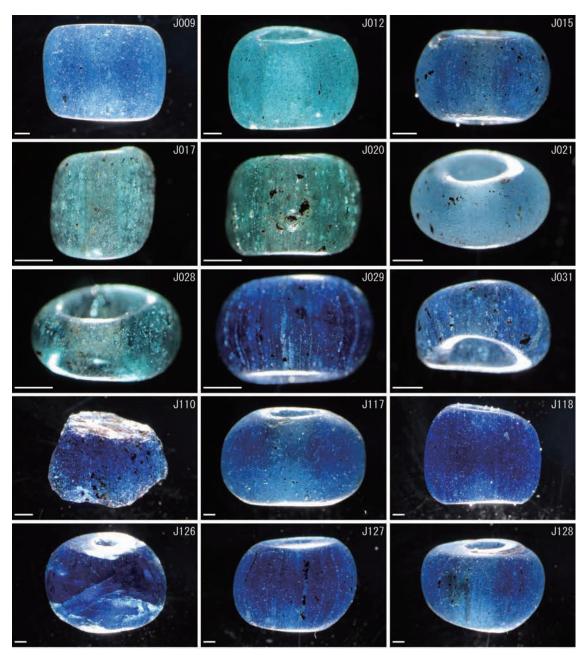
黄色のガラス玉の色調は、先述の青緑色のガラス玉、今回の分析対象には含まれていないが黄緑色のガラス玉と併せて、銅、スズ、鉛の多寡により説明される(肥塚・田村・大賀, 2010;白瀧ほか, 2010;白瀧ほか, 2012)。すなわち、青緑色のガラス小玉は銅イオンの影響で着色され、黄緑色のガラス小玉は銅イオンに加えて鉛スズ化合物の黄色顔料の添加により黄緑色となり、銅が少ないと黄色のガラスとなる。今回分析した I 247は、実体顕微鏡観察において黄色顔料の存在が確認された。

・重層ガラス玉 $(Na_2O - Al_2O_3 - CaO - SiO_2$ 系) (J 164)

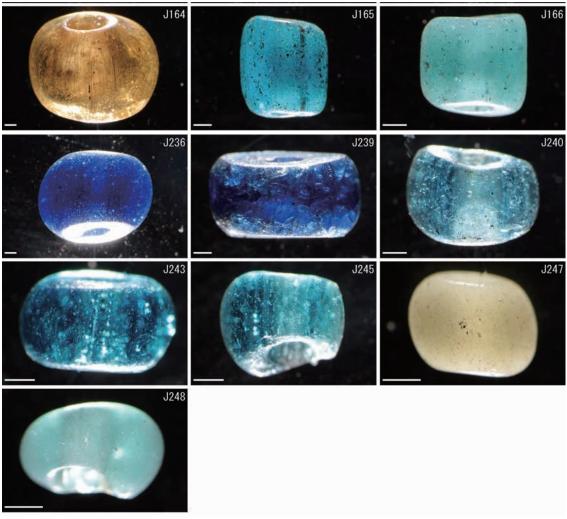
J164は、先述のとおり、金色の色調で内側と外側の二重構造を持つ重層ガラス玉だが、基礎ガラスは、アルミニウム (Al_2O_3) の量が多く、カルシウム (CaO) をある程度含有し、ルビジウム (Rb_2O) が少なく、ストロンチウム (SrO) とジルコニウム (ZrO_2) が比較的多いなど、先述のアルミナソーダ石灰ガラス $(Na_2O-Al_2O_3-CaO-SiO_2\mathbb{R})$ とほぼ同様の特徴を持つ。

重層ガラス玉は、金層ガラス玉とも呼ばれ、層間に金や銀の金属箔が挟み込まれていることも多いが、今回分析したJ164の表面からは金(Au)や銀(Ag)は検出できなかったため、本資料の金属箔の存在については不明である。また、銅(Cu)、スズ(Sn)、鉛(PbO)、アンチモン (Sb_2O_3) はほとんど検出されず、バリウム(BaO)がやや多かった。鉄 (Fe_2O_3) が多く検出されており、色調にも影響を与えてい

ると考えられる。


日本列島においてガラスは、弥生時代より出現する。弥生時代の主なガラスは鉛バリウムガラスとカリガラスであり、弥生時代後期頃からソーダ石灰ガラス、アルミナソーダ石灰ガラスが少量出現するようになる。古墳時代以降は、ソーダ石灰ガラス、アルミナソーダ石灰ガラスが多量に流通する一方、カリガラスは少量の流通となり、鉛バリウムガラスの流通は途絶える。

5. おわりに


遺跡より出土したガラス製品25点の蛍光X線分析を行った結果、いずれもアルカリ珪酸塩ガラスと確認された。化学組成の特徴から、青緑色の2点はカリガラスに、青紺色の13点はソーダ石灰ガラスに、淡青色の1点はソーダ石灰ガラスまたはアルミナソーダ石灰ガラスに、青緑色の7点、黄色の1点、金色の1点はアルミナソーダ石灰ガラスに属する可能性が高い。金色のガラス玉は、いわゆる重層ガラスと考えられる。

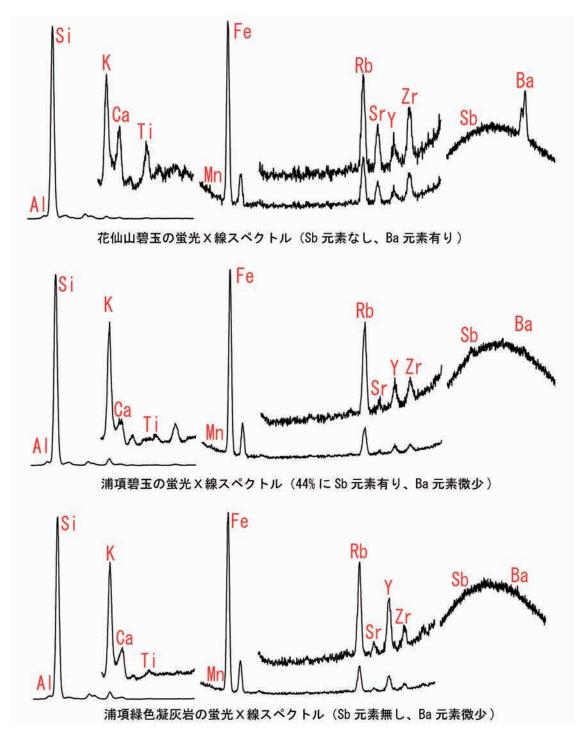
引用・参考文献

- 加藤慎啓・沢田貴史・保倉明子・中井 泉・真道洋子(2005)ポータブル蛍光X線分析装置によるエジプト・ラーヤ遺跡出土ガラスの考古化学的研究. 日本文化財科学会第22回大会研究発表要旨集,250-251.
- 肥塚隆保(1997) 日本で出土した古代ガラスの歴史的変遷に関する科学的研究. 132p, 東京藝術大学博士学位論文.
- 肥塚隆保(2003)日本出土ガラスから探る古代の交易―古代ガラス材質の歴史的変遷―. 沢田正昭編 「遺物の保存と調査」:145-158、クバプロ.
- 肥塚隆保・田村朋美・大賀克彦(2010)古代ガラスと考古科学 材質とその歴史的変遷.月刊文化財, 566,13-25.
- 松崎真弓・白瀧絢子・池田朋生・中井 泉 (2012) 非破壊オンサイト分析による日本出土の古代ガラス の流通に関する考古化学的研究. 日本文化財科学会第29回大会研究発表要旨集,374-375.
- 中井 泉編 (2005) 蛍光X線分析の実際. 242p, 朝倉書店.
- 作花済夫・境野照雄・高橋克明編(1975)ガラスハンドブック. 1072p, 朝倉書店.
- 白瀧絢子・阿部善也・タンタラカーン・クリアンカモル・中井 泉・池田朋生・坂口圭太郎・後藤克博 (2010)熊本県の古墳から出土したガラスビーズの考古化学的研究. 日本文化財科学会第27回大会研究 発表要旨集, 254 255.
- 白瀧絢子・阿部善也・K. タンタラカーン・中井 泉・池田朋生・坂口圭太郎・後藤克博・荒木隆宏 (2012) 熊本県出土の古代ガラスの考古化学的研究. 考古学と自然科学, 63, 29-52.
- 田村朋美・高妻洋成・肥塚隆保(2011)日本出土ソーダ石灰ガラス製玉の種類とその変遷.日本文化財科学会第28回大会研究発表要旨集,120-121.
- 田村朋美・高妻洋成(2012)弥生・古墳時代のナトロンガラス製玉類の考古化学的研究. 日本文化財科学会第29回大会研究発表要旨集,24-25.
- 田村朋美(2013) 宇津久志1号墳出土ガラス玉の自然科学的調査. 小田桐淳・山本輝雄・木村泰彦・原秀樹・中島皆夫・白川成明編「長岡京市埋蔵文化財発掘調査資料選(二)」:51-62, 長岡京市埋蔵文化財センター.
- 山根正之(1989) はじめてガラスを作る人のために、195p. 内田老鶴圃.

第499図 ガラス玉の実体顕微鏡写真(1) (透過光、右上は報告番号、スケールは1mm)

第500図 ガラス玉の実体顕微鏡写真(2)(透過光、右上は報告番号、スケールは1mm)

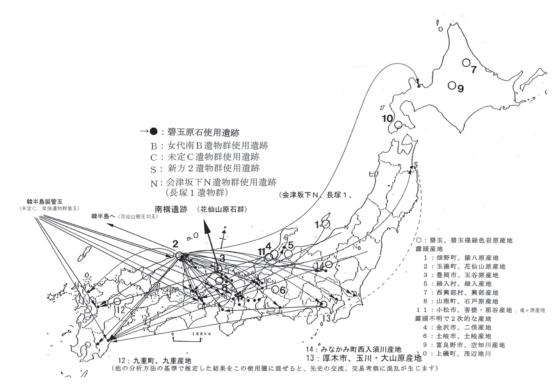
第5節 南構遺跡出土管玉、切子玉石材の原石、遺物群同定


遺物材料研究所 藁科哲男

はじめに

ヒスイ、碧玉製勾玉、大珠、玉などは、国宝、重要文化財級のものが多く、非破壊で産地分析が行な える方法でなければ発展しない。よって石器の原材産地分析で成功している4)非破壊で分析を行なう蛍 光X線分析法を用いて玉類に含有されている元素を分析する。蛍光X線分析のみで鉱物名を求めること は出来ない。本報告書で使用する鉱物名は考古学で使用する通称名で遺跡から出土した大珠、勾玉、管 玉などを水洗いして、試料ホルダーに置くだけの、完全な非破壊で産地分析を行った。玉類は蛍光X線 分析法で元素の種類と含有量を求め、試料の形や大きさの違いの影響を打ち消すために分析された元素 同士で含有量の比をとり、この遺物成分の元素比の値と同じ成分を持つ遺物を各遺跡から探し、同じ石 材を使用しているとして、その使用圏を石材採取遺跡も含めて求める。同じ成分の遺物は同じ石材を使 用しているとする根拠は、石製品の製作行為の石材分割、成形過程の石材面の元素成分を接合していく ことで石製品作りに関連づけられ、考古学の研究となり、石製品作りのために古代人が最初に原石を手 にした玉材産地を、地質学的産地から先史人の痕跡を見つけて決定します。また、石製品の石材産地が 不明のときは、同じ石材を使用した遺跡として、同じ石製品を作る遺跡から供給された消費遺跡と考え られます。遺物成分群の作成理由は、蛇紋岩、滑石、緑泥石片岩の露頭の各原石が均一か?否か?不明 で、成分組成のバラツキの大きいもので原石群を作ると、原産地間(原石採取地点間)の区別ができない 状態になり、産地同定結果を誤判定する可能性が非常に高くなり信頼性のない結果になります。この誤 判定を避けるために、玉類の成分組成で遺物群を作り、露頭の各原石1個、1個と遺物群と比較し一致 するか同定して地質学的産地を求めて、この地質学的産地が古代人が最初に原石を採取した地点か否 か、考古学者による加工片の散布など証拠を求めて、考古学的産地を同定し、産地分析は終了する。地 質学的産地が不明でも特定の地域で同じ成分の遺物が多数出土する地域が考古学的産地に近いとする考 えは、様式学の同形遺物形式が多数見られる地域が様式の発生地とした考察に匹敵すると考えられる。 また、1cmΦの分析管の中に入る玉類はESR法を併用するが試料を全く破壊することなく、玉に含有さ れている常磁性種を分析し、蛍光X線分析で求めた結果をさらに詳細に石材、遺物群を区別するために 産地、遺物群同定に利用する5)。今回分析した管玉は、南構遺跡出土管玉の2点および切子玉の同定結 果である。

碧玉原石の蛍光X線分析


第501図に韓国、浦項碧玉、浦項緑色凝灰岩、花仙山碧玉の蛍光X線スペクトルの例を示した。碧玉の蛍光X線分析で求めた含有元素の中で、石材、遺物成分群の産地同定に用いる元素比組成は、Al/Si、K/Si、Ca/K、Ti/K、K/Fe、Rb/Fe、Fe/Zr、Rb/Zr、Sr/Zr、Y/Zrである。Mn/Fe、Ti/Fe、Nb/Zrの元素比は非常に小さく、小さい試料の場合測定誤差が大きくなるので定量的な判定の指標とはせず、判定のときに、Sb、Ba、La、Ceのピーク高さとともに、定性的に原材産地を判定する指標として用いる。

第501図 浦項碧玉、浦項緑色凝灰岩、花仙山碧玉の蛍光X線スペクトル

碧玉の原産地と原石の分析結果

分析した碧玉の原石の原産地を第502図に示す。佐渡猿八原産地は、①新潟県佐渡郡畑野町猿八地区で、産出する原石は地元で青玉と呼ばれている緑色系の石で、良質なものは割れ面がガラス光沢を示し、質の良くないものは光沢の少ないグリーンタフ的なものである。産出量は豊富であったらしく採石跡が何ケ所か見られる。今回分析した原石は猿八の各地点、小倉川河床から表採したもの、および地元で提供された原石などであり、また提供されたものの中には露頭から得られたものがあり、それはグ

第502図 古墳(続縄文)時代の碧玉製管玉の原材使用分布圏および碧玉・碧玉様岩の原産地

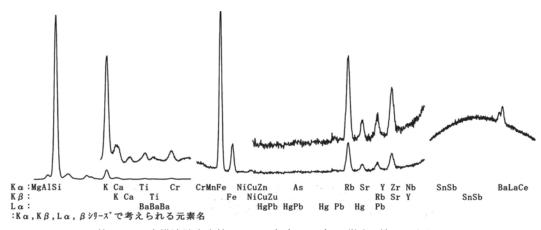
リーンタフ層の間に約7cm幅の良質の碧玉層が挟まれた原石であった。分析した原石の比重は、2.6~ 2.1の間で大半は2.6~2.48で、この中には、茶色系碧玉も含まれ、原石の比重が2.6~2.3の範囲で違っ ても、碧玉の色が茶色、緑色、また、茶系色と緑系色の縞があるなど、多少色の違いがあっても分析し た元素組成上には大きな差はみられなかった。出雲の花仙山は近世まで採掘が行われた原産地で、所在 地は②島根県八東郡玉湯町玉造温泉地域である。横屋堀地区から産出する原石は、濃緑色から緑色の緻 密で剥離面が光沢をもつ良質の碧玉から淡緑色から淡白色などいろいろで、他に硬度が低そうなグリー ンタフの様な原石も見られる。良質な原石の比重は2.5以上あり、質が悪くなるにしたがって比重は連 続的に2.2まで低くなる。分析した原石は、比重が2.619~2.600の間のものは10個、2.599~2.500は18 個、2.499~2.400は7個、2.399~2.300は11個、2.299~2.200は11個、2.199~2.104は3個の合計60個 である。比重から考えると碧玉からグリーンタフまでの領域のものが分析されているのがわかる。これ ら花仙山周辺の面白谷、瑪瑙公園、くらさこ地区などから原石を採取し元素組成の似た原石で、くらさ こ群、面白谷瑪瑙群、花仙山凝灰岩群などを作った。玉谷原産地は、③兵庫県豊岡市辻、八代谷、日高 町玉谷地域で産出する碧玉の色、石質などは肉眼では花仙山産の原石と全く区別がつかない。また、原 石の中には緑系色に茶系色が混じるものもみられ、これは佐渡猿八産原石の同質のものに非常によく似 ている。比重も2.6以上あり、質は花仙山産、佐渡猿八産原石より緻密で優れた感じのものもみられ る。この様な良質の碧玉の採取は、産出量も少ないことから長時間をかけて注意深く行う必要がある。 分析した玉谷産原石は、比重が2.644~2.600が多く、2.599~2.589の碧玉も少数採取できた。玉谷産原 石は色の違いによる元素組成の差はみられなかった。また、玉谷原石と一致する元素組成の原石は日高 町八代谷、石井、アンラクなどで採取できる。二俣原産地は、④石川県金沢市二俣町地域で、原石は二

俣川の河原で採取できる。二俣川の源流は医王山であることから露頭は医王山に存在する可能性があ る。ここの河原で見られる碧玉原石は、大部分がグリーンタフ中に層状、レンズ状に非常に緻密な部分 として見られる。分析した4個の原石の中で、3個は同一塊から3分割したもので、1個は別の塊から のもので、前者の3個の比重は2.42で後者は2.34である。また元素組成は他の産地のものと異なってお り区別できる。しかし、この4個が二俣原産地から産出する碧玉原石の特徴を代表しているかどうか検 証するために、さらに分析個数を増やす必要がある。細入村の産地は、⑤富山県婦負郡細入村割山定座 岩地区にあり、そのグリーンタフの岩脈に団塊として緻密な濃緑の碧玉質の部分が見られる。それは肉 眼では他の産地の碧玉と区別できず、また、出土する碧玉製の玉類とも非常に似た石質である。しか し、比重を分析した8個は2.25~2.12と非常に軽く、この比重の値で他の原産地と区別できる場合が多 い。土岐原産地は、⑥愛知県土岐市地域であり、そこでは赤色、黄色、緑色などが混じり合った原石が 産出している。このうち緻密な光沢のよい濃緑色で比重が2.62~2.60の原石を碧玉として11個分析を 行った。ここの原石は鉄の含有量が非常に大きく、カリウム含有量が小さいという特徴を持ち、この元 素比の値で他の原産地と区別できる。興部産地は、⑦北海道紋別郡西興部村にあり、その碧玉原石は鉄 の含有量が非常に高く、他の原産地と区別する指標になっている。また、比重が2.6以下のものはなく 遺物の産地を特定する指標として重要である。石戸の産地は、⑧兵庫県氷上郡山南町地区にあり、その 安山岩に脈岩として採取されるが産出量は非常に少なく淡い緑色で、比重も2.6以上で一部の碧玉の組 成は玉谷産碧玉に似る。また大部分の原石は元素組成から他の産地の碧玉と区別できる。⑨北海道富良 野市の空知川流域から採取される碧玉は濃い緑色で比重が2.6以上が4個、2.6~2.5が5個、2.5~2.4 が5個である。その碧玉の露頭は不明で河原の礫から採取するため、短時間で良質のもの碧玉を多数収 集することは困難である。また元素組成から他の産地の碧玉と区別できる。⑩北海道上磯郡上磯町の茂 辺地川の川原で採取される碧玉は不均一な色の物が多く、管玉に使用できる色の均一な部分を大きく取 り出せる原石は少ない。⑪石川県小松市菩提、那谷、滝ヶ原に緑色凝灰岩の露頭があり、その中に緻密 な碧玉が包含されている。また、産出量は少ないが良質の碧玉が菩提川、宇田川から採取される。この 地域から採取された碧玉の中に、女代南B遺物群に一致する元素組成の碧玉が含まれる。⑫大分県九重 町・九重町歴史民族資料館付近から緻密で比重が2.1~2.2の淡緑色~緑色系、茶褐色系などの凝灰岩が 採取され、玉材の可能性も推測される。最近、韓国、浦項地域から良質の碧玉及び緑色凝灰岩が見つか り、浦項碧玉A群、浦項碧玉B群及び浦項緑色凝灰岩A群を作った。これら原石を原産地ごとに統計処 理を行い、元素比の平均値と標準偏差値をもとめて母集団を作り合計62個を第21表に示す。各母集団に 原産地名を付けてその産地の原石群として、例えば原産地名が花仙山の場合、花仙山群と呼ぶことにす る。花仙山群は比重によって2個の群に分けて表に示したが比重は異なっても元素組成に大きな違いは みられない。したがって、統計処理は一緒にして行い、花仙山群として取り扱った。原石群とは異なる が、例えば、豊岡市女代南遺跡で主体的に使用されている原石産地不明の碧玉製玉類の原材料で、玉作 り行程途中の遺物が多数出土している。当初、原石産地を探索すると言う目的で、これらの玉、玉材遺 物で作った女代南B(女代B)群であるが、同質の材料で作られた可能性がある玉類は最近の分析結果

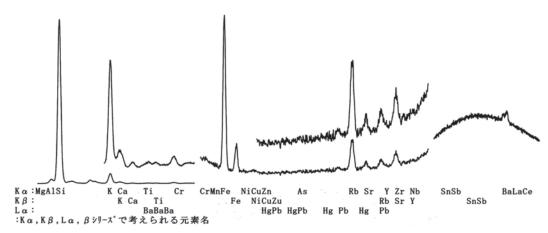
で日本全土に分布していることが明らかになってきた。宇木汲田遺跡で採取された産地不明の管玉の中で相互に似た元素組成のものを集めて未定C(未定(C))群を作った。また、岐阜県可児市の長塚古墳出土の管玉で作った長塚(1)、(2)遺物群、多摩ニュータウン遺跡、梅田古墳群、上ノ段遺跡、梅田東古墳群、新方遺跡、青谷A、B遺物群その他の遺跡などから出土した玉類および玉材剥片でそれぞれ遺物群を作り他の遺跡、墳墓から出土する玉類に組成が一致するか定量的に判定できるようにし、現在原石・遺物群は合計508個になり、これら遺物群を第22表~第27表に示した。この他、鳥取県の福部村多鯰池、鳥取市防己尾岬などの自然露頭からの原石を4個分析した。比重は2.6以上あり元素比組成は、興部、玉谷、土岐石に似るが、他の原産地の原石とは組成で区別される。また、緑系の原石ではない。兵庫県香美町の海岸から採取された親指大1個の碧玉様の玉材は貝殻状剥離がみられる緻密な石質で少し青っぽい緑の石材で玉の原材料になると思われる。この玉材の蛍光X線分析の結果では、興部産碧玉に似ているが、ESR信号および比重(2.35)が異なっているため、興部産碧玉と区別ができる。

蛍光X線分析法および電子スピン共鳴法による碧玉原材との比較

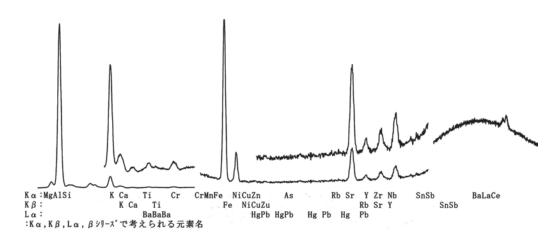
遺跡から出土した玉類の汚染の少ない部分を探して完全な非破壊分析を行っている。遺物の原材産地の同定をするために、(1)蛍光X線法で求めた原石群と碧玉製遺物の分析結果を数理統計の手法を用いて比較をする定量的な判定法で行なう。(2)また、10mm以下の遺物については、ESR分析法により各産地の原石の信号と遺物のそれを比較して、似た信号の原石の産地の原材であると推測する。


蛍光X線法による産地、遺物群分析

これら産地同定結果は蛍光X線分析装置はセイコのSEA100L型を使用し、管玉、切子玉の蛍光X線分析のスペクトルを第503図~第505図に示し、管玉、切子玉の比重をアルキメデス法で測定し、比重が約2.5以上で良質の碧玉と思われる。また、同定のために元素成分比を求めて、比重とともに結果を第19表に示した。遺物の石材産地を特定するために、分類された原石・遺物群の508個の各元素比と分析した管玉、勾玉の元素比結果と比較する。このとき、原石遺物群の元素比には分散(10個)、共分散(元素間相関を考慮した散布図の個数で見ると45個の元素比散布図になる)が求められている。各原石・遺物群の元素比の平均値と標準偏差のみを第21表に示している。この原石、遺物群と遺物の分析値を比較することになるが、元素比間の散布図は1原石群あたり55個になり、508個の原石・遺物群であることから、1個の管玉、勾玉の判定に508X(45+10)=27940個の散布図を描いての判定になる。散布図を描いて、客観的に判定することは不可能であり、散布図で人間が判定するには27508個の中から主観的に推


第19表 南構遺跡出土管玉、切子玉の元素分析結果

遺物番号	分析 番号		元素比													重量(g)	比重
退物留写	番号	Al/Si	K/Si	Ca/ K	Ti/ K	K/Fe	Rb/Fe	Fe/Zr	Rb/Zr	Sr/Zr	Y/Zr	Mn/Fe	Ti/Fe	Nb/Zr	Ba/Zr	里里(g)	儿里
J 5	131022	0.024	1. 211	0.058	0.197	0.066	0.201	10.392	2.07	0.411	0.098	0.015	0.012	0	4. 732	2. 585	2.579
J154	131023	0.024	1.296	0.029	0.113	0.097	0.228	11.918	2.703	0.505	0.153	0.021	0.01	0	4.871	3. 3063	2.561
J261	131024	0.03	1.486	0.051	0.198	0.055	0.226	12.821	2.876	0.361	0.159	0.013	0.01	0	2.64	2.4066	2. 524
	JG - 1 a)	0.081	3. 205	0.736	0.198	0.111	0.277	3.479	0.956	1. 261	0.187	0.017	0.020	0.086	1.567		


a):標準試料、Ando,A., Kurasawa,H.,Ohmori,T. & Takeda,E.(1974).1974 compilation of data on the GJS geochemical referencesamples JG-1 granodiorite and JB-1 basalt.Geochemical Journal, Vol.8 175-192.

第503図 南構遺跡出土管玉-J5番 (131022) の蛍光X線スペクトル

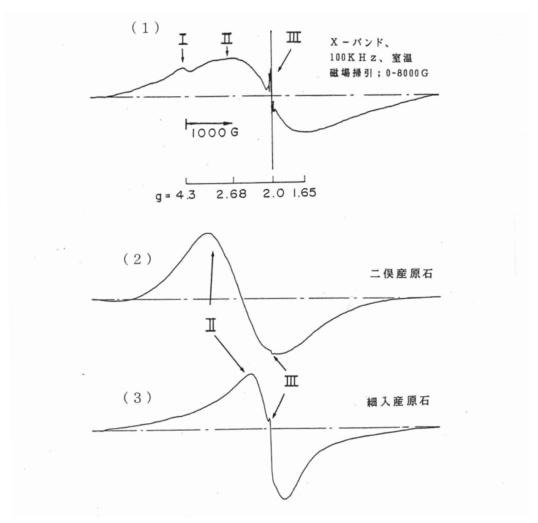
第504図 南構遺跡出土管玉-J154番(131023)の蛍光X線スペクトル

第505図 南構遺跡出土切子玉-J261番 (131024) の蛍光X線スペクトル

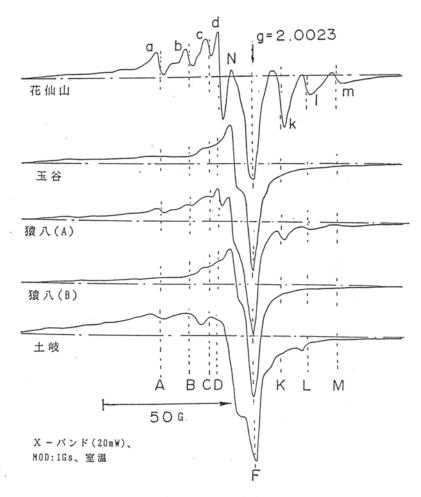
測している原産地に一致した散布図の数個を選んで判定し、一致した産地以外の原石・遺物群との比較は行わない(508個も数が多く行えない)。従って、遺物1個について、27940個の散布図から客観的に判定を行うために数理統計のマハラノビスの距離を求め、それらの結果を用いてホテリングT²乗検定を元素比を8元素として近似計算により同定を行っているため、確率は小さめに算出されている。また定量的信頼限界を5%以上に、定性的信頼限界を0.1%に設定して、0.1%以上で同定された原石・遺物群を記入し、0.09%以下で同定された原石遺物群については記入を省略し検定結果を第20表に示した。

第20表 南構遺跡出土管玉、切子玉の原石群、産地群同定結果

遺物番号	遺物器 種	分析番号	ホテリングT2検定(確率)	ESR信号形	Sb	Ba/Zr	面白谷群 Ba/Zr	浦項A群Ba/Zr 距離(確率)	総合 判定	重量(g)	比重
J 5	管玉	131022	花仙山面自谷(52%), 花仙山-3(6%), 花仙山-1+2(3%)	花仙山・浦項形	N. D.	4. 732	0. 04 σ (97%)	9 σ (0.001%以下)	花仙山	5. 4814	2. 595
J154	管玉	131023	花仙山面白谷 (25%), 浦項碧玉A群 (1%), 花仙山-1+2 (0.6%)	花仙山・浦項形	N. D.	4. 871	0.1 σ (92%)	7 σ (0.008%)	花仙山	1. 3132	2.603
J261	切子玉	131024	花仙山面白谷(21%)	遺物過大	N. D.	2.64	0.9 σ (37%)	3 σ (0.3%)	花仙山	2. 195	2.583


今回、同定された管玉および切子玉の分析結果を見ると、花仙山から採取された碧玉原石の成分組成 (Al/Si、K/Si、Ca/K、Ti/K、K/Fe、Rb/Fe、Fe/Zr、Rb/Zr、Sr/Zr、Y/Zr)の10元素比の似たもの同士でグループを作って分類した複数の花仙山原石諸群に同時に一致している。統計的に意味のある分析結果の信頼限界を5%に決めると、例えば分析番号131022の管玉 J 5の同定結果は同時に花仙山面白谷(52%)、花仙山-3(6%)の結果で各地点のどちらか決められない、すなわち原石産地を1地点に決められない、一致する産地が決められない(一つの遺物の石材を2地点から採取できなく矛盾が生じる)、自然界の中に同じ元素比を持つ石材が存在しないことが証明されない限り、一致法と言う判定方法は成立しない。一つの地域内の異なった地点で採取した原石は比較的相互に似た組成の群になる。また、一つの地域内での原産地遺跡で採取された原石は加工され、未定C群の様に東アジアの広い地域に伝搬する。

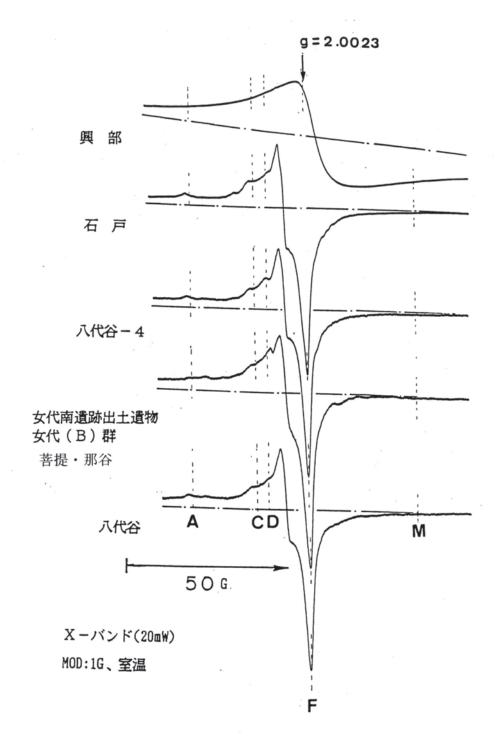
一致法と言う判定方法は成立しないが、花仙山地区に古代人が遺跡を作っていたことは、考古学者に より証明されていて、同定された管玉が花仙山地区遺跡の原石と元素接合したと推測できる。また、見 逃してしまう結果は元素接合しなかった石材産地および遺物群の遺跡の石材が使用されていないことが 確率(0.09%から約0%の定量的な数値)で証明されていること。遺物の産地分析結果が考古学の参考資 料として意味を持つのは、第20表の産地同定結果に記されていない。第21表~第27表の原石・遺物群を 作った産地・遺跡と関係がなかったと言い切れる重要な考古学的意味が示されていることである。ま た、分析した玉類の中で分析番号131023番の J 154管玉、131024番の J 261切子玉も花仙山地域の碧玉に 花仙山諸群に5%以上の信頼限界で同定され、花仙山面白谷遺跡の碧玉に元素接合した。花仙山面白谷 群のBa/Zrの[平均値] ± [標準偏差値]は4.654 ± 2.202による同定結果も5%以上の確率で花仙山面白 谷群に同定され、花仙山碧玉使用の玉類と同定できた。今回分析した分析番号131023番の管玉 J 154は 成分組成10元素比(Al/Si、K/Si、Ca/K、Ti/K、K/Fe、Rb/Fe、Fe/Zr、Rb/Zr、Sr/Zr、Y/Zr)の同定 結果で浦項碧玉A群(1%)で同定され、定性的に浦項碧玉A群の可能性を示した。管玉 J 154のBa/Zr 比量は4.871で、浦項碧玉A群の可能性を求めると、浦項碧玉A群のBa/Zrの[平均値] ± [標準偏差値] は0.641±0.593である。管玉 [154と浦項碧玉 A群の差を標準偏差値(σ)を基準にして考えると管玉 [154 は浦項碧玉A群から7σ離れている。これを確率の言葉で表現すると、浦項碧玉A群の産地の原石を 採ってきて分析したとき、平均値から 7σ 以上離れている確率は限りなく0%で、浦項碧玉A群の可能 性は否定された。より産地を正確に特定するために、蛍光X線分析法で同定された遺物の結果がESR分 析の結果と一致するかESR分析を行った。


ESR法による産地分析

ESR分析は碧玉原石に含有されているイオンとか、碧玉が自然界からの放射線を受けてできた色中心などの常磁性種を分析し、その信号から碧玉産地間を区別する指標を見つけて、産地分析に利用した。 ESRの測定は完全な非破壊分析であり、直径が11mm以下の管玉なら分析は可能で、小さい物は胡麻粒大のものでも分析ができる場合がある。第506図-(1)のESRのスペクトルは、幅広く磁場掃引したときに得られた信号スペクトルで、g値が4.3の小さな信号(I)は鉄イオンによる信号で、g値が2付近の幅の広い信号(I)と何本かの幅の狭いピーク群からなる信号(I)で構成されている。第506図-(1)では、信号(I)より信号(I)の信号の高さが高く、第506図-(2)、第506図-(3)の二俣、細入原石ではこの高さが逆になっているため、原石産地の判定の指標に利用できる。各原産地の原石の信号(I)の信号の形は産地ごとに違いがあり産地分析の指標となる。第507図には花仙山、猿八、玉谷、土岐を示し、第508図には興部、石戸、八代谷 -4、女代 B遺物群、八代谷を示し、そして第509図には富良野市空知川の空知(A)、(B)、北海道今金町花石および茂辺地川の各原石の代表的な信号(I)のスペクトルを示した。

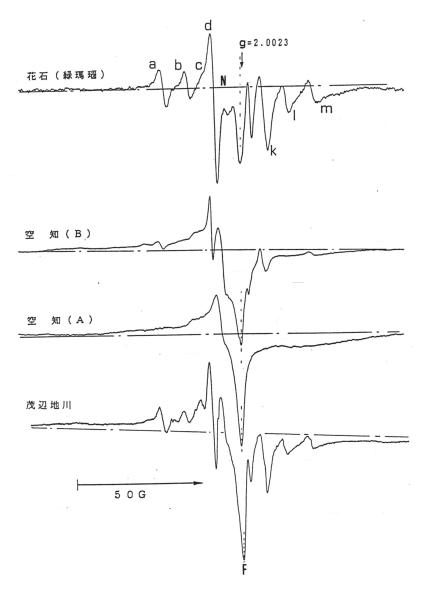
また、第510図には宇木汲田遺跡の管玉で作った未定C形と未定D形およびグリーンタフ製管玉によく見られる不明E形、菜畑形、紫金山形を示した。ESR分析では碧玉のESR信号の形が、あらかじめ

第506図 碧玉原石のESRスペクトル



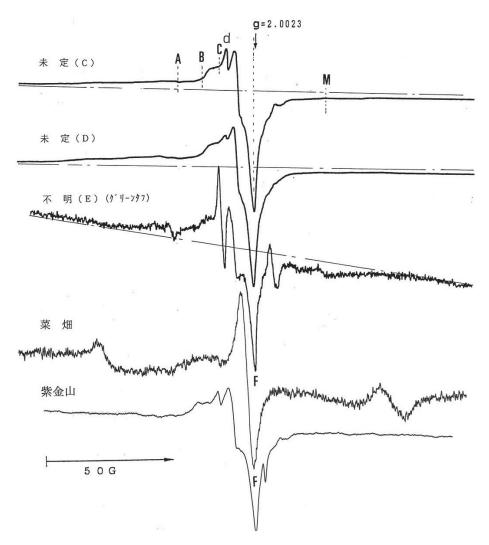
第507図 碧玉原石の信号(Ⅲ)のESRスペクトル

ESR分析している原石、および産地不明遺物群のESR信号形と一致した場合、そこの産地の可能性が大きいことを示唆している。今回分析した南構遺跡出土の切子玉は遺物過大で分析できなかったが、2点の管玉のESR信号を第511図に示す。ESR信号(Ⅲ)の形は第507図の花仙山、韓国・浦項形に含有している常磁性種と一致している。より正確な原石産地を推測するために蛍光X線分析の結果と組み合わせ総合判定として、両方法でともに同じ原産地に特定された場合は、蛍光X線の元素分析のみで判定した原石・遺物群産地よりも正確に、そこの原石・遺物群と同じものが使用されているとして総合判定原石産地の欄に結果(第20表)を記した。

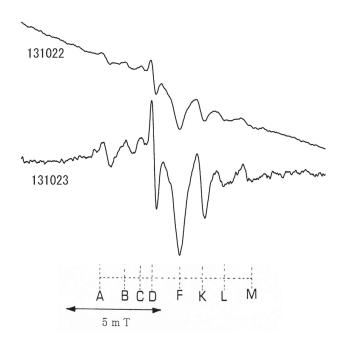

考 察

今回分析を行った南構遺跡の管玉の2点および切子玉は良質碧玉の玉谷産地の豊岡市辻に非常に近く、玉谷の碧玉は、地元豊岡市女代南遺跡で使用され、また、亀岡市余部遺跡、岡山県楯築墳丘墓では、韓国で多用されている未定C遺物群と共に玉谷産のみの使用が確認されている。分析を行った結果、玉谷産地の碧玉の使用は見られなかった。分析番号131022の管玉 J 5 の同定結果は定量的同定の信頼限界 5 %以上で同時に花仙山面白谷(52%)、花仙山-3(6%)の結果で各地点のどちらか決められなかった。また、花仙山碧玉産出地域に、遺跡がなかった場合、この結果は花仙山と同じ組成の原石を産出する島根県以外の碧玉産出地の可能性が否定できないため、花仙山碧玉と成分組成が一致したからと

第508図 碧玉原石の信号(Ⅲ)のESRスペクトル


言って、この玉類の産地を花仙山と特定できない。しかし、分析した玉類の面は古代人の加工した面の元素成分で、これに接合する古代人が作った玉材が花仙山碧玉産出地域の遺跡にあるはずで、今回、花仙山面白谷遺跡の出土碧玉と一致し、玉類の石材産地を花仙山と特定できた。また、ESR分析結果も花仙山碧玉と推定して矛盾はない。花仙山と元素組成が一致する原石を一部産出する島根県以外の碧玉産出地は、韓国、浦項碧玉産地で浦項碧玉A群である。また、ESR信号(Ⅲ)も同じで、浦項碧玉と花仙山碧玉の区別はできない。分析番号131023番の管玉 J 154は浦項碧玉 A 群に確率(1%)で同定され、定性的に浦項碧玉 A 群の可能性を示した。管玉 J 154のBa/Zr比量は4.871で、浦項碧玉 A 群の可能性を求

第509図 碧玉原石の信号(Ⅲ)のESRスペクトル


めると、浦項碧玉A群のBa/Zrの[平均値] \pm [標準偏差値] は 0.641 ± 0.593 である。管玉 J 154と浦項碧玉 A群の差を標準偏差値(σ)を基準にして考えると管玉 J 154は浦項碧玉 A群から 7 σ 離れている。これを確率の言葉で表現すると、浦項碧玉 A群の産地の原石を採ってきて分析したとき、平均値から 7 σ 以上離れている確率は限りなく 0 %で、浦項碧玉 A群の可能性は否定された。

参考に古墳時代に使用された玉類、玉材の分布を第502図に示した。花仙山産原石は弥生時代後期から使用され古墳時代になって本格的に使用された原石である。玉川産原石の使用は古墳時代のみで、佐渡島猿八産原石製玉類と同時に花仙山産管玉が出土した古墳は香川県の野牛古墳である。また、女代南B遺物群と花仙山産原石が同時に出土した遺跡は、徳島県板野町、蓮華谷古墳群Ⅱの3世紀末の2号墳と島根県安来市門生黒谷Ⅲ遺跡の4世紀末~5世紀初頭の管玉である。弥生時代後期から女代南B遺物群の管玉から花仙山産管玉に移行する過渡期的な時期と思われ、また、古墳時代の初めに会津坂下N遺物群、長塚1遺物群が使用されるなどの玉材の使用とか、移行は当時の社会情勢の変革を推測しても産地分析の結果と矛盾しない。それから島根県東出雲町勝負遺跡の5世紀前半、安来市柳遺跡、奈良県橿原市曽我遺跡の5世紀、岡山県川上村下郷原和田遺跡の玉材の剥片には花仙山産原石が使用されてい

第510図 碧玉原石の信号(Ⅲ)のESRスペクトル

た。時期が進むに従って碧玉製管玉、勾 玉は花仙山産原石製玉類の使用が広が り、余市町大川遺跡の7世紀、東京都板 橋区赤羽台遺跡の6世紀、神奈川県海老 名市本郷遺跡の8世紀、愛知県豊川市上 野第3号墳の7世紀、大阪府高槻市塚原 B42号墳6世紀末の管玉に使用されてい る。京都府園部町垣内古墳の4世紀の鑿 頭式石製鏃の石材として、また兵庫県神 戸市では4世紀初頭の天王山4号墳出土 管玉、4世紀末の大歳山3号墳の勾玉、 管玉4世紀の堅田1号墳の勾玉、6世紀 初頭の鬼神山古墳、西神33-A、6世紀前 半の北神ニュータウン、6世紀中葉の西

第511図 南構遺跡出土管玉のESR信号(Ⅲ)のスペクトル

石ヶ谷遺跡、6世紀末の柿谷2号墳出土の管玉にそれぞれ花仙山産原石が使用されていた。兵庫県西紀町の箱塚4、5号墳、高川2号墳の6世紀後半の管玉に使用され、岡山市甫崎天神遺跡の6世紀後半、斎富5、2号墳、徳島県板野町蓮華谷4、5墳の6世紀末、佐賀県東背振町吉野ヶ里遺跡の管玉に花仙山産原石がそれぞれ使用されていた。花仙山産原石の使用の南限は、宮崎県新富町祇園原115号墳出土の6世紀の管玉になっている。これら玉類に使用されている産地の原石が多い方が、その産地地方との文化交流が強いと推測できることから、日本各地の遺跡から出土する貴重な管玉を数多く分析することが重要で、今回行った産地分析は完全な非破壊である。碧玉産地に関する小さな情報であっても御提供頂ければ研究はさらに前進すると思われる。

〔参考文献〕

- 1) 茅原一也(1964)、長者が原遺跡産のヒスイ(翡翠)について(概報)。長者ケ原、新潟県糸魚川市 教育委員会:63-73
- 2) 藁科哲男・東村武信(1987)、ヒスイの産地分析。富山市考古資料館紀要 6:1-18
- 3) 藁科哲男·東村武信(1990)、奈良県内遺跡出土のヒスイ製玉類の産地分析。橿原考古学研究所紀要『考古学論攷』、14:95-109
- 4) 藁科哲男・東村武信(1983)、石器原材の産地分析。考古学と自然科学、16:59-89
- 5) Tetsuo Warashina (1992), Alloction of Jasper Archeological Implements By Means of ESR and XRF. Journal of Archaeological Science 19:357-373
- 6) 東村武信(1976), 産地推定における統計的手法。考古学と自然科学, 9:77-90
- 7) 李弘鍾、朴淳發、朴天秀、朴升圭、李在煥、金大煥、藁科哲男、中村大介、「韓半島における 玉 類の理化學的分析と流通」第17回湖西考古學會学術大会発表要旨、96-137(2008. 4. 26)
- 8) 藁科哲男 (2010)、佐渡玉作遺跡出土石製玉類の石材産地同定分析。『今なぜ佐渡の玉作か-離島「佐渡」の玉作文化を探る-』2010年日本玉文化研究会佐渡大会要旨、44-93

第21表 各碧玉の原産地における原石群の元素比の平均値と標準偏差値

接触日 1 - 2 20 20 20 20 20 20 20	遺物群名	分析	Al/Si	K/Si	Ca/K	Ti/K	K/Fe	Rb/Fe
花仙川 33								
花飾山2 30 0.09±0.003 1.08±0.277 0.066±0.049 0.227±0.088 0.063±0.01 0.1 0.1 0.1 0.1 0.0 1.0 0.0 0.0 0.0	1-111							
接触は 3	1-111							
# 辞 31 0.01 ± 0.035 0.89 ± 0.320 0.123 ± 0.137 0.66 ± 0.049 0.022 ± 0.066 ± 0.070 ± 0.07								
神奈川 : 田川 グリーンタ 7								
短別 1 日	7 T							
登知A 1 42 0.039±0.006 1.025±0.081 2.728±0.907 0.547±0.119 0.042±0.011 0.12±0.058								
衆別	空知A1	42	0.039 ± 0.006	1.026 ± 0.281	2.728 ± 0.907		0.042 ± 0.011	0.124 ± 0.058
線 八 1		_						
線 A 2		_						
線 八 3							0. 202 ± 0. 070	
佐 渡 - 10	塚 八 Z							
佐渡・小倉川・碧玉田5 56 0.071±0.005 3.833±0.411 0.252±0.021 0.485±0.033 0.110±0.008 0.21±0.009 た (佐渡・小倉川・縁延庆岩) 50 0.99±0.003 3.835±0.035 0.010±0.006 0.115±0.007 0.208±0.005 0.298±0.008 た (疣・小倉川・縁延庆岩) 46 0.085±0.003 3.835±0.004 0.055±0.003 0.056±0.010 0.387±0.076 0.419±0.008	旅 / C3 佐 渡 – 10							
佐渡・小倉川 - 緑鏡灰岩 1 50 0 0.99 ± 0.004 3 .883 ± 0.422 0 0.300 ± 0.006 0 .115 ± 0.010 0 .208 ± 0.052 0 .288 ± 0.082 位渡・小倉川 - 緑色灰岩 2 46 0 .650 ± 0.003 3 .8873 ± 0.085 0 .0115 ± 0.026 0 .054 ± 0.008 1 .038 ± 0.007 0 .038 ± 0.007 0 .038 ± 0.007 0 .038 ± 0.007 0 .038 ± 0.007 0 .038 ± 0.007 0 .038 ± 0.007 0 .038 ± 0.007 0 .038 ± 0.007 0 .038 ± 0.007 0 .038 ± 0.007 0 .038 ± 0.008 1 .288 ± 0.048 ± 0.008 ± 0.008 1 .155 ± 0.812 0 .028 ± 0.007 0 .078 ± 0.005 0 .126 ± 0.036 0 .247 ± 0.028 4 .048 ± 1.008 ± 0.008 ± 0.008 ± 0.008 ± 0.008 1 .038 ± 0.008 1 .288 ± 0.008 ± 0.008 1 .008 ± 0.008 ± 0.008 1 .008 ± 0.008 1 .288 ± 0.008 1 .008 ± 0.008 1 .008 ± 0.008 ± 0.008 1 .008 ± 0.008								
接渡・小会川・緑緑沢岩 2 46 0 .089 ± 0.003 1.873 ± 0.256 0 .110 ± 0.026 0 .065 ± 0.010 0 .087 ± 0.076 0 .49 ± 0.000 0 .49 ± 0.000 1.88 ± 0.007 0 .324 ± 0.009 0 .46 川 一習臣 2 45 0 .045 ± 0.003 1.822 ± 0.186 0 .072 ± 0.024 0 .024								
佐渡・小倉川経羅田T 46 0.048 ± 0.000 3.889 ± 0.043 0.058 ± 0.002 0.069 ± 0.002 0.334 ± 0.009 0.34 ± 0.009 1.061 ± 0.061 ± 0.061 ± 0.061 ± 0.062 ± 0.063 0.075 ± 0.065 0.063 0.075 ± 0.065 0.064 0.072 0.075 ± 0.065 0.064 0.075 ± 0.065 0.064 0.075 ± 0.065 0.064 0.075 ± 0.065 0.064 0.075 ± 0.065 0.064 0.075 ± 0.065 0.064 0.075 ± 0.065 0.064 0.075 ± 0.065 0.064 0.075 ± 0.065 0.064 0.075 ± 0.065 0.064 0.075 ± 0.065 0.064 0.075 ± 0.065 0.064 0.075 ± 0.065 0.064 0.075 ± 0.065 0.064 0.075 ± 0.065 0.064 0.075 ± 0.065 0.064 0.075 ± 0.065 0.067 ± 0.062 0.075 ± 0.065 0.067 ± 0.062 0.075 ± 0.065 0.067 ± 0.062 0.075 ± 0.065 0.067 ± 0.065 0.067 ± 0.062 0.075 ± 0.065 0.067 ± 0.065 0.067 ± 0.065 0.067 ± 0.065 0.067 ± 0.062 0.075 ± 0.065 0.067 ± 0.065 0.065 0.067 ± 0.065 0.065 0.067 ± 0.065 0.065 0.067 ± 0.065 0.065 0.067 ± 0.065 0.065 0.067 ± 0.065 0.0		_						
か合川 ・ 2種 張石 37 0.62 ± 0.006 5.115 ± 0.812 0.028 ± 0.007 0.075 ± 0.005 0.064 ± 0.007 0.188 ± 0.024 0.270 ± 0.024 0.27	佐渡・小倉川緑凝H17		0.048 ± 0.000	3.889 ± 0.043	0.058 ± 0.002	0.060 ± 0.002	0.304 ± 0.007	0.324 ± 0.009
か合川 ・2 倍 3 原石								
分音川 2 橋上 4 原石								
か合川 2 橋上 1 原石								
分食川 2 橋 1 原石								
分合川 1 橋 2 原石								
分金川 種 原石								
か合川下流9 原石								
会津城下原石 42 0,039±0,004 1,500±0,155 1,162±0,104 0,280±0,058 0,154±0,027 0,168±0,027 (3.68±0,027 4,28±0,022 0,346±0,024 2,36±0,024 2,36±0,024 2,36±0,024 2,36±0,024 2,36±0,024 2,36±0,024 2,36±0,024 2,36±0,024 2,36±0,024 2,36±0,025 2,		_						
接条件: 元十嵐川 原石								
三条市・五十嵐川 2 原石 44 0. 039 ± 0. 002 2. 3.65 ± 0. 152 0. 126 ± 0. 009 0. 276 ± 0. 013 0. 0. 085 ± 0. 009 0. 136 ± 0. 008 ±	新潟・津川 - 6群	48	0.041 ± 0.001		0.036 ± 0.007		0.352 ± 0.032	0.346 ± 0.024
生 岐								
接								
親 人 8 0.019±0.003 0.534±0.284 0.991±0.386 0.372±0.125 0.031±0.008 0.073±0.020								
縁 川 48 0.040±0.003 0.495±0.014 0.798±0.030 0.985±0.032 0.026±0.001 0.044±0.004 石 戸 45 0.040±0.003 2.520±0.140 0.384±0.015 0.174±0.004 0.301±0.036 0.377±0.040 石 戸 45 0.019±0.002 0.779±0.271 0.083±0.040 0.145±0.058 0.155±0.065 0.204±0.064 茂 辺地川 4 0.031±0.002 1.847±0.251 0.079±0.272 0.083±0.040 0.145±0.058 0.155±0.065 0.204±0.064 万 シャマップ1 44 0.040±0.007 2.745±0.957 0.234±0.139 0.135±0.030 0.067±0.008 0.096±0.007 小松・菩提一那谷 44 0.037±0.002 3.475±0.957 0.234±0.139 0.135±0.030 0.067±0.008 0.096±0.007 小松・菩提一那谷 44 0.037±0.002 3.475±0.265 0.008±0.012 0.093±0.015 0.412±0.093 0.347±0.037 小松・菩提ー 1 62 0.039±0.003 3.150±0.298 0.035±0.029 0.129±0.022 0.323±0.147 0.327±0.091 小松・滝ヶ原 62 0.040±0.003 3.294±0.318 0.031±0.009 0.103±0.016 0.370±0.085 0.323±0.061 小松・滝ヶ原 2 54 0.045±0.003 3.585±0.252 0.070±0.023 0.135±0.015 0.353±0.031 0.294±0.022 小松・滝ヶ原 3 62 0.042±0.003 3.35±0.252 0.070±0.003 0.135±0.015 0.353±0.031 0.294±0.022 小松・滝ヶ原 3 62 0.042±0.003 3.30±0.189 0.028±0.011 0.137±0.009 0.182±0.027 0.238±0.025 0.45±0.45±0.45 0.045±0.004 0.070±0.007 0.070±0.007 0.128±0.045 0.429±0.163 0.316±0.073 0.45±0.005 0.004±0.007 0	工 合 如 7					0.481 ± 0.114		
□ 模 45 0.040±0.003 2.520±0.140 0.384±0.015 0.174±0.004 0.301±0.036 0.377±0.040 石 戸 45 0.019±0.002 0.779±0.271 0.083±0.040 0.145±0.088 0.155±0.065 0.204±0.064 度辺地川 4 0.31±0.002 1.847±0.246 0.077±0.024 0.22±0.052 0.092±0.021 0.190±0.052 ケショマップ1 44 0.040±0.007 2.745±0.957 0.234±0.139 0.135±0.030 0.067±0.008 0.096±0.007 小松・菩提一那谷 44 0.037±0.002 3.475±0.265 0.008±0.012 0.093±0.015 0.412±0.093 0.347±0.037 小松・菩提一 62 0.039±0.003 3.150±0.298 0.035±0.029 0.129±0.022 0.323±0.147 0.327±0.091 小松・滝ヶ原 62 0.040±0.003 3.294±0.318 0.013±0.009 0.103±0.016 0.370±0.085 0.323±0.010 小松・滝ヶ原 2 54 0.045±0.003 3.32±0.318 0.013±0.009 0.103±0.016 0.370±0.085 0.323±0.010 小松・滝ヶ原 2 54 0.045±0.003 3.35±0.029 0.088±0.010 0.038±0.016 0.370±0.085 0.323±0.061 小松・滝ヶ原 7 (白色風化) 63 0.061±0.007 4.371±0.924 0.007±0.007 0.128±0.045 0.429±0.163 0.316±0.073 池松・滝ヶ原 7 (白色風化) 43 0.026±0.004 0.975±0.276 0.027±0.007 0.128±0.045 0.429±0.163 0.316±0.073 池仙山(白化風化) 43 0.026±0.004 0.975±0.276 0.027±0.008 0.138±0.042 0.097±0.017 0.197±0.013 池仙山(☆塚緑色) 40 0.019±0.006 1.080±0.011 0.017±0.009 0.138±0.042 0.097±0.017 0.197±0.013 心間由○分公園前→凝灰岩 48 0.023±0.001 1.537±0.007 0.161±0.018 0.755±0.012 0.246±0.018 港間山 今 52 0.021±0.004 1.336±0.444 0.072±0.050 0.176±0.043 0.061±0.028 0.187±0.042 池野砂 2.027±0.006 1.449±0.075 0.037±0.007 0.161±0.018 0.075±0.012 0.246±0.018 高根・野砂 2 (延辰岩) 47 0.102±0.015 0.837±0.078 0.991±0.017 0.175±0.004 0.015±0.004 0.001±0.005 0.176±0.043 0.061±0.028 0.187±0.042 池野砂 2 (延房岩) 47 0.120±0.015 0.837±0.078 4.075±0.012 0.370±0.023 0.046±0.007 0.011±0.010 0.185±0.045 0.012±0.007 0.012±0.002 東出雲ヶ丘 1.537±0.044 0.010±0.010 0.345±0.010 0.012±0.002 カルラ 0.001 0.034±0.001 0.034								
石 戸 45 0.019±0.002 0.779±0.271 0.083±0.040 0.145±0.058 0.155±0.065 0.204±0.064 茂辺地川 4 0.031±0.002 1.847±0.246 0.077±0.024 0.222±0.052 0.092±0.021 0.190±0.052								
接辺地川 4 0.031±0.002 1.847±0.246 0.077±0.024 0.222±0.052 0.092±0.021 0.190±0.052 ケショマップ1 44 0.040±0.007 2.745±0.957 0.234±0.139 0.135±0.032 0.067±0.008 0.096±0.007 小松・菩提-那谷 44 0.037±0.002 3.475±0.050 0.08±0.012 0.093±0.015 0.412±0.093 0.347±0.037 小松・菩提-1 62 0.039±0.003 3.150±0.298 0.035±0.029 0.129±0.022 0.323±0.147 0.327±0.091 小松・滝ヶ原 62 0.040±0.003 3.294±0.318 0.013±0.009 0.103±0.016 0.370±0.085 0.323±0.061 小松・滝ヶ原 62 0.040±0.003 3.585±0.252 0.070±0.023 0.135±0.015 0.353±0.031 0.294±0.022 小松・滝ヶ原 7 (白色風化) 63 0.061±0.007 4.371±0.924 0.002±0.003 0.135±0.015 0.353±0.031 0.294±0.022 小松・滝ヶ原 7 (白色風化) 63 0.061±0.007 4.371±0.924 0.007±0.007 0.128±0.045 0.429±0.163 0.316±0.073 花仙山(白化風化) 43 0.026±0.004 0.975±0.276 0.027±0.018 0.261±0.072 0.036±0.008 0.155±0.033 花仙山(青化風化) 40 0.019±0.006 1.080±0.161 0.017±0.009 0.138±0.042 0.097±0.017 0.197±0.013 花仙山(淡緑色) 40 0.027±0.006 1.449±0.075 0.037±0.007 0.161±0.018 0.075±0.012 0.246±0.018 んしょんきこ 48 0.023±0.001 1.537±0.129 0.011±0.011 0.118±0.028 0.167±0.012 0.246±0.018 んしょんきこ 48 0.023±0.001 1.537±0.129 0.011±0.011 0.118±0.028 0.167±0.007 0.111±0.011 0.118±0.025 0.167±0.030 0.268±0.044 0.010±0.015 2.080±0.087 0.921±0.554 2.840±1.559 0.012±0.007 0.121±0.012 0.246±0.018 0.007±0.017 0.009 0.138±0.040 0.061±0.028 0.187±0.042 0.001±0.015 0.387±0.023 0.046±0.007 0.111±0.011 0.118±0.028 0.167±0.009 0.018±0.006 0.050±0.006 0.050±0.007 0.011±0.011 0.011±0.011 0.011±0.011 0.011±0.011 0.011±0.011 0.011±0.011 0.011±0.011 0.011±0.011 0.011±0.011 0.005±0.005 0.005±0.00		_						
テショマップ1 44 0.040±0.007 2.745±0.957 0.234±0.139 0.135±0.030 0.067±0.008 0.096±0.007 小松・菩提-那谷 44 0.037±0.002 3.475±0.265 0.008±0.012 0.093±0.015 0.412±0.093 0.347±0.037 小松・菩提-1 62 0.039±0.003 3.155±0.298 0.035±0.029 0.129±0.022 0.323±0.147 0.327±0.991 小松・竜ヶ原 62 0.040±0.003 3.29±0.318 0.013±0.009 0.103±0.016 0.370±0.085 0.323±0.061 小松・滝ヶ原 - 2 54 0.045±0.003 3.585±0.252 0.070±0.023 0.135±0.015 0.353±0.031 0.294±0.022 小松・滝ヶ原 - 3 62 0.042±0.003 3.03±0.189 0.028±0.011 0.137±0.009 0.182±0.027 0.238±0.025 小松・滝ヶ原 - 7 (自色風化) 63 0.661±0.007 4.371±0.924 0.007±0.007 0.128±0.045 0.429±0.163 0.315±0.025 水松・滝ヶ原 - 7 (自色風化) 43 0.026±0.004 0.975±0.276 0.027±0.018 0.261±0.072 0.036±0.008 0.155±0.023 花仙山 (南極県 - 1) 40 0.019±0.006 1.680±0.161 0.017±0.009 0.138±0.042 0.097±0.017 0						0.222 ± 0.052		
小松・菩提-1 62 0.39 ± 0.003 3.150 ± 0.298 0.035 ± 0.029 0.129 ± 0.022 0.323 ± 0.147 0.327 ± 0.091	ケショマップ1	44	0.040 ± 0.007	2.745 ± 0.957		0.135 ± 0.030	0.067 ± 0.008	0.096 ± 0.007
小松・滝ヶ原								
小松・滝ヶ原-2 54 0.045±0.003 3.585±0.252 0.070±0.023 0.135±0.015 0.353±0.031 0.294±0.022 小松・滝ヶ原-3 62 0.042±0.003 3.03±0.189 0.028±0.011 0.137±0.009 0.182±0.027 0.238±0.025 小松・滝ヶ原-7 (白色風化) 63 0.061±0.007 4.371±0.924 0.007±0.007 0.128±0.045 0.429±0.163 0.316±0.073 花仙山 (村瓜低化) 43 0.026±0.004 0.975±0.276 0.027±0.018 0.261±0.072 0.036±0.008 0.155±0.033 花仙山 (横屋堀-1) 40 0.019±0.006 1.080±0.161 0.017±0.009 0.138±0.042 0.097±0.017 0.197±0.013 花仙山 (淡緑色) 40 0.027±0.006 1.449±0.075 0.037±0.007 0.161±0.018 0.075±0.012 0.246±0.018								
小松・滝ヶ原-3								
小松・滝ヶ原-7(白色風化) 63 0.061±0.007 4.371±0.924 0.007±0.007 0.128±0.045 0.429±0.163 0.316±0.073 花仙山(白化風化) 43 0.026±0.004 0.975±0.276 0.027±0.018 0.261±0.072 0.036±0.008 0.155±0.033 花仙山(横屋堀-1) 40 0.019±0.006 1.080±0.161 0.017±0.009 0.138±0.042 0.097±0.017 0.197±0.013 花仙山(横屋堀-1) 40 0.027±0.006 1.449±0.075 0.037±0.007 0.161±0.018 0.075±0.012 0.246±0.018 花仙山(炎陰色) 40 0.027±0.006 1.449±0.075 0.037±0.007 0.161±0.018 0.075±0.012 0.246±0.018 花仙山○くらさこ 48 0.023±0.001 1.537±0.129 0.011±0.011 0.118±0.028 0.167±0.030 0.268±0.044 0.0075±0.012 0.246±0.018 0.075±0.012 0.246±0.018 0.0075±0.012 0.246±0.018 0.0075±0.012 0.004±0.011 0.118±0.028 0.167±0.030 0.268±0.044 0.0075±0.012 0.004±0.011 0.118±0.028 0.167±0.030 0.268±0.044 0.0075±0.012 0.004±0.011 0.118±0.028 0.167±0.030 0.268±0.044 0.0075±0.012 0.005±0.012 0.370±0.023 0.046±0.007 0.111±0.011 自根・野波−1 (凝灰岩) 40 0.102±0.015 2.080±0.887 0.921±0.554 2.840±1.559 0.012±0.007 0.021±0.012 自根・野波−2 (凝灰岩) 47 0.120±0.015 0.837±0.078 4.075±0.725 6.758±1.521 0.004±0.001 0.003±0.001 自根・野波−3 (凝灰岩) 44 0.120±0.009 2.627±0.276 0.946±0.315 1.942±0.167 0.013±0.002 0.012±0.002 度用雲転石 44 0.120±0.009 2.627±0.276 0.946±0.315 1.942±0.167 0.013±0.002 0.012±0.002 た分・九重−1原石 42 0.020±0.003 0.453±0.079 0.499±0.123 0.281±0.074 0.018±0.006 0.052±0.016 大分・九重−1原石 42 0.020±0.003 0.453±0.079 0.499±0.123 0.281±0.074 0.018±0.006 0.052±0.016 大分・九重−1原石 42 0.020±0.003 0.453±0.009 1.045±1.037 0.375±0.064 0.098±0.032 0.348±0.071 群馬・西入須川 49 0.049±0.001 2.088±0.148 0.744±0.111 0.423±0.012 0.043±0.001 0.022±0.002 自取・防己尾岬 48 0.016±0.001 0.094±0.007 0.073±0.050 1.803±0.050 0.003±0.001 0.002±0.002 自取・防己尾岬 48 0.016±0.001 0.094±0.007 0.073±0.050 1.803±0.050 0.003±0.001 0.002±0.002 自取・防己尾岬 48 0.016±0.001 0.094±0.007 0.033±0.050 1.803±0.050 0.003±0.001 0.002±0.002 自取・防己尾岬 48 0.016±0.001 0.045±0.007 0.034±0.009 0.089±0.020 0.030±0.001 0.002±0.002 自取・防己尾岬 48 0.016±0.001 0.040±0.007 0.034±0.007 0.034±0.007 0.030±0.001 0.004±0.007 0.004±0.007 0.004±0.007 0.004±0.007 0.004±0.007 0.004±0.007 0.004±0.007 0.004±0.007 0.004±0.007 0.004±0.007 0								
花仙山(白化風化) 43 0.026±0.004 0.975±0.276 0.027±0.018 0.261±0.072 0.036±0.008 0.155±0.033 花仙山(横屋堀−1) 40 0.019±0.006 1.080±0.161 0.017±0.009 0.138±0.042 0.097±0.017 0.197±0.013 花仙山(淡緑色) 40 0.027±0.006 1.449±0.075 0.037±0.007 0.161±0.018 0.075±0.012 0.246±0.018 花仙山(淡緑色) 48 0.023±0.001 1.537±0.129 0.011±0.011 0.118±0.028 0.167±0.030 0.268±0.044								
花仙山(横屋堀-1) 40 0.019±0.006 1.080±0.161 0.017±0.009 0.138±0.042 0.097±0.017 0.197±0.013 花仙山(淡緑色) 40 0.027±0.006 1.449±0.075 0.037±0.007 0.161±0.018 0.075±0.012 0.246±0.018 花仙山一くらさこ 48 0.023±0.001 1.537±0.129 0.011±0.011 0.118±0.028 0.167±0.030 0.268±0.044 0.072±0.050 0.176±0.043 0.061±0.028 0.167±0.030 0.268±0.044 0.072±0.050 0.176±0.043 0.061±0.028 0.187±0.042 花仙山画白谷 52 0.021±0.004 1.336±0.444 0.072±0.050 0.176±0.043 0.061±0.028 0.187±0.042 花仙山めのう公園前一凝灰岩 46 0.047±0.004 2.285±0.142 0.055±0.012 0.370±0.023 0.046±0.007 0.111±0.011 島根・野波-1(凝灰岩) 40 0.102±0.015 2.080±0.887 0.921±0.554 2.840±1.559 0.012±0.007 0.021±0.012 島根・野波-2(凝灰岩) 47 0.120±0.015 0.837±0.078 4.075±0.725 6.758±1.521 0.004±0.001 0.003±0.001 島根・野波-3(凝灰岩) 44 0.120±0.009 2.627±0.276 0.946±0.315 1.942±0.167 0.013±0.002 0.012±0.002 東出雲転石 44 0.014±0.001 0.345±0.079 0.499±0.123 0.281±0.074 0.018±0.006 0.052±0.016								
花仙山(淡緑色) 40 0.027±0.006 1.449±0.075 0.037±0.007 0.161±0.018 0.075±0.012 0.246±0.018 花仙山-くらさこ 48 0.023±0.001 1.537±0.129 0.011±0.011 0.118±0.028 0.167±0.030 0.268±0.044 花仙山画白谷 52 0.021±0.004 1.336±0.444 0.072±0.050 0.176±0.043 0.061±0.028 0.187±0.042	1-800 (0.71-) (1-7							
						0.161 ± 0.018	0.075 ± 0.012	0.246 ± 0.018
花仙山面白谷 52 0.021±0.004 1.336±0.444 0.072±0.050 0.176±0.043 0.061±0.028 0.187±0.042 花仙山めのう公園前-凝灰岩 46 0.047±0.004 2.285±0.142 0.055±0.012 0.370±0.023 0.046±0.007 0.111±0.011 島根・野波-1 (凝灰岩) 40 0.102±0.015 2.080±0.887 0.921±0.554 2.840±1.559 0.012±0.007 0.021±0.012 島根・野波-2 (凝灰岩) 47 0.120±0.015 0.837±0.078 4.075±0.725 6.758±1.521 0.004±0.001 0.003±0.001 息根・野波-3 (凝灰岩) 44 0.120±0.009 2.627±0.276 0.946±0.315 1.942±0.167 0.013±0.002 0.012±0.002 東出雲転石 44 0.014±0.001 0.345±0.079 0.499±0.123 0.281±0.074 0.018±0.006 0.052±0.016 大分・九重-1 原石 42 0.020±0.003 0.453±0.090 1.045±1.037 0.375±0.064 0.098±0.032 0.348±0.071 群馬・西入須川 49 0.049±0.001 2.088±0.148 0.744±0.111 0.423±0.012 0.043±0.001 0.156±0.006 島取・多鯰ヶ池 50 0.017±0.001 0.094±0.007 0.073±0.050 1.803±0.250 0.003±0.001 0.002±0.002 島取・防己尾岬 48 0.016±0.001 0.163±0.017 0.332±0.028 0.885±0.172 0.028±0.009 0.060±0.027 浦項碧玉A 51 0.017±0.002 0.744±0.410 0.134±0.078 0.191±0.074 0.043±0.016 0.140±0.034 1.091±0.004 1.361±0.006 0.021±0.002 0.022±0.002 1.002 0.002±0.002		48	0.023 ± 0.001	1.537 ± 0.129			0.167 ± 0.030	0.268 ± 0.044
島根・野波-1(凝灰岩) 40 0.102±0.015 2.080±0.887 0.921±0.554 2.840±1.559 0.012±0.007 0.021±0.012 島根・野波-2(凝灰岩) 47 0.120±0.015 0.837±0.078 4.075±0.725 6.758±1.521 0.004±0.001 0.003±0.001 島根・野波-3(凝灰岩) 44 0.120±0.009 2.627±0.276 0.946±0.315 1.942±0.167 0.013±0.002 0.012±0.002 東出雲転石 44 0.1014±0.001 0.345±0.079 0.499±0.123 0.281±0.074 0.018±0.006 0.052±0.016 大分・九重-1原石 42 0.020±0.003 0.453±0.009 1.045±1.037 0.375±0.064 0.098±0.032 0.348±0.071 群馬・西入須川 49 0.049±0.001 2.088±0.148 0.744±0.111 0.423±0.012 0.043±0.001 0.156±0.006 島取・多鯰ヶ池 50 0.017±0.001 0.094±0.007 0.073±0.050 1.803±0.250 0.003±0.001 0.002±0.002 島取・防己尾岬 48 0.016±0.001 0.163±0.017 0.332±0.028 0.885±0.172 0.028±0.009 0.060±0.027 浦項碧玉A 51 0.017±0.002 0.744±0.410 0.134±0.078 0.191±0.074 0.043±0.016 0.102±0.024 前項碧玉B 48 0.019±0.002 2.599±0.684 0.046±0.019 0.089±0.020 0.034±0.005 0.102±0.026 10 0.043±0.001 0.102±0.026 0.003±0.001 0.002±0.027 10 0.002±0.002 0.003±0.001 0.002±0.002 0.003±0.001 0.002±0.002 0.003±0.001 0.003±0.001 0.002±0.002 0.003±0.001 0.003±0.001 0.002±0.002 0.003±0.001 0.002±0.002 0.003±0.001 0.002±0.002 0.003±0.001 0.002±0.002 0.003±0.001 0.003±0.001 0.002±0.002 0.003±0.001 0.003±0.001 0.003±0.001 0.002±0.002 0.003±0.001 0.003±0.001 0.002±0.002 0.003±0.001 0.003±0.						0.176 ± 0.043	0.061 ± 0.028	0.187 ± 0.042
島根・野波 - 2(凝灰岩) 47 0.120 ± 0.015 0.837 ± 0.078 4.075 ± 0.725 6.758 ± 1.521 0.004 ± 0.001 0.003 ± 0.001 島根・野波 - 3(凝灰岩) 44 0.120 ± 0.009 2.627 ± 0.276 0.946 ± 0.315 1.942 ± 0.167 0.013 ± 0.002 0.012 ± 0.002 東出雲転石 44 0.014 ± 0.001 0.345 ± 0.079 0.499 ± 0.123 0.281 ± 0.074 0.018 ± 0.006 0.052 ± 0.016 大分・九重 - 1 原石 42 0.020 ± 0.003 0.453 ± 0.090 1.045 ± 1.037 0.375 ± 0.064 0.098 ± 0.032 0.348 ± 0.071 群馬・西入須川 49 0.049 ± 0.001 0.084 ± 0.090 0.043 ± 0.012 0.043 ± 0.001 0.423 ± 0.012 0.043 ± 0.001 0.18 ± 0.006 0.052 ± 0.016 鳥取・多鯰ヶ池 50 0.017 ± 0.001 0.094 ± 0.007 0.073 ± 0.050 1.803 ± 0.250 0.003 ± 0.001 0.002 ± 0.002 鳥取・防己尾岬 48 0.016 ± 0.001 0.163 ± 0.017 0.332 ± 0.028 0.885 ± 0.172 0.028 ± 0.009 0.060 ± 0.027 浦項碧玉A 51 0.017 ± 0.002 0.744 ± 0.410 0.134 ± 0.078 0.191 ± 0.074 0.043 ± 0.016 0.140 ± 0.034 浦項縁を擬大名 46 0.021 ± 0.004 <th< td=""><td>花仙山めのう公園前 – 凝灰岩</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	花仙山めのう公園前 – 凝灰岩	_						
島根・野波-3(凝灰岩) 44 0.120±0.009 2.627±0.276 0.946±0.315 1.942±0.167 0.013±0.002 0.012±0.002 東出雲転石 44 0.014±0.001 0.345±0.079 0.499±0.123 0.281±0.074 0.018±0.006 0.052±0.016 大分・九重-1 原石 42 0.020±0.003 0.453±0.090 1.045±1.037 0.375±0.064 0.098±0.032 0.348±0.071 推馬・西入須川 49 0.049±0.001 2.088±0.148 0.744±0.111 0.423±0.012 0.043±0.001 0.156±0.006 鳥取・多鯰ヶ池 50 0.17±0.001 0.094±0.007 0.073±0.050 1.803±0.250 0.003±0.001 0.002±0.002 鳥取・防己尾岬 48 0.016±0.001 0.163±0.017 0.332±0.028 0.885±0.172 0.028±0.009 0.060±0.027 浦項碧玉A 51 0.017±0.002 0.744±0.410 0.134±0.078 0.191±0.074 0.043±0.016 0.140±0.034 浦項碧玉B 48 0.019±0.002 2.599±0.684 0.046±0.019 0.089±0.020 0.030±0.005 0.102±0.026 浦項縁色凝灰岩A 46 0.021±0.004 1.361±0.776 0.238±0.196 0.141±0.055 0.034±0.005 0.135±0.021 元素比番号 10 2 3 5 6 8		_						
東出雲転石 44 0.014±0.001 0.345±0.079 0.499±0.123 0.281±0.074 0.018±0.006 0.052±0.016 大分・九重-1原石 42 0.020±0.003 0.453±0.090 1.045±1.037 0.375±0.064 0.098±0.032 0.348±0.071 群馬・西入須川 49 0.049±0.001 2.088±0.148 0.744±0.111 0.423±0.012 0.043±0.001 0.156±0.006 鳥取・多鯰ヶ池 50 0.017±0.001 0.094±0.007 0.073±0.050 1.803±0.250 0.003±0.001 0.002±0.002 鳥取・防己尾岬 48 0.016±0.001 0.163±0.017 0.332±0.028 0.885±0.172 0.028±0.009 0.060±0.027 浦項碧玉A 51 0.017±0.002 0.744±0.410 0.134±0.078 0.191±0.074 0.043±0.016 0.140±0.034 浦項碧玉B 48 0.019±0.002 2.599±0.684 0.046±0.019 0.089±0.020 0.030±0.005 0.102±0.026 第項縁色凝灰岩A 46 0.021±0.004 1.361±0.776 0.238±0.196 0.141±0.055 0.034±0.005 0.135±0.021 元素比番号 10 2 3 5 6 8								
大分・九重 - 1 原石 42 0.020±0.003 0.453±0.090 1.045±1.037 0.375±0.064 0.098±0.032 0.348±0.071 群馬・西入須川 49 0.049±0.001 2.088±0.148 0.744±0.111 0.423±0.012 0.043±0.001 0.156±0.006 鳥取・多鯰ヶ池 50 0.017±0.001 0.094±0.007 0.073±0.050 1.803±0.250 0.003±0.001 0.002±0.002 鳥取・防己尾岬 48 0.016±0.001 0.163±0.017 0.332±0.028 0.885±0.172 0.028±0.009 0.060±0.027 浦項碧玉A 51 0.017±0.002 0.744±0.410 0.134±0.078 0.191±0.074 0.043±0.016 0.140±0.034 (48 0.019±0.002 2.599±0.684 0.046±0.019 0.089±0.020 0.030±0.005 0.102±0.026 (46 0.021±0.004 1.361±0.076 0.238±0.196 0.141±0.055 0.034±0.005 0.135±0.021 元素比番号 10 2 3 5 6 8		_						
群馬・西入須川 49 0.049±0.001 2.088±0.148 0.744±0.111 0.423±0.012 0.043±0.001 0.156±0.006 鳥取・多鯰ヶ池 50 0.017±0.001 0.094±0.007 0.073±0.050 1.803±0.250 0.003±0.001 0.002±0.002 鳥取・防己尾岬 48 0.016±0.001 0.163±0.017 0.332±0.028 0.885±0.172 0.028±0.009 0.060±0.027 浦項碧玉A 51 0.017±0.002 0.744±0.410 0.134±0.078 0.191±0.074 0.043±0.016 0.140±0.034 補項碧玉B 48 0.019±0.002 2.599±0.684 0.046±0.019 0.089±0.020 0.030±0.005 0.102±0.026 前項綠色凝灰岩A 46 0.021±0.004 1.361±0.776 0.238±0.196 0.141±0.055 0.034±0.005 0.135±0.021 元素比番号 10 2 3 5 6 8		_						
<u>島取・多鯰ヶ池</u> 50 0.017±0.001 0.094±0.007 0.073±0.050 1.803±0.250 0.003±0.001 0.002±0.002 島取・防己尾岬 48 0.016±0.001 0.163±0.017 0.332±0.028 0.885±0.172 0.028±0.009 0.060±0.027 浦項碧玉A 51 0.017±0.002 0.744±0.410 0.134±0.078 0.191±0.074 0.043±0.016 0.140±0.034 浦項碧玉B 48 0.019±0.002 2.599±0.684 0.046±0.019 0.089±0.020 0.030±0.005 0.102±0.026 浦項綠色凝灰岩A 46 0.021±0.004 1.361±0.776 0.238±0.196 0.141±0.055 0.034±0.005 0.135±0.021 元素比番号 10 2 3 5 6 8								
鳥取・防己尾岬 48 0.016±0.001 0.163±0.017 0.332±0.028 0.885±0.172 0.028±0.009 0.060±0.027 浦項碧玉A 51 0.017±0.002 0.744±0.410 0.134±0.078 0.191±0.074 0.043±0.016 0.140±0.034 浦項碧玉B 48 0.019±0.002 2.599±0.684 0.046±0.019 0.089±0.020 0.030±0.005 0.102±0.026 浦項綠色凝灰岩A 46 0.021±0.004 1.361±0.776 0.238±0.196 0.141±0.055 0.034±0.005 0.135±0.021 元素比番号 10 2 3 5 6 8		_						
浦項碧玉A 51 0.017±0.002 0.744±0.410 0.134±0.078 0.191±0.074 0.043±0.016 0.140±0.034 浦項碧玉B 48 0.019±0.002 2.599±0.684 0.046±0.019 0.089±0.020 0.030±0.005 0.102±0.026 浦項緑色凝灰岩A 46 0.021±0.004 1.361±0.776 0.238±0.196 0.141±0.055 0.034±0.005 0.135±0.021 元素比番号 10 2 3 5 6 8		_						
浦項緑色凝灰岩A 46 0.021 ± 0.004 1.361 ± 0.776 0.238 ± 0.196 0.141 ± 0.055 0.034 ± 0.005 0.135 ± 0.021 元素比番号 10 2 3 5 6 8	浦項碧玉A			0.744 ± 0.410	0.134 ± 0.078	0.191 ± 0.074	0.043 ± 0.016	0.140 ± 0.034
元素比番号 10 2 3 5 6 8		_			0.046 ± 0.019			
		46						
	元素比番号 Vav:平均值 σ:標準偏差值		10	2	3	5	6	8

Xav:平均值、σ:標準偏差值

Fe/Zr	Rb/Zr	Sr/Zr	Y/Zr	Ba/Zr	Mn/Fe	Ti/Fe	Nb/Zr	比 重
$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$
10.681 ± 3.131	2.388 ± 0.585	0.466 ± 0.192	0.123 ± 0.052	5.965 ± 3.088	0.005 ± 0.007	0.010 ± 0.004	0.003 ± 0.012	2.308~2.614
10.900 ± 1.887	2.599 ± 0.452	0.483 ± 0.196	0.120 ± 0.036	6.485 ± 3.513	0.002 ± 0.003	0.010 ± 0.001	0.004 ± 0.016	2.570 ± 0.044
10.440 ± 4.070	2.157 ± 0.625	0.446 ± 0.185	0.127 ± 0.064	5.393 ± 2.414	0.008 ± 0.008	0.011 ± 0.005	0.002 ± 0.006	2.308 ± 0.079
8.226 ± 2.901	1.693 ± 0.376	0.365 ± 0.132	0.090 ± 0.027	3.676 ± 1.217	0.018 ± 0.008	0.013 ± 0.003	0.016 ± 0.053	2.428~2.600
174.08 ± 124.9	16.990 ± 13.44	0.668 ± 0.435	1.801 ± 1.434		0.004 ± 0.003	0.001 ± 0.001	0.455 ± 0.855	2.626 ± 0.032
2.743 ± 1.075	0.061 ± 0.019	1.187 ± 0.474	0.304 ± 0.039		0.008 ± 0.004	0.038 ± 0.012	0.004 ± 0.006	2.2~吸水激し
2.125 ± 0.148 3.309 ± 1.295	0.467 ± 0.040 0.353 ± 0.101	1.652 ± 0.586 12.485 ± 3.306	0.092 ± 0.030 0.032 ± 0.045		0.008 ± 0.001 0.028 ± 0.009	0.017 ± 0.001 0.020 ± 0.005	0.010 ± 0.011 0.007 ± 0.010	2.1~吸水激し 2.495 ± 0.039
25.866 ± 11.50	1.023 ± 0.101 1.023 ± 0.499	7.433 ± 4.531	0.032 ± 0.043 0.378 ± 0.198		0.028 ± 0.009 0.009 ± 0.003	0.020 ± 0.003 0.006 ± 0.002	0.007 ± 0.010 0.118 ± 0.167	2.493 ± 0.039 2.632 ± 0.012
2.137 ± 0.274	0.974 ± 0.110	0.190 ± 0.082	0.137 ± 0.022		0.015 ± 0.002	0.022 ± 0.004	0.134 ± 0.024	2.607 ± 0.001
2.520 ± 0.874	0.654 ± 0.131	0.177 ± 0.154	0.128 ± 0.051		0.003 ± 0.002	0.013 ± 0.003	0.011 ± 0.007	2.395~2.597
0.983 ± 0.172	0.457 ± 0.104	0.100 ± 0.062	0.125 ± 0.042		0.011 ± 0.008	0.025 ± 0.005	0.012 ± 0.007	2.461~2.752
0.400 ± 0.067	0.333 ± 0.019	0.066 ± 0.009	0.280 ± 0.149		0.033 ± 0.017	0.055 ± 0.009	0.014 ± 0.007	2.526~2.557
1.920 ± 0.161	0.845 ± 0.030	0.139 ± 0.012	0.122 ± 0.012		0.016 ± 0.006	0.013 ± 0.001	0.007 ± 0.007	2.545 ± 0.009
4.053 ± 0.464	0.848 ± 0.100	0.682 ± 0.066	0.138 ± 0.020		0.007 ± 0.003	0.048 ± 0.006	0.082 ± 0.015	2.428 ± 0.013
1.726 ± 0.568	0.468 ± 0.052	0.146 ± 0.017	0.100 ± 0.008		0.014 ± 0.005	0.021 ± 0.005	0.011 ± 0.004	2.363 ± 0.038
0.957 ± 0.193	0.388 ± 0.046	0.296 ± 0.042	0.108 ± 0.052		0.003 ± 0.008	0.019 ± 0.004	0.014 ± 0.007	2.370 ± 0.012
1.476 ± 0.037	0.474 ± 0.009	0.233 ± 0.007	0.051 ± 0.004		0.001 ± 0.002	0.016 ± 0.001	0.013 ± 0.005	2.21~吸水
2.453 ± 0.509	0.576 ± 0.070 0.900 ± 0.204	0.190 ± 0.051	0.119 ± 0.024 0.088 ± 0.008		0.010 ± 0.004 0.008 ± 0.004	0.014 ± 0.004	0.009 ± 0.005	2.471 ± 0.036
3.780 ± 1.093 2.581 ± 0.550	0.900 ± 0.204 0.686 ± 0.116	0.100 ± 0.010 0.100 ± 0.009	0.088 ± 0.008 0.077 ± 0.010		0.008 ± 0.004 0.006 ± 0.004	0.008 ± 0.002 0.010 ± 0.001	0.004 ± 0.005 0.005 ± 0.005	2.418±0.038 2.298~吸水
0.803 ± 0.166	0.390 ± 0.035	0.100 ± 0.009 0.204 ± 0.048	0.077 ± 0.010 0.074 ± 0.008		0.006 ± 0.004 0.015 ± 0.006	0.010 ± 0.001 0.027 ± 0.005	0.003 ± 0.003 0.012 ± 0.005	2.486 ± 0.090
0.509 ± 0.175	0.561 ± 0.050	0.169 ± 0.027	0.074 = 0.000 0.123 ± 0.010		0.018 ± 0.020	0.046 ± 0.010	0.012 = 0.003 0.007 ± 0.007	2.464 ± 0.099
0.695 ± 0.065	0.640 ± 0.035	0.187 ± 0.025	0.100 ± 0.020		0.029 ± 0.015	0.030 ± 0.004	0.007 = 0.007 0.005 ± 0.006	2.483 ± 0.025
1.217 ± 0.031	0.410 ± 0.009	0.137 ± 0.007	0.081 ± 0.005		0.011 ± 0.004	0.018 ± 0.001	0.012 ± 0.004	2.379 ± 0.010
1.018 ± 0.603	0.466 ± 0.211	0.141 ± 0.021	0.085 ± 0.002		0.015 ± 0.007	0.023 ± 0.006	0.010 ± 0.005	2.373 ± 0.015
2.400 ± 0.223	0.594 ± 0.018	0.072 ± 0.010	0.067 ± 0.008		0.009 ± 0.004	0.010 ± 0.001	0.007 ± 0.005	2.468 ± 0.036
1.630 ± 0.188	0.268 ± 0.032	1.162 ± 0.171	0.108 ± 0.017		0.032 ± 0.007	0.038 ± 0.004	0.009 ± 0.008	2.1~吸水激し
1.345 ± 0.112	0.460 ± 0.019	0.079 ± 0.016	0.158 ± 0.031		0.024 ± 0.005	0.025 ± 0.001	0.018 ± 0.006	2.542 ± 0.006
3.336 ± 0.771 3.938 ± 0.460	0.518 ± 0.097 0.529 ± 0.041	0.229 ± 0.060 0.306 ± 0.014	0.149 ± 0.023 0.118 ± 0.025		0.025 ± 0.003 0.021 ± 0.002	0.038 ± 0.002 0.021 ± 0.002	0.012 ± 0.010 0.014 ± 0.009	2.552 2.415
3.938 ± 0.460 43.067 ± 23.28	4.056 ± 2.545	0.306 ± 0.014 0.271 ± 0.308	0.118 ± 0.025 0.159 ± 0.180		0.021 ± 0.002 0.001 ± 0.001	0.021 ± 0.002 0.001 ± 0.001	0.014 ± 0.009 0.072 ± 0.160	2.607 ± 0.009
5.746 ± 1.394	0.895 ± 0.248	0.199 ± 0.148	0.190 ± 0.134		0.001 = 0.001 0.027 ± 0.009	0.001 = 0.001 0.018 ± 0.004	0.072 = 0.100 0.007 ± 0.013	2.619 ± 0.014
12.884 ± 3.752	0.882 ± 0.201	1.879 ± 0.650	0.026 ± 0.032		0.003 ± 0.002	0.008 ± 0.002	0.021 ± 0.344	2.169 ± 0.039
3.764 ± 0.428	0.166 ± 0.024	0.830 ± 0.073	0.155 ± 0.022		0.019 ± 0.001	0.024 ± 0.001	0.020 ± 0.011	2.669
1.068 ± 0.103	0.399 ± 0.018	0.699 ± 0.059	0.086 ± 0.016		0.008 ± 0.001	0.046 ± 0.005	0.020 ± 0.007	2.440 ± 0.091
6.024 ± 1.219	1.183 ± 0.284	0.613 ± 0.174	0.162 ± 0.061		0.070 ± 0.017	0.017 ± 0.003	0.067 ± 0.053	2.598 ± 0.008
5.566 ± 1.549	0.980 ± 0.044	0.300 ± 0.032	0.171 ± 0.051		0.003 ± 0.008	0.016 ± 0.001	0.132 ± 0.069	2.536 ± 0.033
5.720 ± 0.608	0.543 ± 0.034	0.489 ± 0.184	0.146 ± 0.027		0.003 ± 0.001	0.009 ± 0.001	0.035 ± 0.018	2.287 ± 0.013
1.409 ± 0.256	0.479 ± 0.064	0.107 ± 0.119	0.115 ± 0.044		0.017 ± 0.012	0.033 ± 0.004	0.011 ± 0.009	2.323~2.584
1.781 ± 0.686	0.523 ± 0.091	0.239 ± 0.147	0.135 ± 0.047		0.013 ± 0.011	0.036 ± 0.013	0.010 ± 0.009	2.536 ± 0.021
1.504 ± 0.484 1.241 ± 0.104	0.462 ± 0.040 0.361 ± 0.026	0.087 ± 0.056 0.280 ± 0.074	0.144 ± 0.041 0.122 ± 0.018		0.021 ± 0.013 0.020 ± 0.010	0.034 ± 0.007 0.043 ± 0.006	0.008 ± 0.009 0.008 ± 0.009	2.520 ± 0.046 2.513 ± 0.021
1.241 ± 0.104 2.527 ± 0.469	0.581 ± 0.026 0.587 ± 0.055	0.280 ± 0.074 0.197 ± 0.085	0.122 ± 0.018 0.131 ± 0.013		0.020 ± 0.010 0.018 ± 0.006	0.043 ± 0.006 0.022 ± 0.003	0.008 ± 0.009 0.008 ± 0.009	2.513 ± 0.021 2.534 ± 0.009
1.371 ± 0.252	0.367 = 0.033 0.415 ± 0.051	0.058 ± 0.017	0.131 ± 0.013 0.113 ± 0.018		0.016 ± 0.000	0.022 = 0.003 0.043 ± 0.008	0.008 ± 0.003 0.013 ± 0.011	2.473吸水
15.733 ± 2.527	2.441 ± 0.669	0.351 ± 0.126	0.184 ± 0.050		0.009 ± 0.005	0.008 ± 0.001	0.001 ± 0.006	2.294 ± 0.151
8.187 ± 0.859	1.590 ± 0.111	0.339 ± 0.041	0.079 ± 0.022	3.832 ± 0.739	0.021 ± 0.006	0.011 ± 0.001	0.003 ± 0.006	2.624~2.447
12.479 ± 1.513	3.022 ± 0.233	0.921 ± 0.066	0.182 ± 0.022		0.007 ± 0.005	0.011 ± 0.001		2.428~2.507
5.638 ± 0.764	1.469 ± 0.110	0.324 ± 0.084	0.092 ± 0.019		0.022 ± 0.007	0.017 ± 0.003	0.003 ± 0.008	2.531~2.570
16.137 ± 4.988	2.874 ± 0.744	0.824 ± 0.612	0.146 ± 0.044	4.654 ± 2.202	0.012 ± 0.005	0.009 ± 0.002	0.001 ± 0.005	2.588 ± 0.036
12.125 ± 2.515	1.313 ± 0.177	0.497 ± 0.157	0.126 ± 0.015	2.208 ± 0.930	0.005 ± 0.003	0.015 ± 0.003	0.002 ± 0.004	2.419吸水
15.461 ± 1.490	0.313 ± 0.145 0.052 ± 0.012	0.344 ± 0.106	0.144 ± 0.025		0.015 ± 0.001	0.023 ± 0.003	0.033 ± 0.008	2.273吸水
15.255 ± 1.018 14.180 ± 0.999	0.052 ± 0.012 0.174 ± 0.016	1.097 ± 0.120 1.039 ± 0.070	0.131 ± 0.020 0.134 ± 0.030		0.010 ± 0.001 0.010 ± 0.001	0.022 ± 0.002 0.022 ± 0.002	0.033 ± 0.007 0.032 ± 0.008	2.509吸水 2.654吸水
36.823 ± 11.546	1.943 ± 0.016	0.921 ± 0.522	0.134 ± 0.030 0.075 ± 0.081		0.010 ± 0.001 0.016 ± 0.009	0.022 ± 0.002 0.005 ± 0.003	0.032 ± 0.008 0.012 ± 0.019	2.0349X/N 2.292
2.688 ± 0.976	0.873 ± 0.161	4.454 ± 1.061	0.073 ± 0.081 0.051 ± 0.033		0.010 ± 0.009 0.021 ± 0.015	0.003 ± 0.003 0.032 ± 0.008	0.012 ± 0.013 0.009 ± 0.013	1.970 ± 0.063
7.378 ± 0.616	1.140 ± 0.072	1.578 ± 0.320	0.031 = 0.033 0.218 ± 0.033		0.021 ± 0.013 0.012 ± 0.002	0.032 = 0.000 0.016 ± 0.001	0.005 ± 0.015 0.025 ± 0.015	2.470
22.333 ± 1.849	0.042 ± 0.035	0.195 ± 0.050	0.129 ± 0.056		0.046 ± 0.004	0.006 ± 0.001	0.006 ± 0.001	2.629
9.795 ± 2.156	0.539 ± 0.166	1.444 ± 0.242	0.316 ± 0.082		0.072 ± 0.011	0.022 ± 0.008	0.005 ± 0.017	2.600-2.560
23.594 ± 12.384	3.086 ± 1.430	0.390 ± 0.248	0.350 ± 0.228	0.641 ± 0.593	0.031 ± 0.024	0.007 ± 0.005	0.003 ± 0.017	2.572 ± 0.047
160.235 ± 85.433	15.214 ± 7.120	0.431 ± 0.130	0.996 ± 0.526	0.307 ± 0.309	0.007 ± 0.002	0.002 ± 0.001	0	2.535 ± 0.085
$24.849 \pm 0.15.612$	3.168 ± 1.800	0.886 ± 0.936	0.250 ± 0.241	0.540 ± 0.338	0.011 ± 0.003	0.004 ± 0.002	0.001 ± 0.002	2.289 ± 0.059
1	12	13	14		7	4	16	

第22表 各原石産地不明碧玉玉類、玉材の遺物群の元素比の平均値と標準偏差値(1)

遺物群名	分析	Al/Si	K/Si	Ca/K	Ti/K	K/Fe	Rb/Fe
	回数	$Xav \pm \sigma$					
女代南B 未定C	68 58	0.045 ± 0.016 0.030 ± 0.028	3. 115 ± 0. 445 4. 416 ± 0. 618	0.042 ± 0.024 0.013 ± 0.013	0.107 ± 0.036 0.207 ± 0.034	0.283 ± 0.099 0.589 ± 0.130	0.267 ± 0.063 0.650 ± 0.113
車塚 1	33	0.030 ± 0.028 0.030 ± 0.015	3.774 ± 0.404	0.015 ± 0.015	0.207 ± 0.034 0.278 ± 0.043	0.334 ± 0.031	0.469 ± 0.030
車塚 2	45	0.035 ± 0.015	0.771-0.101	0.010 = 0.000	0.270 ± 0.013 0.232 ± 0.02	0.544 ± 0.118	0.672 ± 0.112
4田辺	58	0.082 ± 0.042	3. 327 ± 0. 450	0.853 ± 0.213	0.913 ± 0.178	0.091 ± 0.019	0.161 ± 0.018
天王山 4 号第 1 主体 - No. 1	38	0.018 ± 0.004	1. 341 ± 0. 031	0.079 ± 0.013	0.277 ± 0.013	0.257 ± 0.011	0.389 ± 0.036
天王山 4 号第 1 主体 - No. 2	40	0.027 ± 0.000	2.602 ± 0.025	0.021 ± 0.003	0.234 ± 0.006	0.184 ± 0.001	0.228 ± 0.005
天王山 4 号第 2 主体 - No. 5	42	0.034 ± 0.000	3.572 ± 0.129	0.002 ± 0.002	0.252 ± 0.009	0.777 ± 0.030	1.035 ± 0.040
天王山 4 号第 2 主体 - No. 7	42	0.028 ± 0.000	2.650 ± 0.020	0.003 ± 0.003	0.073 ± 0.007	0.557 ± 0.010	0.672 ± 0.019
長塚 (1)	47	0.036 ± 0.004	3.525 ± 0.347	0.033 ± 0.005	0.439 ± 0.050	0.204 ± 0.037	0.361 ± 0.040
長塚 (2) 多摩 (No. 200) - 1 遺物群	45	0.028 ± 0.007 0.042 ± 0.004	2.659 ± 0.122 0.808 ± 0.025	0.010 ± 0.004	0.064 ± 0.003 0.639 ± 0.016	0.719 ± 0.065	0.832 ± 0.054 0.042 ± 0.006
多摩(No. 200)- 1 遺物群	32 28	0.042 ± 0.004 0.037 ± 0.004	0.808 ± 0.025 0.990 ± 0.021	3.588 ± 0.074 2.384 ± 0.067		0.051 ± 0.002 0.064 ± 0.003	0.042 ± 0.000 0.072 ± 0.011
多摩(No. 200) - 3 遺物群	28	0.037 ± 0.004 0.039 ± 0.003	0.926 ± 0.020	2.527 ± 0.114		0.053 ± 0.002	0.072 ± 0.0011 0.053 ± 0.009
多摩(No. 200) - 4 遺物群	32	0.047 ± 0.007	0.855 ± 0.025	3.771 ± 0.079	1.228 ± 0.035	0.057 ± 0.003	0.118 ± 0.023
多摩(No. 200) - 6 遺物群	32	0.040 ± 0.006	4. 185 ± 0. 162	0.031 ± 0.006	0.103 ± 0.003	0.821 ± 0.019	0.692 ± 0.040
本郷 - No. 23	30	0.049 ± 0.003	0.922 ± 0.036	4. 701 ± 0. 161	1.027 ± 0.112	0.042 ± 0.002	0.193 ± 0.062
本郷 – No. 17	34	0.049 ± 0.003	1.094 ± 0.030	3.635 ± 0.074	0.823 ± 0.021	0.058 ± 0.002	0.166 ± 0.012
本郷 – No. 16	27	0.053 ± 0.004		3.706 ± 0.076	0.970 ± 0.092	0.029 ± 0.004	0.085 ± 0.018
本郷 - No. 22	32	0.051 ± 0.005		3. 133 ± 0. 146	0.699 ± 0.046	0.048 ± 0.003	0.175 ± 0.022
本郷 - No. 11	30	0.051 ± 0.004	1.082 ± 0.028	4. 221 ± 0. 039	0.827 ± 0.015	0.041 ± 0.001	0.145 ± 0.011
本郷 - No. 8 札幌市 - K135	32	0.034 ± 0.003 0.040 ± 0.006	0.749 ± 0.043 4.017 ± 0.246	3. 138 ± 0. 498 0. 150 ± 0. 008	1.446 ± 0.131 0.160 ± 0.006	0.019 ± 0.001 0.202 ± 0.015	0.014 ± 0.002 0.315 ± 0.022
心院巾 - K135 山崎 4	58	0. 040 ± 0. 006 0. 012 ± 0. 001	4. 017 ± 0. 246 0. 286 ± 0. 021	0.150 ± 0.008 0.209 ± 0.022	0.160 ± 0.006 0.231 ± 0.019	0.202 ± 0.015 0.028 ± 0.002	0.315 ± 0.022 0.090 ± 0.009
梅田 1	40	0.012 ± 0.001 0.021 ± 0.003	1. 204 ± 0. 094	0.066 ± 0.017	0.231 ± 0.019 0.143 ± 0.008	0.028 ± 0.002 0.065 ± 0.005	0.030 ± 0.009 0.220 ± 0.029
梅田 2	44	0.032 ± 0.004	2.539 ± 0.246	0.025 ± 0.006	0.522 ± 0.050	0.172 ± 0.035	0.299 ± 0.051
梅田 3	40	0.027 ± 0.003		0.020 ± 0.007	0.518 ± 0.010	0.261 ± 0.012	0.430 ± 0.017
梅田 4	38	0.081 ± 0.008	7.149 ± 0.288	0.023 ± 0.003	0.082 ± 0.002	0.558 ± 0.020	0.473 ± 0.026
上ノ段1	42	0.014 ± 0.002	0.413 ± 0.046	0.054 ± 0.026	0.395 ± 0.040	0.053 ± 0.005	0.223 ± 0.020
梅田東1	51	0.030 ± 0.007	1.974 ± 0.317	0.026 ± 0.011	0.529 ± 0.061	0.192 ± 0.011	0.219 ± 0.019
新方1	67	0.062 ± 0.005	1.868 ± 0.115	1.640 ± 0.137	0.733 ± 0.069	0.078 ± 0.012	0.111 ± 0.205
新方 2	30	0.056 ± 0.005	4. 152 ± 0. 162	0.226 ± 0.181	0.313 ± 0.010	0.212 ± 0.019	0.297 ± 0.018
新方3	39 51	0.044 ± 0.008 0.046 ± 0.004	0.912 ± 0.178 3.875 ± 0.879	2. 416 ± 0. 174 0. 316 ± 0. 009	0.786 ± 0.267 0.234 ± 0.004	0.080 ± 0.011 0.146 ± 0.018	0.086 ± 0.018 0.255 ± 0.021
山ノ奥1	42	0. 040 ± 0. 004 0. 013 ± 0. 002	0.608 ± 0.049	0.080 ± 0.005	0.355 ± 0.018	0.136 ± 0.013	0.278 ± 0.021
大歳山 3 号墳 - No. 10	48	0.048 ± 0.006	3.589 ± 0.151	0.096 ± 0.013	0.346 ± 0.012	0.150 ± 0.001	0.270 ± 0.029
大歳山 3 号墳 - No. 2	48	0.062 ± 0.007	0.280 ± 0.045			0.002 ± 0.000	0.002 ± 0.001
大歳山3号墳-No.3	42	0.037 ± 0.004	1.817 ± 0.072	0. 111 ± 0. 008		0.052 ± 0.002	0.105 ± 0.004
東船 2	40	0.118 ± 0.001	0.466 ± 0.010	0.376 ± 0.009	0.108 ± 0.004	0.020 ± 0.001	0.087 ± 0.004
亀川 3	41	0.112 ± 0.010	3.879 ± 0.431	0.122 ± 0.022	0.668 ± 0.030	0.034 ± 0.004	0.073 ± 0.011
昼飯3	48	0.028 ± 0.005	2.002 ± 0.046	0.020 ± 0.010	0.442 ± 0.015	0.169 ± 0.009	0.290 ± 0.014
大歳山 3 号墳 - No. 4	48	0.077 ± 0.006	6. 185 ± 0. 139	0.058 ± 0.006	0. 104 ± 0. 003	0.287 ± 0.011	0.286 ± 0.016
昼飯 4	48 45	0.030 ± 0.005 0.046 ± 0.003	2.078 ± 0.122 0.454 ± 0.091	0.040 ± 0.018	0.702 ± 0.032	0.132 ± 0.008 0.038 ± 0.008	0.263 ± 0.009 0.058 ± 0.007
有同 I	43	0.046 ± 0.003 0.033 ± 0.007	3.017 ± 0.430	4. 885 ± 0. 933 0. 154 ± 0. 042	1.484 ± 0.257 0.107 ± 0.012	0.038 ± 0.008 0.045 ± 0.002	0.038 ± 0.007 0.120 ± 0.004
彼ノ宗3	35	0.033 ± 0.007 0.072 ± 0.008	2.647 ± 0.079	1.233 ± 0.015	0.107 = 0.012 0.915 ± 0.018	0.045 ± 0.002	0.120 ± 0.004 0.167 ± 0.029
彼ノ宗4	40	0.067 ± 0.010	4.156 ± 0.155	0.344 ± 0.009	0.488 ± 0.009	0.134 ± 0.005	0.183 ± 0.007
斉当坊 6	45	0.045 ± 0.004	3.512 ± 0.108	0.038 ± 0.004	0.090 ± 0.003	0.839 ± 0.059	0.618 ± 0.047
笠見3-5	46	0.103 ± 0.010	4. 761 ± 0. 127	0.039 ± 0.005	0.513 ± 0.069	0.090 ± 0.003	0.157 ± 0.006
笠見8	40	0.079 ± 0.008	3.542 ± 0.123	0.148 ± 0.014	0.561 ± 0.019	0.044 ± 0.001	0.047 ± 0.004
笠見10	48		4. 776 ± 0. 117		0.600 ± 0.007		0.097 ± 0.009
笠見4	45	0.105 ± 0.002		0. 313 ± 0. 043	0.781 ± 0.030		0.045 ± 0.005
<u> 笠見13</u>	45	0.088 ± 0.008 0.039 ± 0.004	4.591 ± 0.091	0.123 ± 0.005	0.439 ± 0.008	0.074 ± 0.002	0.099 ± 0.007
矢野 4	46	0.039 ± 0.004 0.038 ± 0.005	2.666 ± 0.087 2.294 ± 0.066	0.042 ± 0.006 0.109 ± 0.009	0.144 ± 0.003 0.302 ± 0.008	0.482 ± 0.018 0.273 ± 0.010	0.456 ± 0.019 0.401 ± 0.018
BHIL	10	0.000 = 0.000	2.231 ÷ 0.000	0. 103 - 0. 009	0.302 ± 0.008 0.766 ± 0.01	0.273 ± 0.010 0.072 ± 0.003	0.401 ± 0.018 0.116 ± 0.009
					0.100-0.01	0.012 - 0.000	0.110 - 0.000
石田3	30	0.014 ± 0.001	0.461 ± 0.059	0.001 ± 0.003			
美保 (出雲) No. 1	30	0.095 ± 0.002	4.703 ± 0.190	0.140 ± 0.006	0.421 ± 0.013	0.062 ± 0.005	0.101 ± 0.010
大代8	46	0.031 ± 0.001	3.129 ± 0.100	0.010 ± 0.005	0.394 ± 0.008	0.261 ± 0.005	0. 418 ± 0. 009
大代5	46	0.049 ± 0.002	0.677 ± 0.053	7.307 ± 0.891	1.069 ± 0.113	0.004 ± 0.001	0.002 ± 0.001
沖丈-2号 大歳山3号墳-No.1	45 42	0.066 ± 0.005 0.040 ± 0.001	2.596 ± 0.355 0.762 ± 0.042	0.876 ± 0.105 0.929 ± 0.118	0.937 ± 0.082 0.206 ± 0.018	0.093 ± 0.008 0.035 ± 0.002	0.192 ± 0.020 0.020 ± 0.003
大阪山3号頃-N0.1 持田3丁目A管玉群	42	0.040 ± 0.001 0.055 ± 0.004	3. 186 ± 0. 281	0.929 ± 0.118 0.482 ± 0.048	0.206 ± 0.018 0.725 ± 0.031	0.080 ± 0.002	0.020 ± 0.003 0.150 ± 0.020
持田3丁目B管玉群	45	0.038 ± 0.002	3.370 ± 0.104	0.024 ± 0.024	0.723 = 0.031 0.244 ± 0.053	0.080 ± 0.010 0.273 ± 0.039	0.368 ± 0.044
持田3丁目C管玉群	45	0.045 ± 0.003	4. 282 ± 0. 393	0.001 ± 0.002	0.173 ± 0.014	0.981 ± 0.119	1.164 ± 0.185
花仙山遺物群	50	0.020 ± 0.003	1.164 ± 0.355	0.039 ± 0.028	0.153 ± 0.071	0.123 ± 0.031	0.214 ± 0.033
上野 1 号墳 - No. 3	42	0.030 ± 0.000	1.977 ± 0.039	0.020 ± 0.003	0.914 ± 0.026	0.104 ± 0.003	0.267 ± 0.005
石台-No.1	44	0.069 ± 0.001	2.580 ± 0.035	1. 220 ± 0. 056	0.892 ± 0.014	0.049 ± 0.003	0.120 ± 0.006
鶴貫 西京 N I	42	0.027 ± 0.001	2. 279 ± 0. 131	0. 014 ± 0. 010	0.166 ± 0.008	0.141 ± 0.012	0. 162 ± 0. 009
玉の宮 - No. 1	43	0.017 ± 0.001	1. 289 ± 0. 178	0. 044 ± 0. 008	0.196 ± 0.031	0.038 ± 0.001	0.116 ± 0.002
仲仙寺 9 - No. 2 仲仙寺 9 - No. 3 - 6	41 42	0.020 ± 0.001 0.018 ± 0.001	1. 502 ± 0. 068 1. 004 ± 0. 103	0.021 ± 0.005 0.027 ± 0.009	0.132 ± 0.008 0.152 ± 0.018	0.279 ± 0.007 0.117 ± 0.007	0.405 ± 0.014 0.247 ± 0.009
仲仙寺 9 - No. 3 - 6 仲仙寺 9 - No. 5	42	0.018 ± 0.001 0.019 ± 0.002	0.822 ± 0.031	0.027 ± 0.009 0.104 ± 0.016	0.152 ± 0.018 1.072 ± 0.024	0.117 ± 0.007 0.123 ± 0.002	0.247 ± 0.009 0.332 ± 0.015
西川津	41	0.019 ± 0.002 0.077 ± 0.004	2. 461 ± 0. 212	1. 485 ± 0. 123	0.835 ± 0.055	0.123 ± 0.002 0.062 ± 0.008	0.352 ± 0.015 0.168 ± 0.032
源代	46	0.067 ± 0.004	0.770 ± 0.153	3.837 ± 0.573	1.859 ± 0.170	0.002 ± 0.008 0.013 ± 0.001	0.017 ± 0.003
紫金山-鍬形石	45	0.059 ± 0.001	2. 691 ± 0. 337	0.695 ± 0.164	0.364 ± 0.032	0.105 ± 0.009	0.189 ± 0.034
紫金山-車輪石	49	0.066 ± 0.001	2.651 ± 0.040	0.801 ± 0.049	0.391 ± 0.007	0.098 ± 0.003	0.198 ± 0.006

Fe/Zr	Rb/Zr	Sr/Zr	Y/Zr	Mn/Fe	Ti/Fe	Nb/Zr	比 重
$Xav \pm \sigma$	Xav± σ	Xav ± σ	Xav ± σ	Xav± σ	Xav ± σ	Xav± σ	$Xav \pm \sigma$
2.374 ± 0.676	0.595 ± 0.065	0.214 ± 0.097	0.171 ± 0.047	0.011 ± 0.004		0.034 ± 0.016	2.554 ± 0.019
0.583 ± 0.110	0.369 ± 0.035	0.090 ± 0.030	0.070 ± 0.026	0.002 ± 0.001	0.101 ± 0.019	0.019 ± 0.016	2. 646 ± 0. 023
0.782 ± 0.071	0.365 ± 0.016	0.071 ± 0.012	0.090 ± 0.060 0.057 ± 0.019	0.002 ± 0.001	0.081 ± 0.013	0.033 ± 0.013	2. 619 ± 0. 019 2. 61 6 ± 0. 019
0.540 ± 0.122 1.342 ± 0.160	0.350 ± 0.036 0.214 ± 0.026	0.070 ± 0.280 2.140 ± 0.412	0.057 ± 0.019 0.064 ± 0.024	0.002 ± 0.001 0.008 ± 0.003	0.109 ± 0.023 0.067 ± 0.008	0.028 ± 0.013 0.018 ± 0.010	2.616 ±0.019
0.814 ± 0.057	0.316 ± 0.032	0.168 ± 0.027	0.004 ± 0.024 0.074 ± 0.031	0.006 ± 0.001	0.069 ± 0.003	0.018 ± 0.010 0.055 ± 0.027	2. 437
2.645 ± 0.044	0.599 ± 0.014	0.135 ± 0.009	0.066 ± 0.007	0.013 ± 0.007	0.039 ± 0.001	0.018 ± 0.011	2. 548
0.287 ± 0.009	0.295 ± 0.005	0.072 ± 0.004	0.041 ± 0.004		0.176 ± 0.005	0.025 ± 0.004	2. 466
0.517 ± 0.014	0.345 ± 0.007	0.074 ± 0.006	0.337 ± 0.015	0.023 ± 0.019	0.036 ± 0.003	0.012 ± 0.007	2. 555
2.756 ± 0.473	0.980 ± 0.110	0.472 ± 0.083	0.379 ± 0.143	0.005 ± 0.001	0.094 ± 0.013	0.022 ± 0.016	2.533 ± 0.016
0.412 ± 0.038	0.341 ± 0.023	0.036 ± 0.010	0.386 ± 0.242	0.004 ± 0.001	0.047 ± 0.004	0.024 ± 0.013	2. 569 ± 0. 003
1.751 ± 0.149 1.422 ± 0.075	0.073 ± 0.016 0.102 ± 0.015	4.665 ± 0.374 6.680 ± 0.322	0.239 ± 0.026 0.170 ± 0.017	0.006 ± 0.001 0.008 ± 0.001	0.033 ± 0.001 0.038 ± 0.002	0.006 ± 0.009 0.006 ± 0.010	2. 308 2. 277
1.668 ± 0.093	0.088 ± 0.015		0.343 ± 0.031	0.008 ± 0.001 0.014 ± 0.003		0.000 ± 0.010 0.002 ± 0.005	2. 270
1. 110 ± 0. 129	0.130 ± 0.030	9. 626 ± 1. 090	0.313 ± 0.031 0.117 ± 0.025	0.005 ± 0.001	0.068 ± 0.002	0.002 = 0.008	2. 256
0.646 ± 0.037	0.447 ± 0.025	0.207 ± 0.020	0.296 ± 0.026	0.011 ± 0.002	0.082 ± 0.003	0.038 ± 0.026	2. 542
1.390 ± 0.134	0.271 ± 0.096	8.507 ± 0.791	0.118 ± 0.036	0.008 ± 0.002	0.043 ± 0.004	0.005 ± 0.005	2. 201吸水
1.282 ± 0.088	0.213 ± 0.021	9.273 ± 0.591	0.137 ± 0.019	0.006 ± 0.001	0.047 ± 0.001	0.005 ± 0.005	2. 204吸水
2.626 ± 0.429	0.215 ± 0.025	8. 981 ± 0. 646	0.170 ± 0.028	0.013 ± 0.001	0.027 ± 0.002		2. 254吸水
1.580 ± 0.109	0.329 ± 0.047 0.230 ± 0.023	6.754 ± 0.505 9.062 ± 0.598	0.168 ± 0.033 0.160 ± 0.018	0.007 ± 0.001 0.009 ± 0.001	0.033 ± 0.001 0.034 ± 0.001	0.005 ± 0.006 0.001 ± 0.003	2. 219吸水 2. 227吸水
5.991 ± 0.477	0.230 ± 0.023 0.084 ± 0.015	3.924 ± 0.299	0.362 ± 0.025	0.009 ± 0.001 0.021 ± 0.001	0.034 ± 0.001 0.027 ± 0.001	0.001 ± 0.003 0.010 ± 0.012	2. 221 92 N 2. 684
1.739 ± 0.136	0.546 ± 0.028	0.454 ± 0.026	0.362 ± 0.029 0.136 ± 0.030	0.021 = 0.001 0.007 ± 0.001	0.027 = 0.001 0.035 ± 0.001	0.036 ± 0.016	2. 436
	1.418 ± 0.177	0.628 ± 0.094	0.076 ± 0.081	0.002 ± 0.000	0.006 ± 0.000		2. 588
12.333 ± 0.882		0.273 ± 0.374	0.741 ± 0.134	0.001 ± 0.000	0.009 ± 0.001	0.014 ± 0.019	2. 579 ± 0. 013
3.517 ± 0.603	2.024 ± 0.053	0.316 ± 0.048	0.283 ± 0.066	0.005 ± 0.001	0.080 ± 0.011	0.035 ± 0.015	2. 531 ± 0. 007
3.262 ± 0.209	1.401 ± 0.057	0.338 ± 0.028	0.386 ± 0.048		0.121 ± 0.005		2.511
1.003 ± 0.046	0.473 ± 0.018	0.222 ± 0.032	0.100 ± 0.013 0.296 ± 0.053	0.006 ± 0.001	0.039 ± 0.002	0.039 ± 0.010	2. 446 2. 636 + 0. 001
3.772 ± 0.448 2.366 ± 0.474	0.833 ± 0.068 0.512 ± 0.069	0.077 ± 0.037 0.072 ± 0.024	0.296 ± 0.053 0.101 ± 0.042	0.006 ± 0.001 0.008 ± 0.001	0.019 ± 0.001 0.095 ± 0.014	0.014 ± 0.018 0.027 ± 0.018	2. 636 ± 0. 001 2. 541 ± 0. 016
1. 610 ± 0. 264	0.312 ± 0.009 0.175 ± 0.018	8. 298 ± 0. 619	0.101 ± 0.042 0.078 ± 0.019	0.050 ± 0.001	0.046 ± 0.006	0.027 ± 0.018 0.027 ± 0.009	2. 290 ± 0. 018
3.847 ± 0.314	1.137 ± 0.057	0.649 ± 0.095	0.139 ± 0.053		0.061 ± 0.004		2. 546 ± 0. 011
1.685 ± 0.413	0.144 ± 0.050	7. 449 ± 1. 605	0.182 ± 0.056	0.068 ± 0.027	0.057 ± 0.013	0.007 ± 0.007	2. 257 ± 0. 024
1.874 ± 0.168	0.476 ± 0.020	1. 994 ± 0. 080	0.077 ± 0.022		0.035 ± 0.001	0.021 ± 0.011	2. 482
1.052 ± 0.082	0.291 ± 0.015	0.083 ± 0.010	0.142 ± 0.015	0.010 ± 0.001	0.045 ± 0.002	0.027 ± 0.016	2. 461
2.478 ± 0.104	0.545 ± 0.021	0.452 ± 0.059	0.065 ± 0.016	0.004 ± 0.000	0.046 ± 0.002	0.033 ± 0.014	2.2~吸水
4.471 ± 0.140	0.152 ± 0.049 0.470 ± 0.017	0.428 ± 0.079 0.284 ± 0.018	0.120 ± 0.060 0.265 ± 0.028	0.014 ± 0.001 0.012 ± 0.001	0.003 ± 0.000 0.012 ± 0.000	0.087 ± 0.040 0.002 ± 0.005	2. 849 ? 2. 3~吸水
	4.250 ± 0.538	0.264 ± 0.018 0.756 ± 0.136	0.265 ± 0.028 0.056 ± 0.074		0.012 ± 0.000 0.002 ± 0.000		2. 19~吸水
9.768 ± 0.951	0.706 ± 0.062	0. 117 ± 0. 011	0.126 ± 0.022	0.001 ± 0.000	0.02 ± 0.002	0.094 ± 0.020	2. 530 ± 0. 054
0.967 ± 0.040	0.280 ± 0.010	0.052 ± 0.007	0.062 ± 0.010	0.002 ± 0.001	0.070 ± 0.002	0.035 ± 0.010	2. 501
1.216 ± 0.076	0.346 ± 0.011	0.166 ± 0.014	0.113 ± 0.014	0.008 ± 0.001	0.025 ± 0.001	0.014 ± 0.007	2.2~吸水
3.774 ± 0.170	0.991 ± 0.049	0.227 ± 0.035	0.145 ± 0.048	0.005 ± 0.001	0.083 ± 0.002	0.035 ± 0.015	2. 579
2.395 ± 0.279	0.139 ± 0.025	1.639 ± 0.375	0.424 ± 0.041	0.006 ± 0.001	0.050 ± 0.005	0.004 ± 0.006	2. 200
	1.508 ± 0.072	0.367 ± 0.018 5.611 ± 0.363	0.069 ± 0.027	0.007 ± 0.001	0.005 ± 0.000	0.014 ± 0.011	2.475 2.2~吸水
1.471 ± 0.106 1.692 ± 0.065	0.245 ± 0.038 0.310 ± 0.010	0.739 ± 0.020	0.067 ± 0.019 0.074 ± 0.014	0.006 ± 0.001 0.011 ± 0.001	0.069 ± 0.001 0.058 ± 0.002	0.026 ± 0.009 0.032 ± 0.009	2.2~吸水
0.849 ± 0.074	0.510 ± 0.010 0.522 ± 0.020	0.181 ± 0.011	0.074 ± 0.014 0.984 ± 0.219	0.011 = 0.001 0.015 ± 0.001	0.070 ± 0.002		2. 554
1.470 ± 0.050	0.231 ± 0.007	0.574 ± 0.047	0.022 ± 0.015	0.008 ± 0.001	0.044 ± 0.006	0.025 ± 0.005	2. 249~2. 098
2.782 ± 0.184	0.131 ± 0.014	1.861 ± 0.149	0.028 ± 0.009	0.008 ± 0.001	0.024 ± 0.001	0.023 ± 0.006	2. 257
1.650 ± 0.059		2.187 ± 0.074	0.020 ± 0.014		0.046 ± 0.001	0.018 ± 0.005	2. 278
7.429 ± 0.531	0.332 ± 0.035		0.105 ± 0.032		0.010 ± 0.001		2. 610
2.090 ± 0.151	0.206 ± 0.013	1.523 ± 0.108	0.028 ± 0.010		0.032 ± 0.001	0.024 ± 0.007	2. 297
0.911 ± 0.041 1.349 ± 0.077	0.415 ± 0.016 0.540 ± 0.026	0.173 ± 0.011 0.627 ± 0.035	0.262 ± 0.023 0.143 ± 0.024	0.008 ± 0.001 0.004 ± 0.001	0.064 ± 0.002 0.077 ± 0.003	0.024 ± 0.016 0.033 ± 0.019	2. 456 2. 583
1.643 ± 0.077 1.643 ± 0.158	0.340 ± 0.020 0.190 ± 0.021	0.627 ± 0.033 1.583 ± 0.113	0.031 ± 0.024	0.004 ± 0.001 0.011 ± 0.001	0.077 ± 0.003 0.051 ± 0.002	0.033 ± 0.019 0.024 ± 0.009	2. 303
0.548 ± 0.131	0.337 ± 0.017	0.198 ± 0.096	0.031 ± 0.013	0.001 ± 0.001	0.129 ± 0.028	0.024 = 0.003 0.035 ± 0.016	2. 521 ± 0. 027
1.810 ± 0.058	0. 281 ± 0. 011	0.010 ± 0.006	0.049 ± 0.006	0.022 ± 0.006	0.102 ± 0.003	0.025 ± 0.010	2. 425
4.288 ± 0.414	0.567 ± 0.062	1.160 ± 0.117	0.204 ± 0.035	0.065 ± 0.009	0.029 ± 0.002	0.010 ± 0.018	2. 630
3.071 ± 0.337	0.304 ± 0.006	0.483 ± 0.011	0.039 ± 0.002	0.001 ± 0.001	0.023 ± 0.002	0.024 ± 0.003	2. 173
2.010 ± 0.041	0.835 ± 0.018	0.253 ± 0.013	0.343 ± 0.014	0.006 ± 0.007	0.093 ± 0.001	0.011 ± 0.009	2. 546
36.228 ± 2.282 1.124 ± 0.189	0.061 ± 0.011 0.210 ± 0.018	7.363 ± 0.353 4.640 ± 0.439	0.253 ± 0.015 0.044 ± 0.008	0.012 ± 0.001 0.001 ± 0.004	0.004 ± 0.001 0.079 ± 0.011	0. 000000 0. 016 ± 0. 004	2. 589 2. 399 ± 0. 015
1.338 ± 0.014	0.210 ± 0.018 0.027 ± 0.004	0.595 ± 0.023	0.044 ± 0.008 0.064 ± 0.004	0.001 ± 0.004 0.023 ± 0.002	0.079 ± 0.011 0.006 ± 0.001	0.016 ± 0.004 0.009 ± 0.005	2. 599±0. 015 2. 611
1.320 ± 0.172	0.194 ± 0.011	2.827 ± 0.286	0.050 ± 0.007	0.015 ± 0.010	0.052 ± 0.007	0.019 ± 0.004	2. 3~, 2. 4~
1.210 ± 0.222	0.445 ± 0.114	0.277 ± 0.223	0.063 ± 0.025	0.005 ± 0.007	0.058 ± 0.006	0.032 ± 0.011	2.5~, 2.6~
0.290 ± 0.023	0.333 ± 0.041	0.079 ± 0.015	0.055 ± 0.010	0.010 ± 0.014			2.5~, 2.6~
7.615 ± 2.563	1.555 ± 0.296	0.501 ± 0.187	0.072 ± 0.030	0.031 ± 0.016	0.016 ± 0.006	0.003 ± 0.006	2. 543~2. 562
2.840 ± 0.086	0.752 ± 0.029	0.097 ± 0.013	0.100 ± 0.009	0.015 ± 0.007	0.085 ± 0.001	0.024 ± 0.011	2. 444
1.831 ± 0.072 2.644 ± 0.126	0.218 ± 0.005 0.423 ± 0.014	6.025 ± 0.088 0.177 ± 0.012	0.043 ± 0.004 0.112 ± 0.009	0. 016 ± 0. 006	0.039 ± 0.002 0.021 ± 0.002	0.011 ± 0.003 0.011 ± 0.008	2. 409 2. 564
	0.423 ± 0.014 3.478 ± 0.213	0.177 ± 0.012 0.544 ± 0.055	0.112 ± 0.009 0.270 ± 0.036	0.016 ± 0.006 0.006 ± 0.003		0.011 ± 0.008 0.0003 ± 0.001	2. 504
0.671 ± 0.020	0.269 ± 0.009	0.088 ± 0.007	0.270 ± 0.030 0.086 ± 0.006	0.000 ± 0.003 0.053 ± 0.013	0.007 ± 0.001 0.033 ± 0.002	0.020 ± 0.001	2.099
6.637 ± 0.858	1.620 ± 0.199	0.361 ± 0.114	0.087 ± 0.032	0.029 ± 0.010	0.016 ± 0.002	0.020 ± 0.010	2. 523
0.487 ± 0.025	0.160 ± 0.009	0.112 ± 0.006	0.049 ± 0.003	0.048 ± 0.010	0.119 ± 0.002	0.026 ± 0.006	2. 490
1.634 ± 0.294	0.264 ± 0.026	6.335 ± 0.799	0.054 ± 0.006	0.001 ± 0.003	0.046 ± 0.006	0.014 ± 0.004	2. 415~2. 444
5. 261 ± 0. 287	0.091 ± 0.017	5. 048 ± 0. 373	0.065 ± 0.012	0.016 ± 0.005	0.021 ± 0.003		2. 192~2. 277
1.890 ± 0.163	0.354 ± 0.063		0.174 ± 0.060	0.002 ± 0.002	0.034 ± 0.005	0.006 ± 0.005	2. 209~2. 204
1.691 ± 0.101	0.331 ± 0.017	1.149 ± 0.022	0.125 ± 0.020	0.004 ± 0.002	0.035 ± 0.001	0.005 ± 0.005	2. 100

第23表 各原石産地不明碧玉玉類、玉材の遺物群の元素比の平均値と標準偏差値(2)

遺物群名	分析	Al/Si	K/Si	Ca/K	Ti/K	K/Fe	Rb/Fe
	回数	$Xav \pm \sigma$					
紫金山 - 紡錘車 1 - 3	42	0.052 ± 0.003		1. 402 ± 0. 232	0.269 ± 0.153		0. 134 ± 0. 015
紫金山-紡錘車2	42	0.055 ± 0.000	3.076 ± 0.009	0.240 ± 0.002	0.373 ± 0.004	0. 118 ± 0. 000	0.263 ± 0.004
山持川-41-5 堀部Ⅱ-222	30	0.042 ± 0.000	3.220 ± 0.066 0.365 ± 0.083	0.120 ± 0.006 0.038 ± 0.022	0.119 ± 0.004	0.257 ± 0.017 0.144 ± 0.032	0.252 ± 0.014
無部 II − 2222 川向 − No. 3・5	36	0.013 ± 0.000 0.042 ± 0.001	0.363 ± 0.083 2.786 ± 0.361	0.038 ± 0.022 0.196 ± 0.085	0.308 ± 0.068 0.156 ± 0.028	0.144 ± 0.032 0.199 ± 0.029	0.226 ± 0.024 0.218 ± 0.029
川向 – No. 4	28	0.042 ± 0.001 0.029 ± 0.000	1. 932 ± 0. 057	0.032 ± 0.005	0.179 ± 0.005	0.133 = 0.023 0.224 ± 0.019	0.325 ± 0.023
古志本郷	40	0.085 ± 0.014	2.960 ± 0.197	0.632 ± 0.192	0.668 ± 0.041	0.064 ± 0.005	0.139 ± 0.014
古浦砂丘-65	41	0.055 ± 0.002	5.450 ± 0.137	0.0002 ± 0.001	0.130 ± 0.005	1.157 ± 0.075	1.351 ± 0.064
古浦砂丘-A6	40	0.036 ± 0.000	3.098 ± 0.046	0.165 ± 0.019	0.091 ± 0.008	0.278 ± 0.004	0.292 ± 0.011
古浦砂丘-21	41	0.077 ± 0.002	3. 220 ± 0. 121	1. 287 ± 0. 111	0.652 ± 0.022	0.087 ± 0.003	0.195 ± 0.009
会津坂下-G	50	0.038 ± 0.004	3.323 ± 0.455	0.018 ± 0.012	0.047 ± 0.006	0.360 ± 0.058	0.412 ± 0.053
会津坂下N石材群	45	0.045 ± 0.005	4. 063 ± 0. 491	0.030 ± 0.005	0.315 ± 0.071	0.267 ± 0.058	0.311 ± 0.035
湯坂 1	54	0.041 ± 0.005	3. 292 ± 0. 543	0.020 ± 0.009	0.054 ± 0.019	0.278 ± 0.051	0.377 ± 0.061
湯坂2	40	0.058 ± 0.004		0.033 ± 0.036	0.071 ± 0.013		0. 263 ± 0. 041
阿尾島田 - 1	49	0.021 ± 0.013	1. 116 ± 0. 122 2. 212 ± 0. 053	0.026 ± 0.019 0.000 ± 0.001	0.239 ± 0.038 0.033 ± 0.004	0.307 ± 0.026 0.671 ± 0.031	0.482 ± 0.064
阿尾島田 - 2 中野清水 1 群	45	0.030 ± 0.001 0.088 ± 0.014	1. 823 ± 0. 355	0.000 ± 0.001 0.124 ± 0.071	0.033 ± 0.004 1.718 ± 0.816	0.024 ± 0.008	0.808 ± 0.040 0.031 ± 0.014
中野清水3群	45	1.855 ± 0.002		0.124 ± 0.071 0.002 ± 0.004	0.833 ± 0.086	0. 024 ± 0. 008 0. 101 ± 0. 030	0.031 ± 0.014 0.298 ± 0.085
中野清水 4 群	45	0.080 ± 0.002		0.040 ± 0.020	0.713 ± 0.101	0.034 ± 0.000	0.048 ± 0.002
中野清水 5 群	40	0.078 ± 0.004		0.752 ± 0.026	0.824 ± 0.014		0.143 ± 0.004
矢野No. 1群	40	0.068 ± 0.002	2.345 ± 0.093	0.983 ± 0.079	0.852 ± 0.024	0.068 ± 0.011	0.164 ± 0.020
矢野No. 2群	40	0.092 ± 0.003	3. 273 ± 0. 084	0.607 ± 0.018	0.772 ± 0.024	0.086 ± 0.004	0.208 ± 0.005
矢野No. 3群	40	0.072 ± 0.001	2.705 ± 0.037	0.739 ± 0.011	0.740 ± 0.015	0.109 ± 0.003	0.272 ± 0.005
地方25群	46	0.055 ± 0.001	4.374 ± 0.094	0.106 ± 0.008	0.135 ± 0.011	0.220 ± 0.006	0.205 ± 0.008
地方26群	45	0.038 ± 0.001	2. 993 ± 0. 104	0.036 ± 0.008	0.346 ± 0.011	0.182 ± 0.007	0.213 ± 0.008
地方31群	45	0.067 ± 0.001	1. 858 ± 0. 030	1. 674 ± 0. 029	1. 408 ± 0. 028	0.070 ± 0.001	0.187 ± 0.006
地方32群	47	0.032 ± 0.002	2.322 ± 0.193	0.043 ± 0.004	0.133 ± 0.009	0.616 ± 0.018	0.706 ± 0.042
地方37群	46	0.050 ± 0.002	3.666 ± 0.262 1.740 ± 0.073	0.098 ± 0.006	0.232 ± 0.009	0.070 ± 0.004	0.131 ± 0.008
地方38群地方35群	46	0.061 ± 0.001 0.041 ± 0.001	1.740 ± 0.073 3.075 ± 0.052	1.365 ± 0.029 0.127 ± 0.007	0.573 ± 0.015 0.262 ± 0.010	0.038 ± 0.001 0.108 ± 0.001	0.091 ± 0.004 0.189 ± 0.006
地方36群	40	0.041 ± 0.001 0.077 ± 0.002	3.075 ± 0.052 2.330 ± 0.058	0.127 ± 0.007 1.524 ± 0.032	0.262 ± 0.010 1.189 ± 0.036	0.108 ± 0.001 0.078 ± 0.007	0.189 ± 0.006 0.192 ± 0.014
地方6群	40	0.041 ± 0.002	3.359 ± 0.031	0.015 ± 0.005	0.094 ± 0.005	0.475 ± 0.012	0.152 ± 0.014 0.557 ± 0.015
地方7群	40	0.042 ± 0.001	3.408 ± 0.142	0.042 ± 0.005	0.356 ± 0.013		0.187 ± 0.007
地方 8 群	40	0.040 ± 0.001	3.215 ± 0.059	0.061 ± 0.008	0.324 ± 0.035		0.236 ± 0.012
地方18群	40	0.046 ± 0.001	3.574 ± 0.035	0.106 ± 0.005	0.114 ± 0.006	0.258 ± 0.010	0.241 ± 0.010
地方28群	40	0.034 ± 0.001	2.427 ± 0.178	0.048 ± 0.010	0.116 ± 0.011	0.226 ± 0.030	0.298 ± 0.037
地方30群	40	0.024 ± 0.001	1.340 ± 0.033	0.026 ± 0.011	0.085 ± 0.024	0.295 ± 0.035	0.396 ± 0.034
地方A群	40	0.043 ± 0.005	3.339 ± 0.319	0.059 ± 0.025	0.313 ± 0.053		0. 192 ± 0. 041
地方B群	42	0.032 ± 0.007	2. 322 ± 0. 826	0.027 ± 0.014	0.107 ± 0.022		0. 561 ± 0. 134
地方C群	40 28	0.068 ± 0.006	1. 967 ± 0. 251	1.529 ± 0.127	1.064 ± 0.352	0.062 ± 0.017	0.157 ± 0.047
地方D群 地方122640群	48	0.053 ± 0.004 0.048 ± 0.001	4.146 ± 0.358 3.990 ± 0.052	0.104 ± 0.006 0.130 ± 0.004	0.129 ± 0.015 0.146 ± 0.005	0.229 ± 0.015 0.187 ± 0.007	0.217 ± 0.019 0.163 ± 0.009
地方122641群	47	0.048 ± 0.001 0.037 ± 0.001	3. 216 ± 0. 060	0.045 ± 0.004	0.096 ± 0.005	0.187 ± 0.007 0.413 ± 0.021	0.103 ± 0.009 0.387 ± 0.020
地方122649群	47	0.037 ± 0.001 0.044 ± 0.001	4. 262 ± 0. 287	0.043 ± 0.004 0.083 ± 0.007	0.106 ± 0.008	0.413 ± 0.021 0.234 ± 0.009	0.387 ± 0.020 0.208 ± 0.010
吹上5-6遺物群	90	0.017 ± 0.001	1.590 ± 0.203	0.054 ± 0.023	0.098 ± 0.016	0.025 ± 0.002	0.042 ± 0.002
吹上7遺物群	45	0.045 ± 0.000	3.856 ± 0.033	0.013 ± 0.002	0.054 ± 0.004	0.388 ± 0.007	0.488 ± 0.012
吹上8遺物群	45	0.046 ± 0.001	3.899 ± 0.112	0.014 ± 0.003	0.047 ± 0.006	0.278 ± 0.004	0.381 ± 0.007
吹上9遺物群	45	0.039 ± 0.001	3.300 ± 0.108	0.023 ± 0.006	0.052 ± 0.005	0.229 ± 0.005	0.348 ± 0.007
吹上10遺物群	45	0.017 ± 0.001	2.819 ± 0.390	0.081 ± 0.008	0.012 ± 0.018	0.022 ± 0.001	0.026 ± 0.001
吹上12遺物群	45	0.050 ± 0.001	4. 022 ± 0. 092	0.040 ± 0.033	0.066 ± 0.005	0.187 ± 0.008	0.324 ± 0.014
吹上13遺物群	45		3.665 ± 0.108				
吹上14遺物群 吹上15遺物群	45	0.048 ± 0.001	3.588 ± 0.077	0.044 ± 0.011 0.025 ± 0.002	0.058 ± 0.009 0.066 ± 0.007	0.367 ± 0.045	0.461 ± 0.039
吹上15週物群	45 45	0.052 ± 0.001 0.057 ± 0.001	4. 030 ± 0. 090 4. 241 ± 0. 070	0.025 ± 0.002 0.069 ± 0.014	0.066 ± 0.007 0.079 ± 0.007	0.178 ± 0.003 0.081 ± 0.002	0.296 ± 0.006 0.203 ± 0.004
吹上17遺物群	45	0.037 ± 0.001 0.044 ± 0.001	3.369 ± 0.117	0.069 ± 0.014 0.045 ± 0.008	0.079 ± 0.007 0.053 ± 0.007	0.081 ± 0.002 0.154 ± 0.005	0.203 ± 0.004 0.333 ± 0.006
吹上17.8%将	45	0.052 ± 0.001	4.055 ± 0.102	0.043 ± 0.008	0.065 ± 0.007	0.134 ± 0.003 0.137 ± 0.003	0.335 = 0.000 0.276 ± 0.012
吹上23遺物群	45	0.067 ± 0.001	5.543 ± 0.079	0.057 ± 0.006	0.106 ± 0.005	0.267 ± 0.011	0.264 ± 0.015
吹上24遺物群	45	0.046 ± 0.000	2.022 ± 0.030	0.229 ± 0.010	0.388 ± 0.011	0.120 ± 0.003	0.131 ± 0.006
吹上25遺物群	45	0.036 ± 0.003	2.747 ± 0.243	0.209 ± 0.011	0.109 ± 0.016	0.022 ± 0.001	0.036 ± 0.001
吹上29遺物群	45	0.056 ± 0.001	4. 386 ± 0. 161	0.073 ± 0.004	0.125 ± 0.011	0.217 ± 0.021	0.197 ± 0.029
吹上34遺物群	42	0.047 ± 0.001	4. 019 ± 0. 085	0.054 ± 0.005	0.108 ± 0.006	0. 214 ± 0. 005	0. 214 ± 0. 007
吹上36遺物群	42	0.019 ± 0.000	1. 354 ± 0. 047	0.076 ± 0.010	0.048 ± 0.033	0.019 ± 0.000	0.041 ± 0.001
吹上38遺物群	42	0.039 ± 0.000	3.142 ± 0.032	0.001 ± 0.001	0.065 ± 0.005	0.893 ± 0.021	0.573 ± 0.018
吹上39遺物群 吹上41遺物群	42	0.034 ± 0.001	2.637 ± 0.049 3.480 ± 0.076	0.010 ± 0.004 0.122 ± 0.021	0.066 ± 0.008 0.041 ± 0.005	0.728 ± 0.025 0.498 ± 0.011	0.532 ± 0.021 0.574 ± 0.020
吹上41週初辞	42	0.041 ± 0.001 0.042 ± 0.001	3.480 ± 0.076 3.723 ± 0.043	0.122 ± 0.021 0.009 ± 0.003	0.041 ± 0.005 0.094 ± 0.007	0.498 ± 0.011 0.484 ± 0.029	0.574 ± 0.020 0.550 ± 0.026
吹上43遺物群	42	0.042 ± 0.001 0.034 ± 0.000	3. 243 ± 0. 069	0.009 ± 0.003 0.003 ± 0.004	0.094 ± 0.007 0.016 ± 0.012	1. 785 ± 0. 169	1.549 ± 0.110
吹上44遺物群	42	0.034 ± 0.000 0.046 ± 0.001	4.250 ± 0.003	0.019 ± 0.004	0.038 ± 0.004	0.292 ± 0.023	0.424 ± 0.030
吹上45遺物群	42	0.060 ± 0.001	5.782 ± 0.088	0.035 ± 0.005	0.087 ± 0.008	0.314 ± 0.006	0.302 ± 0.011
吹上 2 - 12遺物群	42	0.028 ± 0.000	2. 144 ± 0. 018	0.018 ± 0.005	0.208 ± 0.011	0.204 ± 0.006	0.185 ± 0.010
吹上 2 - 13遺物群	42	0.209 ± 0.002	6. 912 ± 0. 477	0.016 ± 0.004	0.103 ± 0.012	1.791 ± 0.307	2.765 ± 0.555
吹上 2 - 17遺物群	42	0.087 ± 0.003	3.442 ± 0.099	0.358 ± 0.045	0.577 ± 0.022	0.041 ± 0.012	0.069 ± 0.026
吹上 2 - 19遺物群	42	0.045 ± 0.000	3.935 ± 0.035	0.015 ± 0.002	0.073 ± 0.003	0.282 ± 0.008	0.252 ± 0.010
吹上2-21遺物群	42	0.023 ± 0.001	2. 811 ± 0. 188	0. 118 ± 0. 008	0.100 ± 0.022	0.024 ± 0.000	0.036 ± 0.001
吹上2-22遺物群	42	0.041 ± 0.001	3.333 ± 0.064	0.016 ± 0.016	0.038 ± 0.012	0.422 ± 0.040	0.588 ± 0.059
吹上2-25遺物群	36	0.044 ± 0.001	2.120 ± 0.041	0.638 ± 0.452	0.430 ± 0.017	0. 118 ± 0. 005	0.138 ± 0.007
吹上 2 - 28遺物群	42	0.044 ± 0.008	5.737 ± 0.786	0.090 ± 0.026	0.085 ± 0.007	0.022 ± 0.002	0.022 ± 0.002
吹上 2 - 30遺物群 吹上 2 - 32遺物群	42	0.045 ± 0.001 0.024 ± 0.000	3.469 ± 0.090 5.911 ± 0.064	0.040 ± 0.004 0.047 ± 0.003	0.077 ± 0.003 0.073 ± 0.003	0.222 ± 0.015 0.026 ± 0.000	0.336 ± 0.019 0.025 ± 0.001
7八上 4 34 25 79 件	42	U. U24 - U. UUU	J. 311 - U. U04	U. U±1 ± U. UU3	U. U13 - U. UU3	U. U2U - U. UUU	U. U2J - U. UU1

	Rb/Zr	Sr/Zr	Y/Zr	Mn/Fe	Ti/Fe	Nb/Zr	比 重
Fe/Zr $Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	Xav± σ
2. 814 ± 0. 528	0.370 ± 0.042					0.0003 ± 0.002	
1.958 ± 0.020	0.512 ± 0.008	1.228 ± 0.017	0.164 ± 0.004	0.0004 ± 0.0009	0.039 ± 0.000		2. 189
1.425 ± 0.106	0.355 ± 0.013		0.062 ± 0.007	0.008 ± 0.004			2. 211
2.700 ± 0.284 1.918 ± 0.474	0.605 ± 0.091	2. 127 ± 0. 233 1. 776 ± 0. 688	0.013 ± 0.022	0.126 ± 0.018 0.002 ± 0.003		0.016 ± 0.023	2. 536 2. 365 – 2. 386
1.814 ± 0.129	0.405 ± 0.062 0.583 ± 0.017		0.084 ± 0.027 0.075 ± 0.009	0.002 ± 0.003 0.028 ± 0.007	0.028 ± 0.005 0.036 ± 0.003		2. 505 – 2. 586
1.436 ± 0.232	0.196 ± 0.016	4.070 ± 0.584	0.073 ± 0.005		0.038 ± 0.004		2. 334 – 2. 362
0.253 ± 0.010	0.339 ± 0.008	0.069 ± 0.005	0.058 ± 0.005	0.007 ± 0.009			2. 576
1.538 ± 0.039	0.445 ± 0.018	0.386 ± 0.017	0.127 ± 0.007	0.009 ± 0.011	0.023 ± 0.002		2. 559
0.938 ± 0.050	0.181 ± 0.010		0.049 ± 0.004				2. 353
	0.583 ± 0.030			0.019 ± 0.009			2. 523 ± 0. 035
3.106 ± 0859	0.917 ± 0.171 0.922 ± 0.122	0.274 ± 0.110 0.341 ± 0.137	0.216 ± 0.127 0.123 ± 0.032	0.008 ± 0.006 0.007 ± 0.007	0.073 ± 0.012 0.013 ± 0.003		2. 617~2. 370 2. 249~2. 420
	0.938 ± 0.053	0.352 ± 0.071	0.125 ± 0.032 0.126 ± 0.020	0.007 = 0.007 0.011 ± 0.004			2. 223~2. 339
0.882 ± 0.144	0.419 ± 0.075	0.211 ± 0.059	0.071 ± 0.011	0.089 ± 0.019	0.066 ± 0.012		2. 481 ± 0. 038
1.022 ± 0.047	0.819 ± 0.040	0.039 ± 0.024	0.143 ± 0.018	0.047 ± 0.025	0.020 ± 0.003	0.013 ± 0.016	2. 467
4.396 ± 0.609	0.128 ± 0.031	0.024 ± 0.009	0.066 ± 0.012		0.036 ± 0.019		2. 565
	0.110 ± 0.010			0.026 ± 0.031			2.768
3.426 ± 0.059 1.556 ± 0.028	0.165 ± 0.008 0.220 ± 0.004	0.019 ± 0.006 5.165 ± 0.144	0.062 ± 0.006 0.028 ± 0.003	0. 026 ± 0. 011 	0.022 ± 0.003 0.047 ± 0.000		2. 656 2. 437
	0.220 ± 0.004 0.216 ± 0.005		0.028 ± 0.005 0.039 ± 0.005		0.047 ± 0.000 0.052 ± 0.009		2. 437
1.399 ± 0.018	0.289 ± 0.008	3.059 ± 0.056	0.042 ± 0.005		0.060 ± 0.001	0.011 = 0.003 0.018 ± 0.004	2. 393
1.056 ± 0.012	0.285 ± 0.006	5. 110 ± 0. 156	0.048 ± 0.002		0.072 ± 0.001		2. 428
2.346 ± 0.073	0.478 ± 0.018	0. 588 ± 0. 025		0.002 ± 0.003	0.027 ± 0.002		2. 407
2.800 ± 0.126	0.592 ± 0.021	0.124 ± 0.025	0.064 ± 0.013		0.057 ± 0.002		2. 501
0.925 ± 0.022 0.594 ± 0.033	0.172 ± 0.005 0.415 ± 0.014	5.791 ± 0.084 0.260 ± 0.013	0.021 ± 0.003 0.172 ± 0.009	0.002 ± 0.003 0.029 ± 0.026	0.089 ± 0.001 0.074 ± 0.005		2. 258 2. 532
5.538 ± 0.224	0.415 ± 0.014 0.719 ± 0.040	0.260 ± 0.013 0.245 ± 0.014	0.172 ± 0.009 0.094 ± 0.009				2. 332
2.684 ± 0.099	0.242 ± 0.009	2.733 ± 0.060	0.051 ± 0.003		0.019 ± 0.001	0.017 ± 0.007	2. 241
2.545 ± 0.074	0.478 ± 0.017	0.317 ± 0.014	0.137 ± 0.010		0.025 ± 0.001	0.023 ± 0.012	2. 027
1.093 ± 0.062	0.207 ± 0.008		0.024 ± 0.004		0.083 ± 0.006		2. 225
1.049 ± 0.030	0.580 ± 0.016	0. 123 ± 0. 014		0.003 ± 0.007		0.017 ± 0.013	2. 543
9.292 ± 0.101 2.324 ± 0.102	0.610 ± 0.024 0.544 ± 0.018	0.128 ± 0.020 0.230 ± 0.021	0.060 ± 0.011 0.074 ± 0.015	0.001 ± 0.002 0.003 ± 0.005	0.056 ± 0.001 0.071 ± 0.004	0.016 ± 0.012 0.012 ± 0.014	2. 527 2. 507
2.003 ± 0.062	0.480 ± 0.021	0.230 ± 0.021 0.740 ± 0.034	0.074 ± 0.013 0.145 ± 0.012	0.003 ± 0.003	0.071 ± 0.004 0.026 ± 0.002	0.012 ± 0.014 0.011 ± 0.013	2. 471
1.923 ± 0.366	0.556 ± 0.045		3.052 ± 2.426				2. 490
0.908 ± 0.057	0.356 ± 0.022	0.256 ± 0.018	0.073 ± 0.012	0.004 ± 0.009	0.023 ± 0.007		2. 554
3.464 ± 1.247	0.613 ± 0.069	0.182 ± 0.058	0.074 ± 0.018			0.015 ± 0.014	2.478 ± 0.60
0.849 ± 0.205	0.454 ± 0.100		0.131 ± 0.043		0.046 ± 0.020		2.543 ± 0.009
$0.1.556 \pm 0.787$ 2.232 ± 0.182	0.207 ± 0.0290 0.479 ± 0.015		0.033 ± 0.017 0.128 ± 0.029	0.001 ± 0.002 0.002 ± 0.003	0.064 ± 0.031 0.026 ± 0.002	0.016 ± 0.006 0.013 ± 0.013	2. 241 ± 0. 013 2. 439
	0.391 ± 0.013		0. 128 ± 0. 029 0. 111 ± 0. 009		0.025 ± 0.002 0.025 ± 0.001	0.009 ± 0.008	2. 598
1.198 ± 0.061	0.460 ± 0.018		2.715 ± 0.527	0.006 ± 0.009			2. 595
	0.446 ± 0.024		0.097 ± 0.012	0.001 ± 0.001	0.022 ± 0.002	0.008 ± 0.010	2. 537
	10.715 ± 4.314		0.506 ± 0.308		0.002 ± 0.000		2. 333
1.031 ± 0.027	0.499 ± 0.009		0.078 ± 0.006	0.007 ± 0.005			2. 557
1.404 ± 0.027 1.554 ± 0.032	0.531 ± 0.010 0.536 ± 0.012	0.108 ± 0.007 0.124 ± 0.010	0.079 ± 0.007 0.092 ± 0.007	0.002 ± 0.002 0.000 ± 0.001	0.012 ± 0.001 0.011 ± 0.001	0.012 ± 0.008 0.011 ± 0.010	2. 563 2. 563
	2.919 ± 0.353						2. 485
1.992 ± 0.094					0. 011 ± 0. 001		2. 548
	0.705 ± 0.017						2. 545
1.134 ± 0.104	0.515 ± 0.015	0. 193 ± 0. 032	0.087 ± 0.007		0.019 ± 0.004		2. 502
2.075 ± 0.044 4.699 ± 0.104	0.610 ± 0.015 0.949 ± 0.019	0.153 ± 0.015 0.092 ± 0.009	0.066 ± 0.005 0.084 ± 0.007	0.000 ± 0.001 0.000 ± 0.000	0.011 ± 0.001 0.006 ± 0.001	0.014 ± 0.008 0.009 ± 0.009	2. 503 2. 522
4.699 ± 0.104 2.200 ± 0.051	0.949 ± 0.019 0.726 ± 0.016	0.092 ± 0.009 0.154 ± 0.010	0.084 ± 0.007 0.129 ± 0.008	0.000 ± 0.000	0.006 ± 0.001 0.007 ± 0.001	0.009 ± 0.009 0.011 ± 0.009	2. 559
2.540 ± 0.120	0.695 ± 0.014		0.058 ± 0.006		0.007 = 0.001 0.008 ± 0.001	0.011 ± 0.003	2. 526
1.109 ± 0.056	0.290 ± 0.006	0.078 ± 0.004	0.114 ± 0.004	0.001 ± 0.002	0.025 ± 0.002	0.024 ± 0.007	2. 369
0.940 ± 0.021	0. 123 ± 0. 005	1. 305 ± 0. 023	0.085 ± 0.004		0.042 ± 0.001	0.023 ± 0.005	2. 413
123.971 ± 11.330		2.020 ± 0.228	0. 138 ± 0. 059	0.000 ± 0.001	0.002 ± 0.000	0.004 ± 0.013	2. 329
2.217 ± 0.375 2.478 ± 0.096	0.423 ± 0.017 0.527 ± 0.015	0.412 ± 0.022 0.522 ± 0.016	0.120 ± 0.010 0.159 ± 0.010	0.005 ± 0.004 0.000 ± 0.001	0.024 ± 0.002 0.021 ± 0.001	0.017 ± 0.013 0.014 ± 0.013	2. 376 2. 418
110. 335 ± 13. 427	4.470 ± 0.518	0.522 ± 0.010 0.504 ± 0.140	0.159 ± 0.010 0.155 ± 0.066	0.000 ± 0.001 0.000 ± 0.001	0.021 ± 0.001 0.001 ± 0.001	0.014 ± 0.013 0.012 ± 0.029	2. 418
0.473 ± 0.010	0.269 ± 0.007		0.076 ± 0.006	0.026 ± 0.019	0.052 ± 0.005		2. 553
0.497 ± 0.014	0.263 ± 0.011	0.072 ± 0.011	0.081 ± 0.007	0.008 ± 0.016	0.043 ± 0.005	0.013 ± 0.011	2. 530
0.979 ± 0.039	0.557 ± 0.019	0.235 ± 0.011	0.086 ± 0.008	0.004 ± 0.006	0.018 ± 0.002	0.006 ± 0.008	2. 528
1.105 ± 0.052	0.602 ± 0.016	0.055 ± 0.012	0.136 ± 0.008	0.007 ± 0.007	0.041 ± 0.003		2. 538 2. 542
0.427 ± 0.029 1.400 ± 0.115	0.654 ± 0.028 0.587 ± 0.016	0.062 ± 0.023 0.074 ± 0.007	0.279 ± 0.029 0.096 ± 0.009	0.003 ± 0.008 0.001 ± 0.002	0.026 ± 0.019 0.010 ± 0.001	0.008 ± 0.013 0.008 ± 0.008	2. 542
2. 014 ± 0. 068	0.604 ± 0.026	0.074 ± 0.007 0.225 ± 0.022	0.090 ± 0.009 0.152 ± 0.011	0.001 ± 0.002 0.000 ± 0.000	0.010 ± 0.001 0.024 ± 0.002		2. 372
1.520 ± 0.061	0.279 ± 0.010	0.063 ± 0.011	0.045 ± 0.008	0.009 ± 0.010	0.038 ± 0.002	0.015 ± 0.010	2. 442
1.349 ± 0.564	3. 592 ± 1. 424	0.248 ± 0.122	0.160 ± 0.067	1. 220 ± 0. 087	0.164 ± 0.025		2. 791
2.543 ± 0.528	0.161 ± 0.014	1.852 ± 0.053	0.021 ± 0.002	0.009 ± 0.001	0.021 ± 0.005	0.021 ± 0.003	2. 323
1.265 ± 0.064	0.316 ± 0.009	0.076 ± 0.004	0.107 ± 0.003		0.018 ± 0.001	0.021 ± 0.004	2. 287
63.273 ± 3.305 0.844 ± 0.093	2.279 ± 0.134 0.488 ± 0.018	0.488 ± 0.038 0.122 ± 0.012	0.087 ± 0.032 0.101 ± 0.011	0.001 ± 0.002 0.001 ± 0.004			2. 377 2. 470
1.113 ± 0.037	0.488 ± 0.018 0.152 ± 0.007	0.122 ± 0.012 0.197 ± 0.009	0.101 ± 0.011 0.095 ± 0.006	0.001 ± 0.004 0.006 ± 0.007	0.013 ± 0.003 0.046 ± 0.002		1. 793
	2.257 ± 0.492	0.400 ± 0.084	0.109 ± 0.025		0.002 ± 0.000		2. 623
	0.531 ± 0.014	0.191 ± 0.010	0.523 ± 0.125	0.005 ± 0.004	0.015 ± 0.002	0.017 ± 0.007	2. 374
	4.874 ± 0.576	0.461 ± 0.073	0.240 ± 0.061	0.002 ± 0.002	0.002 ± 0.000	0.020 ± 0.029	2. 569

第24表 各原石産地不明碧玉玉類、玉材の遺物群の元素比の平均値と標準偏差値(3)

遺物群名	分析	Al/Si	K/Si	Ca/K	Ti/K	K/Fe	Rb/Fe
	回数	$Xav \pm \sigma$					
吹上 2 - 33遺物群 吹上 2 - 34遺物群	42	0.044 ± 0.000 0.070 ± 0.001	3.719 ± 0.031 5.860 ± 0.071	0.011 ± 0.003 0.067 ± 0.003	0.047 ± 0.005 0.143 ± 0.003	0.436 ± 0.011 0.175 ± 0.007	0.508 ± 0.012 0.144 ± 0.010
吹上2-34遺物群	42	0.070 ± 0.001 0.077 ± 0.001	7.353 ± 0.250	0.032 ± 0.003	0.143 ± 0.003 0.122 ± 0.003	0.173 ± 0.007 0.147 ± 0.021	0.126 ± 0.015
吹上2-36遺物群	42	0.047 ± 0.000	3.322 ± 0.021	0.041 ± 0.003	0.081 ± 0.005	0.120 ± 0.001	0.259 ± 0.006
吹上274遺物群	45	0.047 ± 0.000	3.828 ± 0.066	0.009 ± 0.003	0.056 ± 0.005	0.180 ± 0.004	0.314 ± 0.009
妙見山遺物群	47	0.038 ± 0.006	2.909 ± 0.157	0.033 ± 0.016	0.514 ± 0.021	0.214 ± 0.019	0.341 ± 0.016
山賀 - 283遺物群	45	0.081 ± 0.001	2.535 ± 0.043	1.152 ± 0.021	1. 177 ± 0.019	0.062 ± 0.001	0.136 ± 0.006
山持-9遺物群	46	0.036 ± 0.003	1.135 ± 0.059	0.159 ± 0.046	0.296 ± 0.022	0.026 ± 0.002	0.123 ± 0.005
山持14遺物群 山持20-21遺物群	46 46	0.046 ± 0.003 0.049 ± 0.001	3.300 ± 0.320 1.450 ± 0.148	0.089 ± 0.037 1.086 ± 0.148	0.105 ± 0.017 0.526 ± 0.036	0.262 ± 0.048 0.048 ± 0.010	0.240 ± 0.029 0.074 ± 0.021
山持24遺物群	45	0.049 ± 0.001 0.041 ± 0.001	2. 869 ± 0. 073	0.001 ± 0.002	0.320 ± 0.030 0.370 ± 0.015	0.048 ± 0.010 0.182 ± 0.012	0.074 ± 0.021 0.304 ± 0.018
山持25-26遺物群	47	0.067 ± 0.012	1. 616 ± 0. 465	0.015 ± 0.008	0.847 ± 0.306	0.027 ± 0.007	0.034 ± 0.014
田能A遺物群	53	0.046 ± 0.002	3. 241 ± 0. 113	0.123 ± 0.044	0.234 ± 0.024	0.276 ± 0.027	0.398 ± 0.034
田能B遺物群	55	0.046 ± 0.002	3.223 ± 0.424	0.134 ± 0.068	0.237 ± 0.027	0.288 ± 0.023	0.421 ± 0.016
田能C遺物群	48	0.042 ± 0.004	3.129 ± 0.295	0.080 ± 0.014	0.283 ± 0.054	0.601 ± 0.091	0.748 ± 0.134
田能D遺物群 田能-1遺物群	50 44	0.049 ± 0.002 0.049 ± 0.001	4.293 ± 0.293 4.095 ± 0.071	0.006 ± 0.006 0.031 ± 0.008	0.181 ± 0.011 0.188 ± 0.003	1. 090 ± 0. 169 0. 454 ± 0. 008	1.248 ± 0.262 0.557 ± 0.019
田能-1週初杆	44	0.049 ± 0.001 0.047 ± 0.001	3. 204 ± 0. 069	0.031 ± 0.008 0.156 ± 0.009	0.188 ± 0.003 0.224 ± 0.006	0.494 ± 0.008 0.392 ± 0.022	0.337 ± 0.019 0.498 ± 0.032
田能-41遺物群	44	0.036 ± 0.001	2.899 ± 0.110	0.011 ± 0.005	0.256 ± 0.006	0.848 ± 0.037	1.246 ± 0.051
田能-66遺物群	44	0.045 ± 0.001	3.897 ± 0.082	0.028 ± 0.018	0.311 ± 0.009	0.274 ± 0.015	0.409 ± 0.020
田能-70遺物群	44	0.073 ± 0.001	2.569 ± 0.079	1.480 ± 0.028	0.743 ± 0.015	0.091 ± 0.004	0.254 ± 0.013
田能-85遺物群	44	0. 044 ± 0. 001	3.285 ± 0.144	0.045 ± 0.007	0.202 ± 0.006	0.314 ± 0.044	0.466 ± 0.039
□ 田能 − 90遺物群□ 田能 − 92遺物群	45 45	0.039 ± 0.001 0.042 ± 0.001	2. 582 ± 0. 070 3. 441 ± 0. 086	0.084 ± 0.006 0.007 ± 0.004	0.286 ± 0.010 0.066 ± 0.007	0.585 ± 0.031 0.935 ± 0.015	0.679 ± 0.045 0.731 ± 0.044
田能 − 92週初群 田能 − 97遺物群	45	0.042 ± 0.001 0.041 ± 0.001	3.441 ± 0.086 2.872 ± 0.020	0.007 ± 0.004 0.074 ± 0.005	0.066 ± 0.007 0.252 ± 0.008	0.935 ± 0.015 0.691 ± 0.034	0.731 ± 0.044 0.797 ± 0.038
太田・黒田560遺物群	44	0.041 = 0.001 0.073 ± 0.004	2.608 ± 0.165	1.302 ± 0.033	0.232 = 0.008 0.678 ± 0.027	0.031 = 0.034 0.077 ± 0.004	0.172 ± 0.009
岡村07遺物群	44	0.046 ± 0.001	0.923 ± 0.026	2.472 ± 0.074	0.806 ± 0.025	0.067 ± 0.004	0.039 ± 0.011
岡村224遺物群	44	0.050 ± 0.000	0.953 ± 0.039	2.803 ± 0.209	0.723 ± 0.038	0.040 ± 0.001	0.075 ± 0.009
原田3遺物群	46	0.038 ± 0.007	2. 144 ± 0. 034	0.034 ± 0.055	0.104 ± 0.006	0.090 ± 0.003	0.146 ± 0.004
唐古・鍵35遺物群 唐古・鍵46遺物群	46 45	0.061 ± 0.001 0.038 ± 0.001	1. 541 ± 0. 025	2. 282 ± 0. 024 0. 1794 ± 0. 005	1.068 ± 0.025	0.042 ± 0.001 0.677 ± 0.014	0.248 ± 0.006 0.712 ± 0.042
唐古·鍵48遺物群	45	0.038 ± 0.001 0.064 ± 0.003	2. 428 ± 0. 018 2. 007 ± 0. 061	1.269 ± 0.005		0.058 ± 0.001	0.712 ± 0.042 0.486 ± 0.011
室山5-4遺物群	45	0.053 ± 0.001	0.727 ± 0.066	3.795 ± 0.272	1.150 ± 0.056	0.022 ± 0.004	0.012 ± 0.004
庄・蔵本8遺物群	44	0.042 ± 0.001	3.501 ± 0.043	0.076 ± 0.005	0.278 ± 0.004	0.335 ± 0.005	0.427 ± 0.010
庄·蔵本9遺物群	44	0.042 ± 0.001	3.064 ± 0.069	0.031 ± 0.005	0.312 ± 0.026	0.266 ± 0.006	0.312 ± 0.011
原田No. 1遺物群	46	0.037 ± 0.002	1. 348 ± 0. 034	0.110 ± 0.016	0.185 ± 0.011	0.044 ± 0.001	0.200 ± 0.0031
北田井遺物群	42	0.060 ± 0.001 0.048 ± 0.002	1.075 ± 0.012 1.283 ± 0.099	3.030 ± 0.029 1.325 ± 0.101	0.663 ± 0.021 0.463 ± 0.037	0.071 ± 0.002 0.150 ± 0.012	0.085 ± 0.011 0.205 ± 0.012
造山21遺物群	43	0.048 ± 0.002 0.040 ± 0.001		1. 563 ± 0. 156	0.403 ± 0.037 0.686 ± 0.060	0.130 ± 0.012 0.087 ± 0.006	0.203 ± 0.012 0.150 ± 0.012
造山35C遺物群	46	0.032 ± 0.001	2. 684 ± 0. 111	0.004 ± 0.003	0.062 ± 0.005	0.809 ± 0.043	0.755 ± 0.044
旧吉備中遺物群	44	0.079 ± 0.004	5.368 ± 0.080	0.107 ± 0.036	0.243 ± 0.028	0.040 ± 0.005	0.079 ± 0.012
西田井6-7遺物群	46	0.033 ± 0.004	2.587 ± 0.431	0.040 ± 0.012	0.051 ± 0.011	0.335 ± 0.017	0.411 ± 0.028
川辺遺物群	42	0.055 ± 0.001	1. 086 ± 0. 048	2.437 ± 0.253	1. 123 ± 0. 055	0.040 ± 0.004	0.038 ± 0.007
天野 3 遺物群 天野 4 遺物群	46 46	0.046 ± 0.001 0.055 ± 0.001	1. 438 ± 0. 016 1. 857 ± 0. 036	1. 580 ± 0. 030 1. 143 ± 0. 023	0.792 ± 0.014 0.597 ± 0.014	0.064 ± 0.002 0.059 ± 0.004	0.227 ± 0.010 0.201 ± 0.010
天野 5 遺物群	46	0.053 ± 0.001 0.051 ± 0.000		1.086 ± 0.014	0.637 ± 0.014 0.637 ± 0.011	0.059 ± 0.004	0.185 ± 0.005
天野 6 遺物群	46	0.034 ± 0.000	0.771 ± 0.015		0.992 ± 0.032	0.048 ± 0.001	0.310 ± 0.015
天野7遺物群	46	0.043 ± 0.000	1. 192 ± 0. 013	1. 316 ± 0. 013	0.565 ± 0.011	0.080 ± 0.001	0.656 ± 0.014
天野 8 遺物群	47	0.065 ± 0.006	3. 883 ± 0. 278	0.137 ± 0.013	0.347 ± 0.010	0.061 ± 0.005	0.054 ± 0.008
天野 9 遺物群 天野10遺物群	48	0.080 ± 0.005	1.298 ± 0.079 0.992 ± 0.058		2.838 ± 0.554	0.013 ± 0.002 0.071 ± 0.001	0.029 ± 0.004 0.360 ± 0.012
天野A遺物群	48	0. 042 ± 0. 003 0. 042 ± 0. 001	3. 038 ± 0. 091		0.762 ± 0.011 0.243 ± 0.010		0.360 ± 0.012 0.258 ± 0.010
天野B遺物群	45	0.037 ± 0.002	2.932 ± 0.171	0.004 ± 0.005	0.081 ± 0.037	0.875 ± 0.107	0.772 ± 0.092
天野C遺物群	48	0.040 ± 0.003	1. 080 ± 0. 130	1.496 ± 0.307	0.806 ± 0.208	0.072 ± 0.013	0.484 ± 0.121
天野D遺物群	47	0.035 ± 0.004	2. 893 ± 0. 171	0.010 ± 0.016	0.074 ± 0.012	0.629 ± 0.090	0.578 ± 0.059
天野13白遺物群	46	0.040 ± 0.001	1. 040 ± 0. 028	1. 029 ± 0. 038	0.836 ± 0.016	0.057 ± 0.001	0.193 ± 0.009
天野13青遺物群 天野17遺物群	47	0.052 ± 0.001 0.053 ± 0.002	3.157 ± 0.070 4.526 ± 0.151	0. 168 ± 0. 007 0. 113 ± 0. 004	0.363 ± 0.007 0.188 ± 0.003	0.057 ± 0.001 0.238 ± 0.009	0.064 ± 0.003 0.235 ± 0.007
天野17週初群 天野28遺物群	47	0.053 ± 0.002 0.029 ± 0.001	4. 526 ± 0. 151 2. 168 ± 0. 067	0.113 ± 0.004 0.077 ± 0.003	0.188 ± 0.003 0.129 ± 0.007	0.238 ± 0.009 0.288 ± 0.005	0.235 ± 0.007 0.624 ± 0.021
天野31遺物群	48	0.023 ± 0.001 0.042 ± 0.001	0.955 ± 0.008	1.459 ± 0.017	0.985 ± 0.035	0.058 ± 0.002	0.024 = 0.021 0.255 ± 0.027
天野32遺物群	45	0.035 ± 0.002	2.559 ± 0.098	0.018 ± 0.004	0.072 ± 0.006	0.511 ± 0.024	0.286 ± 0.022
天野33遺物群	47	0.036 ± 0.003	2.525 ± 0.155	0.080 ± 0.015	0.103 ± 0.014	0.141 ± 0.019	0.176 ± 0.018
天野35遺物群	48	0.033 ± 0.001	2. 836 ± 0. 216	0.003 ± 0.002	0.034 ± 0.006	1.806 ± 0.137	1. 486 ± 0. 160
天野38遺物群 天野49遺物群	53 45	0.038 ± 0.007 0.037 ± 0.001	2.266 ± 0.205 3.155 ± 0.100	0.097 ± 0.035 0.058 ± 0.003	0.091 ± 0.015 0.235 ± 0.007	0.136 ± 0.023 0.194 ± 0.003	0.181 ± 0.017 0.196 ± 0.008
天野50遺物群	46	0.037 ± 0.001 0.029 ± 0.000	0. 864 ± 0. 062	0.038 ± 0.003 0.153 ± 0.017	0.253 ± 0.007 0.596 ± 0.029	0.194 ± 0.003 0.037 ± 0.002	0. 190 ± 0. 008
天野51遺物群	44	0.023 = 0.000 0.034 ± 0.000	1. 121 ± 0. 017	0.989 ± 0.048	0.857 ± 0.020	0.057 ± 0.002 0.055 ± 0.001	0.119 ± 0.000 0.159 ± 0.013
天野52遺物群	46	0.060 ± 0.001	4. 048 ± 0. 055	0.372 ± 0.015	0.240 ± 0.004	0.147 ± 0.001	0.207 ± 0.005
天野53遺物群	46	0.052 ± 0.001	3.566 ± 0.054	0. 276 ± 0. 019	0. 219 ± 0. 009	0.151 ± 0.003	0.233 ± 0.007
工作1遺物群 工作2次数	44	0. 014 ± 0. 001	0.605 ± 0.159	0.055 ± 0.024	0.161 ± 0.032	0.026 ± 0.002	0.043 ± 0.003
玉作2遺物群 玉作2遺跡遺物群	55 46	0.016 ± 0.001 0.047 ± 0.001	0.493 ± 0.080 4.232 ± 0.126	0. 217 ± 0. 043 0. 087 ± 0. 004	0.186 ± 0.025 0.326 ± 0.017	0.033 ± 0.004 0.246 ± 0.058	0.101 ± 0.016 0.291 ± 0.054
岩崎遺物群(91%)	45	0.047 ± 0.001 0.051 ± 0.002	4. 232 ± 0. 126 0. 860 ± 0. 021	0.087 ± 0.004 2.858 ± 0.146	0.326 ± 0.017 0.916 ± 0.047	0.246 ± 0.038 0.025 ± 0.001	0.291 ± 0.034 0.070 ± 0.006
高擶南29遺物群	46	0.037 ± 0.002	0.975 ± 0.019	1. 188 ± 0. 035	0.231 ± 0.020	0.138 ± 0.028	0.408 ± 0.072
高擶南372遺物群	47	0.049 ± 0.001	1. 094 ± 0. 049	1. 942 ± 0. 213	0.262 ± 0.140	0.056 ± 0.007	0.246 ± 0.038
高擶南717遺物群	47	0.049 ± 0.001	4. 206 ± 0. 053	0.157 ± 0.008	0.296 ± 0.004	0.350 ± 0.014	0. 418 ± 0. 021
高擶南遺物群	48	0.039 ± 0.001	3.491 ± 0.172	0.020 ± 0.006	0.084 ± 0.006	0.561 ± 0.075	0.540 ± 0.059
韓国・麻田里1遺物群 韓国・寛全田1造物群	40	0.043 ± 0.001	3.952 ± 0.170	0.001 ± 0.001	0.182 ± 0.012	0.916 ± 0.020	1.141 ± 0.063
韓国・寛倉里1遺物群	40	0.027 ± 0.002	1. 520 ± 0. 241	0.033 ± 0.019	0.607 ± 0.146	0.199 ± 0.089	0.358 ± 0.128

Fe/Zr	Rb/Zr	Sr/Zr	Y/Zr	Mn/Fe	Ti/Fe	Nb/Zr	比 重
Xav ± σ	Xav± σ	Xav ± σ	Xav± σ	Xav± σ	Xav± σ	Xav ± σ	$Xav \pm \sigma$
0.959 ± 0.024	0.483 ± 0.009	0.118 ± 0.008	0.086 ± 0.006	0.009 ± 0.005			2. 532
3.440 ± 0.248	0.491 ± 0.016	0.674 ± 0.036	0.125 ± 0.008	0.010 ± 0.002	0.023 ± 0.001	0.020 ± 0.008	2. 314
3.621 ± 0.358	0.448 ± 0.016 0.724 ± 0.015	0.193 ± 0.026	0.110 ± 0.007	0.010 ± 0.002	0.016 ± 0.002	0.024 ± 0.007	2. 061
2.823 ± 0.089 2.101 ± 0.057	0.655 ± 0.020	0.116 ± 0.007 0.121 ± 0.013	0.112 ± 0.007 0.087 ± 0.010	0.004 ± 0.003 0.001 ± 0.002	0.009 ± 0.001 0.009 ± 0.001	0.007 ± 0.005 0.005 ± 0.008	2. 491 2. 424
2.426 ± 0.177	0.820 ± 0.033	0.121 = 0.013 0.190 ± 0.018	0.120 ± 0.012	0.001 = 0.002 0.008 ± 0.007	0.099 ± 0.009	0.020 ± 0.015	2. 431(吸水)
1.539 ± 0.035	0.208 ± 0.008	4.074 ± 0.054	0.057 ± 0.004		0.066 ± 0.001	0.016 ± 0.005	2.431 (吸水)
20.713 ± 1.555	2.528 ± 0.152	0.867 ± 0.083	0.132 ± 0.026	0.010 ± 0.001	0.007 ± 0.001	0.002 ± 0.005	2.403 (吸水)
1.885 ± 0.378	0.442 ± 0.050	0.678 ± 0.215	0.063 ± 0.016	0.053 ± 0.004	0.024 ± 0.003		2.374 (吸水)
3.527 ± 0.564	0.247 ± 0.034	7.004 ± 0.223	0.167 ± 0.009	0.020 ± 0.002	0.023 ± 0.006		2. 268
$ 1. 194 \pm 0.060 4. 229 \pm 0.306 $	0.360 ± 0.007 0.139 ± 0.046	0.067 ± 0.005 0.190 ± 0.005	0.058 ± 0.004 0.058 ± 0.007	0.011 ± 0.005 0.033 ± 0.001	0.060 ± 0.002 0.019 ± 0.004	0.034 ± 0.007 0.025 ± 0.007	2. 575 2. 67 – 2. 62
1. 444 ± 0. 091	0.139 ± 0.040 0.568 ± 0.036	0.190 ± 0.003 0.600 ± 0.106	0.038 ± 0.007 0.097 ± 0.012	0.033 ± 0.001 0.010 ± 0.004			2.67 - 2.62 2.592 ± 0.005
1.381 ± 0.164	0.576 ± 0.066		0.107 ± 0.029				2. 588 ± 0. 003
0.473 ± 0.088	0.345 ± 0.064	0.301 ± 0.084	0.084 ± 0.030	0.028 ± 0.010	0.151 ± 0.029	0.025 ± 0.010	2. 575 ± 0. 016
0.269 ± 0.032	0.327 ± 0.035	0.080 ± 0.016	0.053 ± 0.005	0.031 ± 0.015	0.177 ± 0.024		2.572 ± 0.003
1.097 ± 0.046	0.607 ± 0.018	0.249 ± 0.016	0.093 ± 0.009	0.009 ± 0.005	0.077 ± 0.002	0.038 ± 0.013	2. 572
0.972 ± 0.051	0.479 ± 0.014	0.745 ± 0.048	0. 112 ± 0. 008	0.009 ± 0.008	0.079 ± 0.004		2. 594
0.267 ± 0.010 1.124 ± 0.031	0.330 ± 0.009 0.456 ± 0.014	0.106 ± 0.007 0.070 ± 0.006	0.055 ± 0.005 0.065 ± 0.005	0.037 ± 0.017 0.068 ± 0.004	0.195 ± 0.008 0.077 ± 0.003		2. 576 2. 562
1.094 ± 0.067	0.436 ± 0.014 0.275 ± 0.009	0.070 ± 0.000 0.060 ± 0.098	0.063 ± 0.003 0.059 ± 0.004				2. 371
1.357 ± 0.112	0.624 ± 0.017	0.352 ± 0.016	0.035 = 0.004 0.126 ± 0.008	0.003 ± 0.002 0.008 ± 0.006	0.057 ± 0.007		2.586
0.365 ± 0.017	0.245 ± 0.010	0.392 ± 0.012	0.032 ± 0.005	0.010 ± 0.011	0.150 ± 0.005	0.022 ± 0.007	2. 563
0.630 ± 0.025	0.456 ± 0.024	0.202 ± 0.022	0.166 ± 0.013				2. 564
0.358 ± 0.016	0.283 ± 0.010	0.389 ± 0.013	0.098 ± 0.009	0.012 ± 0.015			2. 563
1.203 ± 0.069	0.205 ± 0.007	4.305 ± 0.200	0.058 ± 0.003		0.047 ± 0.003		2. 388
1.527 ± 0.103 1.933 ± 0.187	0.059 ± 0.017 0.143 ± 0.017	6.500 ± 0.134 8.032 ± 0.186	0.174 ± 0.008 0.102 ± 0.007		0.049 ± 0.002 0.026 ± 0.002	0.0002 ± 0.001 0.023 ± 0.010	2. 226 2. 300
	0.143 ± 0.017 1.880 ± 0.082	0.351 ± 0.041	0.102 ± 0.007 0.110 ± 0.029	0.008 ± 0.003	0.026 ± 0.002 0.008 ± 0.001	0.023 ± 0.010 0.003 ± 0.007	2. 586
2.189 ± 0.050	0.538 ± 0.017	5.927 ± 0.031	0.069 ± 0.006	0.000 ± 0.005	0.040 ± 0.001	0.006 ± 0.007	2. 211
0.477 ± 0.024	0.337 ± 0.018	0.848 ± 0.031	0.076 ± 0.011	0.019 ± 0.021	0.078 ± 0.005	0.006 ± 0.008	2. 496
1.376 ± 0.035	0.664 ± 0.017	4. 966 ± 0. 108	0.076 ± 0.007	0.001 ± 0.002	0.058 ± 0.001	0.006 ± 0.007	2. 420
4.895 ± 0.673	0.059 ± 0.014		0.327 ± 0.013	0.004 ± 0.001	0.022 ± 0.003	0.001 ± 0.001	2. 301
0.847 ± 0.020	0.359 ± 0.010		0. 113 ± 0. 006	0.009 ± 0.005			2. 553
0.984 ± 0.028	0.304 ± 0.008	0.283 ± 0.010	0.031 ± 0.005	0.007 ± 0.005	0.075 ± 0.007	0.022 ± 0.008 0.001 ± 0.005	2. 520 2. 604
23.483 ± 1.369 1.158 ± 0.060	4.663 ± 0.272 0.098 ± 0.011	0.823 ± 0.075 3.392 ± 0.110	0.254 ± 0.035 0.121 ± 0.007	0.012 ± 0.001 0.000 ± 0.000	0.007 ± 0.001 0.042 ± 0.002	0.001 ± 0.003 0.001 ± 0.011	2.604
0.747 ± 0.037	0.098 ± 0.011 0.152 ± 0.007	1.335 ± 0.032	0.121 ± 0.007 0.134 ± 0.007	0.000 ± 0.000	0.042 ± 0.002 0.062 ± 0.002	0.001 ± 0.011 0.000 ± 0.000	2. 305
1.060 ± 0.037	0.157 ± 0.012		0.201 ± 0.008	0.013 ± 0.004			2. 309
0.425 ± 0.015	0.319 ± 0.014	0.063 ± 0.017	0.142 ± 0.007	0.050 ± 0.028	0.045 ± 0.004		2. 553
	1.084 ± 0.037	0.202 ± 0.040	0.041 ± 0.008	0.008 ± 0.002	0.009 ± 0.001	0.004 ± 0.006	2. 105
1.850 ± 0.073	0.755 ± 0.051	0. 241 ± 0. 112	0.086 ± 0.017	0.010 ± 0.013			2. 352
2.487 ± 0.210 2.875 ± 0.099	0.094 ± 0.014 0.646 ± 0.023	6.641 ± 0.449 3.051 ± 0.072	0.168 ± 0.019	0.007 ± 0.004	0.041 ± 0.005	0.000 ± 0.000	2. 261 2. 299
4.209 ± 0.160	0.646 ± 0.023 0.840 ± 0.046	3.663 ± 0.072	0.236 ± 0.010 0.228 ± 0.022	0.013 ± 0.002 0.010 ± 0.004		0.000 ± 0.000 0.0002 ± 0.0011	2. 335
3.801 ± 0.116	0.699 ± 0.020		0.226 ± 0.022 0.216 ± 0.011			0.0002 ± 0.00011	2. 341
3.141 ± 0.157	0.996 ± 0.033		0.198 ± 0.012		0.043 ± 0.001	0.019 ± 0.013	2. 044
1.639 ± 0.034	1.067 ± 0.023	0.934 ± 0.024	0.146 ± 0.010	0.014 ± 0.003	0.041 ± 0.001	0.010 ± 0.010	2. 175
6.266 ± 0.501	0.333 ± 0.023		0.102 ± 0.007	0.008 ± 0.001	0.019 ± 0.002	0.019 ± 0.006	1. 958
5.978 ± 0.539	0.172 ± 0.010		0.044 ± 0.005	0.014 ± 0.001	0.031 ± 0.003		2. 625
1.788 ± 0.044	0.639 ± 0.017			0.029 ± 0.004			2. 182
1.850 ± 0.050 0.457 ± 0.254	0.473 ± 0.017 0.331 ± 0.049		0.080 ± 0.009 0.168 ± 0.021	0.015 ± 0.003 0.072 ± 0.019	0.037 ± 0.001 0.061 ± 0.005	0.009 ± 0.007 0.022 ± 0.010	2.461 ± 0.004 2.522 ± 0.010
0.457 ± 0.254 1.780 ± 0.205	0.331 ± 0.049 0.851 ± 0.220	0.031 ± 0.019 1.188 ± 0.412	0.168 ± 0.021 0.143 ± 0.016	0.072 ± 0.019 0.018 ± 0.007	0.061 ± 0.005 0.050 ± 0.008	0.022 ± 0.010 0.006 ± 0.006	2. 522 ± 0. 010 2. 152 ± 0. 031
0.559 ± 0.057	0.331 ± 0.220 0.318 ± 0.012	0.030 ± 0.007	0.143 ± 0.010 0.190 ± 0.043	0.018 ± 0.007 0.050 ± 0.021	0. 030 ± 0. 008 0. 041 ± 0. 004	0. 000 ± 0. 000 0. 014 ± 0. 007	2.555 ± 0.007
2.214 ± 0.073	0.424 ± 0.023	1. 207 ± 0. 051	0.107 ± 0.007	0.014 ± 0.003	0.043 ± 0.001	0.013 ± 0.010	2. 126
4.597 ± 0.123	0.293 ± 0.010	0.721 ± 0.018	0.088 ± 0.006	0.008 ± 0.001	0.019 ± 0.000	0.012 ± 0.006	2. 126
2.488 ± 0.097	0.580 ± 0.018	0.455 ± 0.019	0. 094 ± 0. 010	0.008 ± 0.005	0.040 ± 0.001	0. 013 ± 0. 009	2. 554
0.672 ± 0.022	0.416 ± 0.010	0.404 ± 0.014	0.145 ± 0.006 0.134 ± 0.009	0.026 ± 0.006	0.033 ± 0.002 0.051 ± 0.001	0.012 ± 0.006	2. 329
1.997 ± 0.077 0.556 ± 0.029	0.504 ± 0.037 0.158 ± 0.007	1.912 ± 0.083 0.056 ± 0.008	0.134 ± 0.009 0.071 ± 0.005	0.029 ± 0.006 0.059 ± 0.009	0.051 ± 0.001 0.033 ± 0.002	0.010 ± 0.010 0.018 ± 0.008	2. 120 2. 544
0.330 ± 0.029 2.822 ± 0.405	0.486 ± 0.007	0.030 ± 0.008 0.283 ± 0.092	0.071 ± 0.005 0.294 ± 0.016	0.039 ± 0.009 0.015 ± 0.007	0.033 ± 0.002 0.013 ± 0.003		2. 544
0.586 ± 0.046	0.859 ± 0.049	0.057 ± 0.029	0.215 ± 0.048	0.125 ± 0.060	0.055 ± 0.010	0.018 ± 0.016	2. 479
2.667 ± 0.286	0.476 ± 0.034	0. 211 ± 0. 023	0.262 ± 0.015	0.017 ± 0.007	0.011 ± 0.002	0.019 ± 0.011	2. 494
3.012 ± 0.068	0.587 ± 0.023	0.424 ± 0.022	0.071 ± 0.011	0.010 ± 0.003	0.041 ± 0.001	0.013 ± 0.013	2. 575
6.855 ± 0.389	0.783 ± 0.046	1.476 ± 0.089	0.183 ± 0.028	0.013 ± 0.003	0.020 ± 0.001	0.063 ± 0.030	2. 509
2.663 ± 0.104 2.527 ± 0.064	0.420 ± 0.031 0.520 ± 0.013	1.608 ± 0.040 1.210 ± 0.040	0.156 ± 0.010 0.068 ± 0.006	0.008 ± 0.003 0.002 ± 0.002	0.042 ± 0.001 0.032 ± 0.000	0.026 ± 0.015 0.028 ± 0.010	1. 871 2. 445
2.327 ± 0.064 2.463 ± 0.078	0.520 ± 0.013 0.569 ± 0.022	1.210 ± 0.040 1.048 ± 0.077	0.068 ± 0.006 0.069 ± 0.008	0.002 ± 0.002 0.004 ± 0.003	0.032 ± 0.000 0.030 ± 0.001	0.028 ± 0.010 0.026 ± 0.009	2. 379
84. 686 ± 33. 336		0.841 ± 0.193	0.009 ± 0.008 0.873 ± 0.283	0. 004 ± 0. 003 0. 016 ± 0. 005	0.030 ± 0.001 0.004 ± 0.001	0.020 ± 0.009 0.005 ± 0.021	2. 583 ± 0. 024
30.772 ± 5.551		1.600 ± 0.293	0.139 ± 0.062	0.023 ± 0.006	0.005 ± 0.001	0.001 ± 0.003	2. 622 – 2. 588
3.221 ± 0.461	0.906 ± 0.038	0.547 ± 0.027	0.259 ± 0.025	0.014 ± 0.003	0.071 ± 0.013	0.016 ± 0.016	2. 542
2.471 ± 0.112	0.172 ± 0.017	6.713 ± 0.259	0.124 ± 0.008	0.008 ± 0.004	0.021 ± 0.001	0.038 ± 0.010	2. 290
0.754 ± 0.135	0.296 ± 0.012	0.810 ± 0.018	0.157 ± 0.007	0.036 ± 0.010	0.028 ± 0.005	0.029 ± 0.010	2. 219
3.315 ± 0.183	0.814 ± 0.138	3.910 ± 0.673	0.197 ± 0.026	0.009 ± 0.002	0.012 ± 0.002	0.053 ± 0.018	2. 085
2.326 ± 0.151 0.952 ± 0.097	0.963 ± 0.031 0.506 ± 0.021	0.558 ± 0.025 0.076 ± 0.015	0.345 ± 0.027 0.178 ± 0.035	0.016 ± 0.006 0.041 ± 0.005	0.093 ± 0.004 0.042 ± 0.003	0.019 ± 0.014 0.009 ± 0.010	2. 541 2. 501 – 2. 514
0.932 ± 0.097 0.291 ± 0.013	0.330 ± 0.021 0.330 ± 0.013		0.178 ± 0.035 0.060 ± 0.006	0.041 ± 0.003 0.004 ± 0.007	0.042 ± 0.003 0.150 ± 0.012	0.009 ± 0.010 0.018 ± 0.012	2. 498 – 2. 429
0.571 ± 0.109	0.193 ± 0.038	0.110 ± 0.045	0.052 ± 0.017	0.012 ± 0.015	0.099 ± 0.019	0.029 ± 0.011	2. 094 ± 0. 219
_							

第25表 各原石産地不明碧玉玉類、玉材の遺物群の元素比の平均値と標準偏差値(4)

遺物群名	分析 回数	Al/Si Xav± σ	K/Si Xav± σ	Ca/K Xav± σ	Ti/K Xav± σ	K/Fe Xav± σ	Rb/Fe Xav± σ
韓国・寛倉里2遺物群	40					0.311 ± 0.054	
韓国・松梅里-05遺物群	49	0.036 ± 0.003 0.066 ± 0.004					0.403 ± 0.001 0.039 ± 0.003
韓国・松梅里 - 06遺物群	49	0.000 ± 0.004 0.023 ± 0.002	0.752 ± 0.084	0.085 ± 0.004			0.039 ± 0.003 0.243 ± 0.040
韓国・松梅里 - 0308遺物群	45	0.023 ± 0.002 0.032 ± 0.002					0.451 ± 0.053
韓国・松梅里-10遺物群	45	0.032 ± 0.002 0.037 ± 0.001	2.567 ± 0.068	0.034 ± 0.009 0.002 ± 0.004			0.431 ± 0.033 0.504 ± 0.043
茶畑2遺物群	43	0.037 ± 0.001 0.031 ± 0.007				0.037 ± 0.002	
			1. 193 ± 0. 061	0.071 ± 0.015			0.204 ± 0.018
茶畑山道遺物群	44	0.098 ± 0.003	4.087 ± 0.184	0.154 ± 0.009		0.034 ± 0.002	0.077 ± 0.003
蒲生3遺物群	43	0.014 ± 0.001	0.625 ± 0.014	0.102 ± 0.014		0.024 ± 0.001	0.070 ± 0.003
蒲生-10-19遺物群	48	0.031 ± 0.003					0.368 ± 0.031
西谷63遺物群	47	0.039 ± 0.001	3.215 ± 0.073				0.251 ± 0.010
西谷96遺物群	48	0.033 ± 0.001	2.844 ± 0.017	0.057 ± 0.007			0.463 ± 0.013
中原426遺物群	45	0.044 ± 0.001	3.354 ± 0.041	0.077 ± 0.003			0.375 ± 0.010
中原438遺物群	45	0.039 ± 0.001	3.037 ± 0.099	0.022 ± 0.007			0.747 ± 0.036
中原466遺物群	45	0.037 ± 0.001	3.225 ± 0.120	0.002 ± 0.003		1.005 ± 0.059	0.777 ± 0.050
中原560遺物群	45	0.048 ± 0.001	4. 442 ± 0. 069				1.957 ± 0.176
中原561遺物群	45	0.040 ± 0.002	3.162 ± 0.115				0.574 ± 0.027
中原55遺物群	44	0.037 ± 0.001	3.293 ± 0.102	0.000 ± 0.000			0.615 ± 0.029
中原56遺物群	44	0.044 ± 0.001	3.776 ± 0.053				0.222 ± 0.005
中原A遺物群	92	0.034 ± 0.001	2.254 ± 0.111	0.134 ± 0.014			0.480 ± 0.038
中原104273遺物群	45	0.021 ± 0.002					0.110 ± 0.005
中原104275遺物群	46	0.020 ± 0.001	0.407 ± 0.024	0.220 ± 0.023			0.116 ± 0.005
中原104276遺物群	45	0.019 ± 0.001	0.420 ± 0.019	0.291 ± 0.027			0.134 ± 0.001
中原104336遺物群	46	0.041 ± 0.002					0.701 ± 0.033
中原104337遺物群	46	0.032 ± 0.001	2.321 ± 0.087	0.102 ± 0.008			0.563 ± 0.030
中原104343遺物群	46	0.035 ± 0.001		0.038 ± 0.008			0.634 ± 0.035
中原104345遺物群	46	0.039 ± 0.001	3.412 ± 0.067	0.042 ± 0.005			0.884 ± 0.034
中原104351遺物群	46	0.043 ± 0.001	4.095 ± 0.052	0.015 ± 0.004	0.197 ± 0.006	0.281 ± 0.003	0.316 ± 0.009
矢野 5 遺物群	44	0.087 ± 0.002	3.688 ± 0.089	1.639 ± 0.238			0.152 ± 0.006
矢野6遺物群	40	0.037 ± 0.001	3.333 ± 0.077	0.040 ± 0.002			0.263 ± 0.009
矢野7遺物群	40	0.014 ± 0.001	3.397 ± 0.033	0.265 ± 0.023	0.176 ± 0.024	0.028 ± 0.002	0.107 ± 0.008
矢野 8 遺物群	40	0.038 ± 0.002	1.766 ± 0.080	0.103 ± 0.011	0.233 ± 0.013	0.099 ± 0.006	0.357 ± 0.011
矢野A遺物群	45	0.070 ± 0.006	3.205 ± 0.264	0.726 ± 0.071	0.728 ± 0.055	0.093 ± 0.019	0.241 ± 0.045
矢野B遺物群	44	0.072 ± 0.007	2.846 ± 0.231	1.033 ± 0.081	0.758 ± 0.036		0.141 ± 0.027
矢野C遺物群	44	0.079 ± 0.008	3.999 ± 0.468	0.533 ± 0.096	0.632 ± 0.078	0.104 ± 0.008	0.232 ± 0.030
矢野D遺物群	45	0.090 ± 0.005	3.600 ± 0.157	1.139 ± 0.120	0.813 ± 0.062	0.035 ± 0.008	0.106 ± 0.024
新穂村A遺物群	50	0.042 ± 0.006	3.945 ± 0.718	0.026 ± 0.012	0.072 ± 0.018	0.275 ± 0.078	0.348 ± 0.080
新穂村B遺物群	46	0.043 ± 0.003	3.976 ± 0.388	0.019 ± 0.016	0.079 ± 0.052	0.599 ± 0.175	0.748 ± 0.272
新穂村C遺物群	63	0.054 ± 0.007	4. 130 ± 0. 344	0.215 ± 0.092	0.177 ± 0.054	0.118 ± 0.010	0.157 ± 0.010
竹の花風化遺物群	50	0.036 ± 0.005	3.347 ± 0.678	0.035 ± 0.015	0.088 ± 0.028	0.086 ± 0.035	0.119 ± 0.036
二反田遺物群	48	0.039 ± 0.003	3.788 ± 0.348	0.016 ± 0.004	0.350 ± 0.043	0.268 ± 0.100	0.219 ± 0.069
五千石526遺物群	49	0.062 ± 0.001	4. 297 ± 0. 109	0.482 ± 0.030	0.269 ± 0.031	0.110 ± 0.004	0.163 ± 0.005
五千石5600遺物群	49	0.053 ± 0.003	3.807 ± 0.267	0.360 ± 0.018	0.250 ± 0.008	0.121 ± 0.004	0.191 ± 0.006
五千石11569遺物群	49	0.054 ± 0.002	4. 253 ± 0. 122	0.265 ± 0.048	0.163 ± 0.008	0.159 ± 0.006	0.241 ± 0.008
五千石11600遺物群	49	0.053 ± 0.001	2. 610 ± 0. 142	0.475 ± 0.036	0.103 ± 0.009	0.186 ± 0.016	0.455 ± 0.020
五千石14601遺物群	49	0.040 ± 0.001	2. 148 ± 0. 048	0.080 ± 0.016	0.280 ± 0.016	0.069 ± 0.002	0.128 ± 0.004
五千石15555遺物群	69	0.040 ± 0.005	3.084 ± 0.501	0.105 ± 0.023	0.099 ± 0.008	0.476 ± 0.058	0.663 ± 0.057
五千石16900遺物群	59	0.046 ± 0.007	3.770 ± 0.061	0.126 ± 0.016	0.173 ± 0.012	0.218 ± 0.021	0.307 ± 0.020
五千石17347遺物群	34	0.045 ± 0.001	2.552 ± 0.060	0.430 ± 0.042	0.591 ± 0.027	0.040 ± 0.002	0.078 ± 0.004
五千石17777遺物群	56	0.050 ± 0.001	3.604 ± 0.175	0.292 ± 0.065	0.187 ± 0.035	0.170 ± 0.012	0.188 ± 0.014
五千石19380遺物群	50		1.800 ± 0.304				0.078 ± 0.013
五千石19450遺物群	56	0.044 ± 0.003	3. 103 ± 0. 131	0.187 ± 0.013	0.133 ± 0.015	0.168 ± 0.010	0.334 ± 0.016
五千石21465遺物群	44					0.098 ± 0.016	
五千石22161遺物群	44	0.046 ± 0.001	4. 180 ± 0. 098	0.115 ± 0.013	0.308 ± 0.013	0.389 ± 0.006	0.455 ± 0.016
五千石22302遺物群	44	0.044 ± 0.001	2. 481 ± 0. 034	1. 136 ± 0. 110	0.835 ± 0.046	0.035 ± 0.002	0.075 ± 0.005
五千石22447遺物群	44	0.059 ± 0.002					0.122 ± 0.007
五千石22463遺物群	44	0.047 ± 0.001	2.306 ± 0.051	0.637 ± 0.028			0.111 ± 0.004
五千石A遺物群	49	0.050 ± 0.003	5.071 ± 0.315			0.399 ± 0.077	0.461 ± 0.053
五千石B遺物群	45	0.046 ± 0.003	4. 421 ± 0. 183				0.384 ± 0.019
五千石C遺物群	48	0.043 ± 0.004	2. 381 ± 0. 290	0.615 ± 0.238	0.467 ± 0.111	0.087 ± 0.012	0.162 ± 0.032
五千石D遺物群	50	0.048 ± 0.001	2.473 ± 0.109	0.654 ± 0.046		0.107 ± 0.008	0.317 ± 0.037
五千石E遺物群	50	0.056 ± 0.005					0.230 ± 0.020
秋月A遺物群	48	0.045 ± 0.003					0.132 ± 0.006
秋月19遺物群	45	0.055 ± 0.001					0.090 ± 0.009
秋月20遺物群	45	0.051 ± 0.001	2.213 ± 0.104	0.875 ± 0.019		0.069 ± 0.001	0.115 ± 0.005
殿河内定屋ノ前遺物群	45	0.063 ± 0.007		0.162 ± 0.004		0.083 ± 0.001	0.147 ± 0.010
土井ヶ浜311遺物群	45	0.072 ± 0.003					0.149 ± 0.060
潤地頭給4遺物群	47	0.046 ± 0.001	4. 190 ± 0. 132				0.188 ± 0.026
潤地頭給 5 遺物群	47	0.046 ± 0.001					0.127 ± 0.014
潤地頭給6遺物群	47	0.014 ± 0.001	1.061 ± 0.124			0.025 ± 0.001	0.086 ± 0.003
潤地頭給120遺物群	45	0.023 ± 0.005		0.016 ± 0.016		0.258 ± 0.164	0.343 ± 0.190
塚越7-8遺物群	44	0.056 ± 0.001	1.244 ± 0.062	2.366 ± 0.201	0.522 ± 0.042	0.068 ± 0.007	0.049 ± 0.008
塚越9-10遺物群	44	0.064 ± 0.002	2.310 ± 0.102	1. 248 ± 0. 152			0.139 ± 0.008
東前A遺物群	48	0.004 ± 0.002 0.077 ± 0.007					0.097 ± 0.027
東前B遺物群	46	0.077 ± 0.007 0.070 ± 0.001	3. 613 ± 0. 323			0.066 ± 0.004	0.037 ± 0.027 0.135 ± 0.005
東前95遺物群	45	0.070 ± 0.001 0.077 ± 0.002					0.133 ± 0.003 0.112 ± 0.006
東前110遺物群	45	0.040 ± 0.002					0.112 ± 0.000 0.148 ± 0.007
城野1遺物群	43	0.040 ± 0.003 0.071 ± 0.002	3.110 ± 0.214				0.148 ± 0.007 0.121 ± 0.007
城野12遺物群	45	0.071 ± 0.002 0.039 ± 0.001	1.729 ± 0.162				0.121 ± 0.007 0.185 ± 0.006
城野13遺物群	45	0.039 ± 0.001 0.031 ± 0.002	1. 171 ± 0. 057	0.074 ± 0.026 0.189 ± 0.041	0.193 ± 0.030 0.209 ± 0.013		0.185 ± 0.006 0.236 ± 0.012
7%に1 1.0.退1の計	40	U. UUI - U. UUZ	1. 111 ÷ U. U0/	J U. 109 ∸ U. U41	U. 409 - U. UI3	U. 140 - U. UUO	U. 400 - U. U14

Fe/Zr	Rb/Zr	Sr/Zr	Y/Zr	Mn/Fe	Ti/Fe	Nb/Zr	比 重
$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	Xav± σ
0.553 ± 0.059	0.253 ± 0.038	0.052 ± 0.015			0.091 ± 0.008		2.226 ± 0.077
3.759 ± 0.200	0.146 ± 0.012		0.049 ± 0.004				
0.432 ± 0.046	0.103 ± 0.011	0.069 ± 0.006	0.031 ± 0.006	0.025 ± 0.012			
0.552 ± 0.144	0.241 ± 0.041	0.171 ± 0.055	0.056 ± 0.009	0.010 ± 0.010	0.120 ± 0.020	0.020 ± 0.005	
1.397 ± 0.099	0.696 ± 0.036	0.160 ± 0.021	0.120 ± 0.012	0.010 ± 0.010	0.026 ± 0.003		0.510
18.900 ± 1.592 9.861 ± 0.307	0.750 ± 0.019	0.480 ± 0.084 0.482 ± 0.019	0.170 ± 0.035 0.034 ± 0.012	0.012 ± 0.002 0.033 ± 0.001	0.009 ± 0.001 0.016 ± 0.001	0.005 ± 0.019 0.043 ± 0.009	2. 513 2. 745
102.65 ± 69.18		1.482 ± 0.019	0.034 ± 0.012 0.536 ± 0.266	0.009 ± 0.003		0.043 ± 0.009 0.000 ± 0.000	2. 165
2.391 ± 0.106	0.876 ± 0.094	0.206 ± 0.038	0.134 ± 0.023	0.002 ± 0.003		0.074 ± 0.010	2. 32 – 2. 29
0.961 ± 0.025	0.240 ± 0.008	0.292 ± 0.010	0.092 ± 0.007	0.029 ± 0.013			2. 560
	0.314 ± 0.007				0.032 ± 0.001		2. 544
1.741 ± 0.056	0.674 ± 0.015		0.082 ± 0.008				2. 583
0.381 ± 0.015 0.612 ± 0.028	0.282 ± 0.010 0.471 ± 0.027	0.279 ± 0.010 0.062 ± 0.017	0.121 ± 0.014 0.159 ± 0.015		0.140 ± 0.006 0.054 ± 0.005		2. 499 2. 566
0.012 ± 0.028 0.185 ± 0.015	0.358 ± 0.014	0.002 ± 0.017 0.093 ± 0.012	0.139 ± 0.013 0.067 ± 0.009		0.054 ± 0.005 0.253 ± 0.015		2. 566
0.535 ± 0.017	0.305 ± 0.012						2. 599
0.977 ± 0.056	0.595 ± 0.024	0.066 ± 0.017	$0.4.476 \pm 0.995$	0.015 ± 0.014	0.024 ± 0.003		2. 450
	0.476 ± 0.014				0.031 ± 0.001		2. 564
0.876 ± 0.083	0.415 ± 0.024	0.987 ± 0.073	0.124 ± 0.013	0.016 ± 0.016			2. 521
39.184 ± 3.485	4.290 ± 0.387 5.072 ± 1.482	0.452 ± 0.164 0.490 ± 0.281	0.153 ± 0.062 0.110 ± 0.088	0.007 ± 0.001 0.011 ± 0.003	0.003 ± 0.001 0.004 ± 0.001	0.001 ± 0.004 0.029 ± 0.082	2. 061 2. 180
	1.856 ± 0.175	0.490 ± 0.281 0.642 ± 0.089		0.011 ± 0.003 0.011 ± 0.003		0.029 ± 0.082 0.008 ± 0.018	2. 180
0.724 ± 0.038	0.503 ± 0.019				0.050 ± 0.005		2. 520
0.772 ± 0.025	0.431 ± 0.022	1.110 ± 0.046	0.122 ± 0.011	0.011 ± 0.015	0.051 ± 0.004	0.005 ± 0.006	2. 514
0.681 ± 0.028	0. 428 ± 0. 021	0.064 ± 0.017		0.011 ± 0.015			2. 530
	0.336 ± 0.009	0.309 ± 0.009	0.115 ± 0.007				2. 578
1.202 ± 0.025 1.921 ± 0.094	0.378 ± 0.012 0.289 ± 0.012	0.121 ± 0.009 4.461 ± 0.095	0.093 ± 0.007 0.034 ± 0.004	0.004 ± 0.004 0.000 ± 0.000			2. 613 2. 318吸水
1.921 ± 0.094 1.843 ± 0.051	0.289 ± 0.012 0.481 ± 0.021		0.034 ± 0.004 0.113 ± 0.0101		0.039 ± 0.001 0.092 ± 0.002	0.010 ± 0.004 0.011 ± 0.010	2. 563
	9. 968 ± 8. 746						2. 178
3.889 ± 0.228	1.377 ± 0.050			0.023 ± 0.002			2. 551
1.246 ± 0.257	0.287 ± 0.012	4.990 ± 0.809	0.046 ± 0.006	0.000 ± 0.000			2.408±0.032吸水
1.640 ± 0.273	0.222 ± 0.012		0.044 ± 0.007	0.000 ± 0.000			2. 43吸水
1.329 ± 0.129 2.491 ± 0.405	0.303 ± 0.015 0.253 ± 0.039	3.332 ± 0.292 5.092 ± 0.516	0.053 ± 0.007 0.053 ± 0.008	0.000 ± 0.000 0.000 ± 0.000	0.059 ± 0.006 0.026 ± 0.003	0.012 ± 0.003 0.010 ± 0.003	2. 42吸水 2. 38吸水
1.550 ± 0.417	0.233 ± 0.039 0.514 ± 0.096		0.091 ± 0.008				2. 482 ± 0. 095
0.809 ± 0.352	0.524 ± 0.107				0.039 ± 0.015		2. 497 ± 0. 092
4.110 ± 0.319	0.642 ± 0.057	1.842 ± 0.340	0.096 ± 0.021	0.001 ± 0.002	0.018 ± 0.005		2.215 ± 0.137
5.210 ± 1.085	0.553 ± 0.061	0.111 ± 0.026	0.089 ± 0.013			0.008 ± 0.006	2.539 ± 0.185
2. 864 ± 1. 148	0.547 ± 0.058	0.122 ± 0.036	0.084 ± 0.022	0.012 ± 0.010	0.081 ± 0.021	0. 011 ± 0. 011	2. 524 ± 0. 117
3.479 ± 0.103 2.522 ± 0.108	0.564 ± 0.018 0.479 ± 0.029	1.378 ± 0.061 1.097 ± 0.052	0.086 ± 0.022 0.061 ± 0.010	0.003 ± 0.003 0.001 ± 0.002			2. 458 2. 344
2. 616 ± 0. 123	0.479 ± 0.029 0.625 ± 0.030		0.085 ± 0.012		0.028 ± 0.001 0.023 ± 0.001		2. 516
0.990 ± 0.059	0.446 ± 0.019		0.069 ± 0.009				2. 237
3.224 ± 0.130	0.408 ± 0.016	0.134 ± 0.009	0.109 ± 0.010				2. 493
0.551 ± 0.033	0.361 ± 0.020		0.372 ± 0.080				2. 357
1.789 ± 0.127	0.542 ± 0.017	0.512 ± 0.094	0.066 ± 0.011	0.007 ± 0.008			2. 525
5.754 ± 0.237	0.448 ± 0.016 0.316 ± 0.018		0.103 ± 0.008 0.235 ± 0.031		0.021 ± 0.001 0.028 ± 0.004	0.022 ± 0.009	1. 638 2. 301
	0.316 ± 0.018 1.445 ± 0.236						2. 531
			0.033 ± 0.033 0.122 ± 0.023				2. 228
2.602 ± 0.580	0.668 ± 0.034	2.440 ± 0.106	0.104 ± 0.011	0.004 ± 0.003	0.030 ± 0.005	0.011 ± 0.009	2. 144
1.854 ± 0.094	0.837 ± 0.034	0.449 ± 0.028	0.245 ± 0.027	0.011 ± 0.009	0.107 ± 0.005		2. 543
5.968 ± 0.342	0.443 ± 0.014	1.164 ± 0.025	0.085 ± 0.009	0.009 ± 0.001	0.026 ± 0.001	0.016 ± 0.009	2. 148
1.378 ± 0.036 4.165 ± 0.129	0.167 ± 0.009 0.457 ± 0.016	8. 445 ± 0. 112 1. 358 ± 0. 040	0.050 ± 0.004 0.123 ± 0.007	0.002 ± 0.005 0.013 ± 0.002	0.064 ± 0.002 0.023 ± 0.001	0.001 ± 0.002 0.014 ± 0.008	2. 302 2. 038
$\frac{4.103 \pm 0.129}{3.556 \pm 0.474}$	1.606 ± 0.102	0.536 ± 0.040 0.536 ± 0.063	0.125 ± 0.007 0.255 ± 0.085	0.013 ± 0.002 0.007 ± 0.008	0.023 ± 0.001 0.092 ± 0.013		2. 490 ± 0. 024
2.577 ± 0.209	0.981 ± 0.064	0.416 ± 0.030	0.165 ± 0.023	0.002 ± 0.004		0.002 ± 0.008	2.529 ± 0.006
2.786 ± 0.417	0.437 ± 0.403	1.841 ± 0.403	0.084 ± 0.021	0.006 ± 0.004	0.036 ± 0.005	0.009 ± 0.009	2.217 ± 0.077
2.199 ± 0.116	0.689 ± 0.071	2.329 ± 0.174	0.102 ± 0.010	0.004 ± 0.003	0.033 ± 0.002	0.007 ± 0.008	2. 189 – 2. 216
2.442 ± 0.215 1.870 ± 0.073	0.554 ± 0.027	1.803 ± 0.074 1.898 ± 0.141	0.071 ± 0.009 0.095 ± 0.052	0.005 ± 0.004 0.008 ± 0.009	0.029 ± 0.004 0.028 ± 0.018		2. 249 - 2. 270 2. 249 - 2. 270
1.870 ± 0.073 1.548 ± 0.094	0.245 ± 0.012 0.139 ± 0.015		0.095 ± 0.052 0.098 ± 0.008		0.028 ± 0.018 0.022 ± 0.002	0.008 ± 0.007 0.014 ± 0.006	2. 249 - 2. 270 2. 249 - 2. 270
2.818 ± 0.087	0.322 ± 0.018		0. 176 ± 0. 010	0. 003 ± 0. 003 0. 011 ± 0. 006	0.022 ± 0.002 0.022 ± 0.001	0.001 ± 0.000	2. 249 - 2. 270
1.383 ± 0.107	0.201 ± 0.008	2.962 ± 0.053	0.040 ± 0.003	0.001 ± 0.003	0.040 ± 0.001	0.014 ± 0.003	2. 356
1.476 ± 0.725	0.176 ± 0.027	4.602 ± 0.158	0.060 ± 0.005		0.039 ± 0.009		2. 356
2.363 ± 0.325	0.432 ± 0.015	1.007 ± 0.125	0.069 ± 0.006	0.004 ± 0.007	0.023 ± 0.007	0.004 ± 0.005	2. 354
	0.192 ± 0.019 5.183 ± 0.539		0.197 ± 0.013 0.194 ± 0.068	0.004 ± 0.002	0.040 ± 0.002 0.002 ± 0.001	0.002 ± 0.007	2. 092 2. 135
0.821 ± 0.152		0.033 ± 0.009	0.194 ± 0.008 0.074 ± 0.006	0.004 ± 0.002 0.036 ± 0.012			2, 135
2.009 ± 0.150	0.097 ± 0.014		0.074 = 0.000 0.197 ± 0.010	0.030 ± 0.012 0.018 ± 0.005	0.032 ± 0.001	3. 551 - 5. 551	2. 195 – 2. 165
2.632 ± 0.131	0.2364 ± 0.031	5.284 ± 0.567	0.180 ± 0.009	0.014 ± 0.002	0.022 ± 0.001		2. 497 – 2. 493
2.022 ± 0.333	0. 188 ± 0. 035		0.027 ± 0.004		0.028 ± 0.007		2. 123 – 2. 362
1.419 ± 0.046	0. 191 ± 0. 010		0.024 ± 0.005	0.006 ± 0.006	0.030 ± 0.001	0.010 ± 0.004	2. 385 – 2. 406
1.543 ± 0.091 1.188 ± 0.041	0. 171 ± 0. 005 0. 174 ± 0. 008		0.015 ± 0.003 0.023 ± 0.004		0.035 ± 0.001 0.035 ± 0.003	0.011 ± 0.002 0.013 ± 0.003	2. 371 2. 409
	0.174 ± 0.008 0.198 ± 0.005		0.025 ± 0.004 0.035 ± 0.003	0. 014 ± 0. 002	0.033 ± 0.003 0.029 ± 0.002		1. 852
10.877 ± 0.512		0.279 ± 0.052	0.097 ± 0.035	0.016 ± 0.005	0.016 ± 0.002	0.004 ± 0.014	2. 546
6.144 ± 0.362	1.440 ± 0.102					0.008 ± 0.016	2. 534

第26表 各原石産地不明碧玉玉類、玉材の遺物群の元素比の平均値と標準偏差値(5)

遺物群名	分析	Al/Si	K/Si	Ca/K	Ti/K	K/Fe	Rb/Fe
	回数	$Xav \pm \sigma$					
城野14遺物群	45	0.023 ± 0.001	0.712 ± 0.019				0.179 ± 0.012
宮崎17遺物群 宮崎23遺物群	48	0.043 ± 0.002 0.046 ± 0.002	4.008 ± 0.217 4.216 ± 0.094	0.038 ± 0.005 0.092 ± 0.018	0.321 ± 0.014 0.165 ± 0.006	0.235 ± 0.012 0.214 ± 0.005	0.236 ± 0.009 0.236 ± 0.008
松原田中134遺物群	49	0.048 ± 0.002 0.028 ± 0.001	2. 113 ± 0. 035	0.092 ± 0.018 0.045 ± 0.005	0.045 ± 0.006	0.214 ± 0.003 0.434 ± 0.010	0.236 ± 0.008 0.594 ± 0.020
松原田中154遺物群	45	0.028 ± 0.001 0.083 ± 0.005	3.367 ± 0.109	0.043 ± 0.003 0.753 ± 0.135	0.043 ± 0.007 0.819 ± 0.184	0.434 ± 0.010 0.080 ± 0.008	0.394 ± 0.020 0.185 ± 0.015
松原田中199遺物群	46	0.030 ± 0.005	1.863 ± 0.034	0.136 ± 0.184	0.013 ± 0.027		0.165 ± 0.009
松原田中211遺物群	46	0.035 ± 0.001	2.796 ± 0.132	0.057 ± 0.005	0.091 ± 0.011	0.542 ± 0.019	0.639 ± 0.037
松原田中27-89遺物群	50	0.050 ± 0.015		0.060 ± 0.012	0.525 ± 0.102	0.075 ± 0.010	0.201 ± 0.014
松原田中E遺物群	49	0.072 ± 0.007	2.867 ± 0.281	0.940 ± 0.195	1.109 ± 0.138	0.060 ± 0.011	0.127 ± 0.025
松原田中81管玉群	45	0.048 ± 0.001	3. 941 ± 0. 052	0.020 ± 0.007	0.151 ± 0.007	0.133 ± 0.002	0.133 ± 0.006
松原田中83管玉群	45	0.082 ± 0.001	4. 201 ± 0. 062	0.246 ± 0.013	0.614 ± 0.023	0.044 ± 0.002	0.066 ± 0.005
松原田中84加工片群	45	0.039 ± 0.004	3.040 ± 0.046	0.009 ± 0.007	0.197 ± 0.016	0.071 ± 0.004	0.074 ± 0.007
松原田中89加工片群	45	0.040 ± 0.001	2.645 ± 0.057	0.029 ± 0.006	0.154 ± 0.013		0.086 ± 0.012
松原田中164管玉群	45	0.038 ± 0.001	2.265 ± 0.186	0.010 ± 0.006	0.180 ± 0.024		0.766 ± 0.070
松原田中165管玉群	45	0.048 ± 0.001	5.190 ± 0.095	0.057 ± 0.008	0.115 ± 0.007	0.052 ± 0.003	0.124 ± 0.006
松原田中172管玉群	45	0.045 ± 0.001	3.936 ± 0.089	0.007 ± 0.004	0.096 ± 0.005		0.307 ± 0.016
松原田中178管玉群	49 50	0.043 ± 0.001	3.718 ± 0.038 2.490 ± 0.035	0.057 ± 0.006	0.059 ± 0.009	0.423 ± 0.007	0.542 ± 0.021
松原田中188加工片群 松原田中196加工片群	50	0.033 ± 0.003 0.034 ± 0.002		0.052 ± 0.015 0.103 ± 0.030	0.160 ± 0.018 0.382 ± 0.042	0.124 ± 0.001 0.044 ± 0.005	0.113 ± 0.004 0.142 ± 0.010
松原田中198加工片群	50	0.034 ± 0.002 0.061 ± 0.004		0.103 ± 0.030 0.235 ± 0.009	0.623 ± 0.042		0.142 ± 0.010 0.122 ± 0.017
松原田中222管玉群	49	0.040 ± 0.004	1. 804 ± 0. 051	0.233 ± 0.009 0.337 ± 0.040	0.023 ± 0.017 0.341 ± 0.033	0.054 ± 0.004 0.050 ± 0.001	0.122 ± 0.017 0.106 ± 0.004
松原田中253加工片群	49	0.040 ± 0.001 0.074 ± 0.001	3.706 ± 0.031	0.075 ± 0.007	0.613 ± 0.017	0.030 ± 0.001 0.046 ± 0.001	0.055 ± 0.003
土井ヶ浜3-3遺物群	45	0.038 ± 0.001	3.477 ± 0.079	0.024 ± 0.005	0.085 ± 0.005	0.617 ± 0.023	0.672 ± 0.028
中ノ浜27遺物群	47	0.037 ± 0.001	3.373 ± 0.084	0.062 ± 0.009	0.222 ± 0.004	0.714 ± 0.048	0.760 ± 0.058
中ノ浜31遺物群	44	0.038 ± 0.001	3.203 ± 0.038	0.029 ± 0.005	0.175 ± 0.004	0.439 ± 0.007	0.546 ± 0.020
笠石山 5 遺物群	50	0.024 ± 0.001	1.246 ± 0.051	0.106 ± 0.007	0.169 ± 0.015		0.241 ± 0.007
土井ヶ浜A遺物群	54	0.069 ± 0.006		1.078 ± 0.285	0.596 ± 0.048		0.158 ± 0.015
土井ヶ浜3遺物群	46	0.029 ± 0.001	0.908 ± 0.020	0.371 ± 0.046	0.494 ± 0.018		0.133 ± 0.004
土井ヶ浜11遺物群	46	0.042 ± 0.001	4.074 ± 0.102	0.129 ± 0.097	0.078 ± 0.008	0.440 ± 0.011	0.369 ± 0.014
土井ヶ浜22遺物群	46	0.039 ± 0.001	3.626 ± 0.058	0.034 ± 0.005	0.091 ± 0.005	0.661 ± 0.018	0.755 ± 0.031
土井ヶ浜24遺物群	46	0.045 ± 0.001	4.257 ± 0.184	0.133 ± 0.026	0.073 ± 0.004	0.626 ± 0.033	0.519 ± 0.028
土井ヶ浜27遺物群 土井ヶ浜62遺物群	46	0.034 ± 0.001 0.068 ± 0.004	3.112 ± 0.094 2.399 ± 0.247	0.024 ± 0.002 2.373 ± 0.489	0.041 ± 0.004 0.806 ± 0.054		0.611 ± 0.028 0.151 ± 0.007
工井ヶ浜02週初日 青谷上寺地A遺物群	45	0.068 ± 0.004 0.069 ± 0.005		1. 200 ± 0. 321	0.812 ± 0.158		0.131 ± 0.007 0.174 ± 0.035
青谷上寺地B遺物群	44	0.003 ± 0.005 0.043 ± 0.005	3.387 ± 0.767	0.153 ± 0.076	0.812 ± 0.138 0.148 ± 0.025	0.000 ± 0.012 0.243 ± 0.090	0.174 ± 0.035 0.297 ± 0.086
青谷上寺地31764遺物群	46	0.053 ± 0.001	4.319 ± 0.048	0.260 ± 0.007	0.535 ± 0.009	0.213 ± 0.000 0.171 ± 0.004	0.197 ± 0.008
青谷上寺地33244遺物群	45	0.035 ± 0.001	2.881 ± 0.092	0.100 ± 0.008	0.037 ± 0.006	0.267 ± 0.011	0.384 ± 0.016
青谷上寺地30436遺物群	45	0.051 ± 0.001	4.054 ± 0.058	0.295 ± 0.005	0.225 ± 0.007	0.283 ± 0.007	0.359 ± 0.010
青谷上寺地30427遺物群	45	0.090 ± 0.002	1.299 ± 0.079	0.707 ± 0.037	1. 471 ± 0. 176	0.013 ± 0.002	0.021 ± 0.004
青谷上寺地10185遺物群	47	0.026 ± 0.001	0.461 ± 0.082	2.019 ± 0.405	1.008 ± 0.159	0.093 ± 0.014	0.262 ± 0.030
青谷上寺地40702遺物群	45	0.038 ± 0.001	2.238 ± 0.041	0.276 ± 0.014	0.087 ± 0.009	0.372 ± 0.019	0.482 ± 0.028
青谷上寺地50182遺物群	45	0.085 ± 0.002	4.292 ± 0.056	0.276 ± 0.007	0.396 ± 0.013	0.129 ± 0.006	0.251 ± 0.020
青谷上寺地13830遺物群	44	0.075 ± 0.003	2.649 ± 0.145	0.600 ± 0.113	0.583 ± 0.003	0.057 ± 0.003	0.204 ± 0.008
青谷上寺地8512遺物群	45	0.020 ± 0.001	1. 503 ± 0. 135	0.180 ± 0.085	0.214 ± 0.037	0.031 ± 0.001	0.086 ± 0.004
青谷上寺地8046遺物群 青谷上寺地14869遺物群	46	0.037 ± 0.005 0.037 ± 0.001	1.351 ± 0.075 3.139 ± 0.073	0.161 ± 0.044 0.036 ± 0.015	0.374 ± 0.041 0.124 ± 0.014	0.079 ± 0.005 0.119 ± 0.010	0.228 ± 0.010 0.192 ± 0.011
青谷上寺地13369遺物群	46	0.037 ± 0.001 0.048 ± 0.002	3.751 ± 0.073	0.036 ± 0.015 0.394 ± 0.065	0.124 ± 0.014 0.158 ± 0.009		0.192 ± 0.011 0.240 ± 0.016
青谷上寺地45117遺物群	46	0.030 ± 0.002	2.030 ± 0.031	0. 161 ± 0. 010	0.138 ± 0.003 0.062 ± 0.013	0.100 ± 0.001 0.227 ± 0.005	0.389 ± 0.024
青谷上寺地41遺物群	46	0.090 ± 0.006	3.051 ± 0.222	0.629 ± 0.017	0.578 ± 0.018		0.201 ± 0.020
青谷上寺地52遺物群	46	0.041 ± 0.001	3.415 ± 0.138	0.117 ± 0.013	0.093 ± 0.005		0.504 ± 0.024
青谷上寺地59遺物群	46		1.512±0.078			0.053 ± 0.002	
青谷上寺地60遺物群	46	0.028 ± 0.001				0.035 ± 0.002	0.177 ± 0.006
青谷上寺地71遺物群	46	0.050 ± 0.007	4. 688 ± 0. 842	0.189 ± 0.053	0.133 ± 0.024	0.241 ± 0.009	0.209 ± 0.013
青谷上寺地490遺物群	46	0.017 ± 0.001	1. 313 ± 0. 251	0.164 ± 0.154	0.195 ± 0.035	0.025 ± 0.001	0.068 ± 0.004
青谷上寺地496遺物群	46	0.013 ± 0.001	0.304 ± 0.033	0. 211 ± 0. 017	0.277 ± 0.052	0.028 ± 0.001	0.083 ± 0.007
青谷上寺地541遺物群	46	0.031 ± 0.002	2.093 ± 0.408	0.239 ± 0.151	0.126 ± 0.068	0.208 ± 0.078	0.323 ± 0.067
青谷上寺地20009管玉群	47	0.032 ± 0.001	2.643 ± 0.120	0.023 ± 0.003	0.086 ± 0.005	0.577 ± 0.014	0.568 ± 0.021
青谷上寺地5665管玉片群	47	0.035 ± 0.001	2.778 ± 0.125	0.077 ± 0.006	0.056 ± 0.005	0.261 ± 0.010	0.332 ± 0.014
青谷上寺地20010管玉群 青谷上寺地20143管玉群	47	0.035 ± 0.001 0.038 ± 0.001	2.391 ± 0.045 1.922 ± 0.056	0.169 ± 0.008 0.439 ± 0.011	0.063 ± 0.010 0.271 ± 0.013	0.192 ± 0.003 0.150 ± 0.008	0.329 ± 0.015 0.518 ± 0.019
青谷上寺地20145官玉併	47	0.068 ± 0.001	1.922 ± 0.036 2.358 ± 0.026	1. 281 ± 0. 016	0.271 ± 0.013 0.963 ± 0.016	0.130 ± 0.008 0.092 ± 0.001	0.318 ± 0.019 0.207 ± 0.009
青谷上寺地20151首玉月冊	47	0.008 ± 0.001 0.032 ± 0.001	2.553 ± 0.020 2.553 ± 0.103	0.145 ± 0.041	0.903 ± 0.010 0.015 ± 0.014		0.207 ± 0.009 0.431 ± 0.030
青谷上寺地20152官玉符	47	0.032 ± 0.001 0.077 ± 0.001	0. 808 ± 0. 164	6. 492 ± 1. 212	4.222 ± 0.311	0.035 ± 0.001	0.431 ± 0.030 0.129 ± 0.012
青谷上寺地4995管玉片群	47	0.106 ± 0.002	2. 244 ± 0. 149	0.779 ± 0.050	2.057 ± 0.084	0.030 ± 0.001	0.123 = 0.012 0.104 ± 0.005
青谷上寺地20150管玉片群	47	0.030 ± 0.001	2.275 ± 0.027	0.050 ± 0.009	0.045 ± 0.007	0.190 ± 0.002	0.113 ± 0.121
城の山 – A遺物群	49	0.040 ± 0.002	3.845 ± 0.213	0.023 ± 0.004	0.0384 ± 0.032		0.362 ± 0.021
城の山-4遺物群	45	0.038 ± 0.001	3.729 ± 0.050	0.021 ± 0.005	0.164 ± 0.010	0.236 ± 0.006	0.244 ± 0.010
城の山-8遺物群	45	0.029 ± 0.001	2.649 ± 0.045	0.025 ± 0.003	0.202 ± 0.013	0.293 ± 0.007	0.285 ± 0.016
芝ヶ原A遺物群	66	0.020 ± 0.002	0.869 ± 0.229	0.177 ± 0.100	0.612 ± 0.279	0.192 ± 0.068	0.277 ± 0.060
芝ヶ原B遺物群	48	0.023 ± 0.002	1.396 ± 0.294	0.085 ± 0.068	0.192 ± 0.087	0.382 ± 0.089	0.663 ± 0.143
芝ヶ原C遺物群	48	0.029 ± 0.003	2.061 ± 0.422	0.027 ± 0.010	0.199 ± 0.029	0.338 ± 0.093	0.341 ± 0.069
新豊-01遺物群 新典-0203遺物群	40	0.039 ± 0.001	3.253 ± 0.173	0.028 ± 0.012	0.160 ± 0.010		0.341 ± 0.035
新豊-0203遺物群 西谷 3 号墳13遺物群	42	0.031 ± 0.003 0.031 ± 0.001	1.827 ± 0.296 2.358 ± 0.051	0.055 ± 0.040 0.017 ± 0.004	0.285 ± 0.034 0.409 ± 0.008	0.189 ± 0.012 0.178 ± 0.005	0.241 ± 0.023 0.276 ± 0.011
西谷 3 号墳23遺物群	46	0.031 ± 0.001 0.034 ± 0.001	2.655 ± 0.051 2.655 ± 0.056	0.017 ± 0.004 0.030 ± 0.028	0.409 ± 0.008 0.381 ± 0.011	0.178 ± 0.005 0.191 ± 0.004	0.276 ± 0.011 0.287 ± 0.012
	46	0.034 ± 0.001 0.039 ± 0.001	3.208 ± 0.051	0.030 ± 0.028 0.090 ± 0.018	0.381 ± 0.011 0.237 ± 0.028	0.191 ± 0.004 0.343 ± 0.027	0.287 ± 0.012 0.379 ± 0.024
半田引地遺物群	45	0.039 ± 0.001 0.018 ± 0.001	0.872 ± 0.179	0.090 ± 0.018 0.127 ± 0.019	0.237 ± 0.028 0.123 ± 0.018	0.026 ± 0.001	0.379 ± 0.024 0.125 ± 0.004
纏向SK1005群	50	0.061 ± 0.001	1.125 ± 0.041	2.785 ± 0.077	0.760 ± 0.027	0.020 ± 0.001 0.061 ± 0.003	0.041 ± 0.009
赤尾熊ヶ谷No. 15群	55	0.033 ± 0.001	2.694 ± 0.081	0.037 ± 0.013	0.219 ± 0.019	0.087 ± 0.003	0.183 ± 0.007
74 - C/M / H 1101 10H		J. 5550 - 5. 561		J. 551 - 5. 510	J. 210 - U. U1J	3. 551 - 5. 550	0. 100 - 0. 001

Fe/Zr	Rb/Zr	Sr/Zr	Y/Zr	Mn/Fe	Ti/Fe	Nb/Zr	比 重
$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$	Xav± σ	$Xav \pm \sigma$	$Xav \pm \sigma$	$Xav \pm \sigma$
7.405 ± 0.606	1.310 ± 0.110	0.912 ± 0.193	0.070 ± 0.038	0.045 ± 0.003		0.004 ± 0.010	2. 521
2.693 ± 0.108 $1.961 \pm 0.0.63$	0.630 ± 0.021	0.118 ± 0.028 0.468 ± 0.181	0.120 ± 0.014 0.052 ± 0.009	0.020 ± 0.006 0.008 ± 0.006	0.068 ± 0.003 0.032 ± 0.001	0.008 ± 0.007 0.015 ± 0.008	2. 517 2. 554
1. 481 ± 0. 071	0.439 ± 0.019 0.874 ± 0.041	0.408 ± 0.181 0.295 ± 0.031	0.032 ± 0.009 0.109 ± 0.021	0.008 ± 0.000 0.017 ± 0.014	0.032 ± 0.001 0.018 ± 0.014	0.013 ± 0.008 0.018 ± 0.003	2. 554
1.371 ± 0.107	0.250 ± 0.010	4.790 ± 0.285	0.031 ± 0.006	0.007 ± 0.004	0.058 ± 0.008	0.015 ± 0.003	2. 393
4.124 ± 0.270	0.672 ± 0.032	1.079 ± 0.045	0.053 ± 0.013	0.001 ± 0.001	0.012 ± 0.002	0.010 ± 0.012	2. 204
0.870 ± 0.053	0.551 ± 0.026	0.468 ± 0.026	0.143 ± 0.013	0.007 ± 0.009	0.044 ± 0.005	0.009 ± 0.011	2. 494
2.060 ± 0.213	0.409 ± 0.027	0.069 ± 0.017	0.095 ± 0.014	0.026 ± 0.009	0.035 ± 0.002	0.010 ± 0.012	2. 575
1.567 ± 0.364	0.190 ± 0.022	4.568 ± 0.786	0.022 ± 0.007	0.003 ± 0.003			2. 216 ± 0. 114
4.554 ± 0.178 2.950 ± 0.151	0.601 ± 0.028 0.194 ± 0.008	0.169 ± 0.025 2.291 ± 0.118	0.135 ± 0.019 0.025 ± 0.004	0.001 ± 0.001 0.008 ± 0.002	0.018 ± 0.001 0.025 ± 0.001	0.011 ± 0.013 0.017 ± 0.005	2. 174 2. 194
7.937 ± 0.765	0.581 ± 0.022	0.063 ± 0.017	0.124 ± 0.011	0.005 ± 0.003	0.012 ± 0.001	0.017 ± 0.003	2. 531
5.011 ± 0.798	0.420 ± 0.028	0.176 ± 0.026	0.193 ± 0.018		0.012 ± 0.002	0.013 ± 0.014	2. 24
0.564 ± 0.045	0.426 ± 0.029		0.103 ± 0.014		0.112 ± 0.015		2. 564
	1. 474 ± 0. 068	0.105 ± 0.020	0.072 ± 0.013		0.005 ± 0.001	0.001 ± 0.004	2. 152
1.810 ± 0.101 2.154 ± 0.092	0.552 ± 0.027 1.159 ± 0.052	0.129 ± 0.026 0.355 ± 0.030	5. 170 ± 1. 962 0. 109 ± 0. 022	0.001 ± 0.002 0.001 ± 0.001	0.030 ± 0.002 0.022 ± 0.003	0.218 ± 0.084 0.012 ± 0.015	2. 498 2. 284
3.793 ± 0.074	0.427 ± 0.015		0.109 ± 0.022 0.216 ± 0.013		0.022 ± 0.003 0.018 ± 0.002	0.012 ± 0.013 0.011 ± 0.010	2. 264
5.896 ± 0.513	0.827 ± 0.030		0.140 ± 0.013			0.016 ± 0.016	2. 553
2.290 ± 0.270	0.274 ± 0.018		0.048 ± 0.004		0.030 ± 0.002		2. 145
3.528 ± 0.148	0.371 ± 0.015		0.123 ± 0.010	0.021 ± 0.002		0.001 ± 0.001	2. 458
3.990 ± 0.100	0.217 ± 0.010		0.028 ± 0.007	0.003 ± 0.002	0.025 ± 0.001	0.020 ± 0.006	1. 952
0.905 ± 0.036 0.439 ± 0.034	0.604 ± 0.026 0.329 ± 0.011	0. 116 ± 0. 016 0. 411 ± 0. 010	0.121 ± 0.015 0.092 ± 0.007	0.010 ± 0.011 0.022 ± 0.012	0.047 ± 0.003 0.142 ± 0.010		2. 558 2. 581
0.439 ± 0.034 1.131 ± 0.038	0.613 ± 0.017	0.411 ± 0.010 0.275 ± 0.017	0.092 ± 0.007 0.116 ± 0.014	0.022 ± 0.012 0.017 ± 0.009			2. 56
	3.163 ± 0.202	0.876 ± 0.104	0.584 ± 0.054	0.017 ± 0.003	0.009 ± 0.001	0.002 ± 0.009	2. 581
	0.173 ± 0.013	6.892 ± 1.056	0.049 ± 0.007		0.044 ± 0.0043	0.009 ± 0.005	2.344 ± 0.037
4.753 ± 0.126	0.628 ± 0.021	0.134 ± 0.018	0.149 ± 0.011	0.008 ± 0.010	0.017 ± 0.001	0.006 ± 0.010	2. 587
1.312 ± 0.042	0.480 ± 0.014	0.153 ± 0.027 0.124 ± 0.012	0.080 ± 0.009	0.003 ± 0.006	0.031 ± 0.003		2. 534
0.803 ± 0.029 0.936 ± 0.064	0.601 ± 0.022 0.481 ± 0.018	0.124 ± 0.012 0.545 ± 0.021	0.142 ± 0.011 0.181 ± 0.010	0.007 ± 0.012 0.008 ± 0.014	0.054 ± 0.003 0.041 ± 0.004	0.011 ± 0.009 0.016 ± 0.010	2. 538 2. 526
	0.572 ± 0.026	0.101 ± 0.017	0.310 ± 0.059	0.012 ± 0.019	0.027 ± 0.003		2. 545
1.142 ± 0.038	0.171 ± 0.005	10.328 ± 0.217	0.046 ± 0.004		0.056 ± 0.005	0.005 ± 0.003	2. 335
1.396 ± 0.306	0.234 ± 0.039		0.050 ± 0.009		0.047 ± 0.008		2.442 ± 0.028
2.064 ± 0.742	0.554 ± 0.096	0.647 ± 0.388	0. 133 ± 0. 031	0.023 ± 0.012	0.031 ± 0.009	0.008 ± 0.008	2. 508 ± 0. 028
4.880 ± 0.221 2.702 ± 0.102	0.953 ± 0.057 1.030 ± 0.037	1.072 ± 0.057 0.430 ± 0.028	0.544 ± 0.040 0.088 ± 0.020	0.001 ± 0.001 0.001 ± 0.001	0.082 ± 0.002 0.009 ± 0.001	0.011 ± 0.015 0.009 ± 0.011	2. 513 2. 389
4.595 ± 0.248	1. 636 ± 0. 073	0.430 ± 0.028 0.745 ± 0.047	0. 444 ± 0. 030	0.001 ± 0.001	0.009 ± 0.001 0.057 ± 0.002	0.009 ± 0.011 0.002 ± 0.006	2. 55
6.650 ± 0.294	0.136 ± 0.021	0.672 ± 0.083	0.094 ± 0.006	0.001 ± 0.003		0.013 ± 0.005	2. 69
0.758 ± 0.124	0.198 ± 0.045	5.487 ± 0.909	0.035 ± 0.015		0.083 ± 0.007	0.001 ± 0.003	2. 153
0.723 ± 0.037	0.346 ± 0.023	2.298 ± 0.089	0.120 ± 0.015	0.007 ± 0.013		0.003 ± 0.006	2. 362
1.398 ± 0.108 1.883 ± 0.091	0.346 ± 0.009 0.381 ± 0.017	0.932 ± 0.040 0.586 ± 0.027	0.099 ± 0.007 0.081 ± 0.007	0.001 ± 0.001 0.012 ± 0.002	0.046 ± 0.003 0.030 ± 0.001	0.016 ± 0.007 0.016 ± 0.004	2. 388 2. 491
	0.381 ± 0.017 1.127 ± 0.100	0.386 ± 0.027 0.275 ± 0.121	0.081 ± 0.007 0.067 ± 0.018	0.012 ± 0.002 0.008 ± 0.004	0.030 ± 0.001 0.006 ± 0.001	0.016 ± 0.004 0.006 ± 0.009	2. 491
2.925 ± 0.176	0.662 ± 0.023	0.419 ± 0.041	0.175 ± 0.014	0.028 ± 0.003	0.026 ± 0.001	0.009 ± 0.010	2. 587
4.477 ± 0.349	0.852 ± 0.033		0.219 ± 0.049	0.008 ± 0.005		0.005 ± 0.008	2. 57
2.756 ± 0.096	0.655 ± 0.043		0.259 ± 0.038			0.011 ± 0.013	2. 513
2.374 ± 0.131	0.916 ± 0.057	0.648 ± 0.053	0.103 ± 0.024	0.001 ± 0.003	0.013 ± 0.003	0.013 ± 0.016	2. 296
1.948 ± 0.184 1.389 ± 0.075	0.386 ± 0.009 0.694 ± 0.033	0.517 ± 0.021 0.777 ± 0.036	0.087 ± 0.005 0.240 ± 0.016	0.010 ± 0.002 0.012 ± 0.009	0.030 ± 0.002 0.032 ± 0.002	0.018 ± 0.005 0.016 ± 0.013	2. 515 2. 533
3.962 ± 0.102	0.054 ± 0.033 0.752 ± 0.022		0. 171 ± 0. 011		0.032 ± 0.002 0.022 ± 0.001		2. 594
6.092 ± 0.825	1.066 ± 0.123				0.021 ± 0.001		2. 633
	0.515 ± 0.019		0.114 ± 0.012		0.029 ± 0.006		2. 509
	1.118±0.294	0.089 ± 0.026	0.042 ± 0.020		0.004 ± 0.001	0.002 ± 0.004	2. 194
0.319 ± 0.072 2.279 ± 0.209	(Sr/Rb) 0. 719 ± 0. 096	0.028 ± 0.037 1.403 ± 0.991	(Y / Rb) 0. 113 ± 0. 023	13. 228 ± 1. 555 0. 004 ± 0. 007		0.007 ± 0.010	2. 292 2. 348
0.812 ± 0.026	0.458 ± 0.015	0.156 ± 0.013	0.113 ± 0.023 0.152 ± 0.011	0.004 ± 0.007 0.024 ± 0.014			2. 548
3.035 ± 0.132	1. 001 ± 0. 046	1.052 ± 0.075	0.116 ± 0.017	0.001 ± 0.003	0.013 ± 0.001	0.005 ± 0.010	2. 372
2.942 ± 0.151	0.961 ± 0.062	0.972 ± 0.059	0. 108 ± 0. 020	0.007 ± 0.006	0.011 ± 0.002	0.004 ± 0.008	2. 27
1.812 ± 0.062	0.932 ± 0.037	1.679 ± 0.058	0.099 ± 0.011	0.008 ± 0.007	0.037 ± 0.003	0.016 ± 0.013	2. 161 2. 285
1.128 ± 0.192 2.338 ± 0.185	0.232 ± 0.010 0.669 ± 0.060	6. 244 ± 0. 100 0. 352 ± 0. 041	0.036 ± 0.006 0.091 ± 0.035	0.002 ± 0.002 0.002 ± 0.003	0.080 ± 0.001 0.004 ± 0.004	0.008 ± 0.005 0.001 ± 0.006	2. 285
1.207 ± 0.071	0.009 ± 0.000 0.153 ± 0.010	9. 891 ± 0. 259	0. 091 ± 0. 003 0. 041 ± 0. 006	0.002 ± 0.003 0.028 ± 0.002	0.004 ± 0.004 0.130 ± 0.017	0.001 ± 0.000 0.001 ± 0.001	2. 18
3.089 ± 0.1421	0.318 ± 0.017	0.890 ± 0.040	0.098 ± 0.008	0.009 ± 0.001	0.055 ± 0.002	0.042 ± 0.007	2. 197
	0.547 ± 0.585	0.707 ± 0.757	0.046 ± 0.052	0.002 ± 0.004		0.002 ± 0.006	2. 167
2.706 ± 0.237	0.968 ± 0.053	0.264 ± 0.081	0.215 ± 0.033	0.007 ± 0.006 0.006 ± 0.005	0.084 ± 0.005	0.012 ± 0.013	2. 476 ± 0. 030
2.787 ± 0.092 1.170 ± 0.031	0.676 ± 0.027 0.331 ± 0.016	0.185 ± 0.022 0.076 ± 0.012	0.095 ± 0.013 0.072 ± 0.010	0.006 ± 0.005 0.014 ± 0.011	0.035 ± 0.002 0.053 ± 0.003	0.012 ± 0.011 0.012 ± 0.009	2. 57 2. 508
0.853 ± 0.151	0.228 ± 0.032	0.070 ± 0.012 0.153 ± 0.036	0.072 ± 0.010 0.073 ± 0.017	0.014 = 0.011 0.035 ± 0.025	0.095 ± 0.026	0.012 ± 0.003 0.015 ± 0.011	1. 961 ± 0. 106
0.569 ± 0.087	0.371 ± 0.078	0.065 ± 0.042	0.157 ± 0.056	0.024 ± 0.027	0.064 ± 0.027	0.029 ± 0.023	2. 048 ± 0. 438
1.051 ± 0.113	0.349 ± 0.041	0.055 ± 0.018	0.216 ± 0.044	0.019 ± 0.017	0.059 ± 0.011	0.008 ± 0.008	2. 308 ± 0. 052
1.149 ± 0.111	0.372 ± 0.020	0.070 ± 0.014	0.165 ± 0.010	0.002 ± 0.002			2.09
1.286 ± 0.168 1.198 ± 0.032	0.294 ± 0.020 0.270 ± 0.011	0.067 ± 0.013 0.067 ± 0.007	0.199 ± 0.020 0.284 ± 0.023	0.004 ± 0.007 0.009 ± 0.007	0.049 ± 0.008 0.065 ± 0.002	0.013 ± 0.011 0.001 ± 0.002	1. 948~2. 225 2. 546
0.950 ± 0.032	0.270 ± 0.011 0.328 ± 0.010	0.096 ± 0.007	0. 264 ± 0. 025 0. 061 ± 0. 005	0.009 ± 0.007 0.004 ± 0.006	0.065 ± 0.002 0.065 ± 0.002	0.001 ± 0.002 0.020 ± 0.005	2. 473
0.825 ± 0.278	0.305 ± 0.068	0.245 ± 0.013	0.101 ± 0.082	0.008 ± 0.007	0.074 ± 0.011	0.016 ± 0.007	2. 548
	18.478 ± 7.345	2.190 ± 0.955	0.684 ± 0.309	0.009 ± 0.001	0.003 ± 0.001	0.005 ± 0.018	2. 637
2.011 ± 0.145	0.080 ± 0.018		0.172 ± 0.013		0.042 ± 0.002	0.001 ± 0.001	2. 242
3.424 ± 0.164	0.607 ± 0.021	0.448 ± 0.303	0.046 ± 0.011	0.001 ± 0.001	0.017 ± 0.001	0.003 ± 0.005	2. 485

第27表 各原石産地不明碧玉玉類、玉材の遺物群の元素比の平均値と標準偏差値(6)

No. 11. 124. 64	分析	Al/Si	K/Si	Ca/K	Ti/K	K/Fe	Rb/Fe
遺物群名	回数	$Xav \pm \sigma$	Xav ± σ	$Xav \pm \sigma$	Xav ± σ	$Xav \pm \sigma$	$Xav \pm \sigma$
纏向SD1002群	45	0.057 ± 0.001	1.950 ± 0.036	1.288 ± 0.012			0.041 ± 0.008
纏向54次群	50	0.049 ± 0.002	2.690 ± 0.053	0.061 ± 0.009	0.107 ± 0.013	0.162 ± 0.005	0.233 ± 0.010
纏向80次群	50	0.073 ± 0.002	2.589 ± 0.060	0.887 ± 0.027	0.649 ± 0.018	0.071 ± 0.001	0.139 ± 0.006
大福30次群	45	0.051 ± 0.001	0759 ± 0.066	0.269 ± 0.038	0.836 ± 0.062	0.023 ± 0.001	0.039 ± 0.003
金井東裏A遺物群	50	0.056 ± 0.004	2.177 ± 0.213	1.368 ± 0.094	0.244 ± 0.001	0.138 ± 0.023	0.324 ± 0.098
金井東裏127083管玉群	48	0.056 ± 0.001	2. 226 ± 0. 087	1.189 ± 0.025	0.199 ± 0.008	0.181 ± 0.012	0.449 ± 0.030
金井東裏127094管玉群	48	0.058 ± 0.001	3.393 ± 0.033	0.531 ± 0.026	0.180 ± 0.005	0.129 ± 0.008	0.205 ± 0.013
金井東裏赤碧玉 - 5 群	48	0.023 ± 0.001	0.246 ± 0.016	0.779 ± 0.020	1. 465 ± 0. 123	0.008 ± 0.001	0.031 ± 0.004
東条1号墳31群	56	0.021 ± 0.001	0.847 ± 0.036	0.134 ± 0.022	0.196 ± 0.036	0.038 ± 0.002	0.201 ± 0.008
大桷835遺物群	55	0.042 ± 0.001	3. 848 ± 0. 163	0.018 ± 0.007	0.311 ± 0.011	0.324 ± 0.037	0.417 ± 0.030
大桷1206遺物群	50	0.060 ± 0.006	2.683 ± 0.270	0.168 ± 0.058	0.6261 ± 0.066	0.037 ± 0.004	0.062 ± 0.009
大桷1350遺物群	50	0.068 ± 0.002	4.275 ± 0.137	0.087 ± 0.005	0.323 ± 0.021	0.060 ± 0.010	0.096 ± 0.012
大桷2862管玉群	45	0.082 ± 0.007	3.363 ± 0.218	0.382 ± 0.012	0.619 ± 0.023	0.068 ± 0.003	0.121 ± 0.010
中増1管玉群	50	0.037 ± 0.001	2.640 ± 0.093	0.069 ± 0.012	0.230 ± 0.013	0.230 ± 0.006	0.395 ± 0.022
鬼塚A石材遺物群	56	0.054 ± 0.002	0.756 ± 0.192	4.003 ± 0.614	0.734 ± 0.107	0.049 ± 0.010	0.061 ± 0.012
鬼塚B石材遺物群	57	0.061 ± 0.002	0.786 ± 0.1322	5.176 ± 0.883	0.456 ± 0.043	0.046 ± 0.003	0.130 ± 0.015
鬼塚C石材群	50	0.056 ± 0.006	0.701 ± 0.081	5. 012 ± 1. 512	0.668 ± 0.138	0.050 ± 0.012	0.067 ± 0.023
鬼塚D石材群	46	0.057 ± 0.007	1. 601 ± 0. 151	1.663 ± 0.177	$0.325 \pm 0.0.42$	0.054 ± 0.002	0.136 ± 0.011
鬼塚E石材群	47	0.048 ± 0.001	4. 042 ± 0. 064	0.196 ± 0.045	0.279 ± 0.011	0.240 ± 0.013	0.300 ± 0.024
鬼塚58石材群	65	0.064 ± 0.003	1. 094 ± 0. 250	3.415 ± 0.901	0.343 ± 0.042	0.055 ± 0.012	0.124 ± 0.027
鬼塚55699管玉群	50	0.060 ± 0.001	1.074 ± 0.065	3.129 ± 0.126	0.503 ± 0.029	0.054 ± 0.002	0.044 ± 0.009
西ノ辻51管玉群	50	0.043 ± 0.002	3.334 ± 0.117	0.097 ± 0.019	0.112 ± 0.013	0.081 ± 0.005	0.083 ± 0.006
吉田A管玉群	48	0.062 ± 0.004	2. 247 ± 0. 181	1.125 ± 0.152	0.988 ± 0.095	0.091 ± 0.007	0.194 ± 0.010
大谷山125782管玉群	49	0.018 ± 0.001	0.658 ± 0.023	0.055 ± 0.017	0.156 ± 0.017	0.094 ± 0.004	0.209 ± 0.018
山東125813管玉群	51	0.047 ± 0.002	0.953 ± 0.052	2. 111 ± 0. 058	1. 327 ± 0. 031	0.075 ± 0.005	0.119 ± 0.014
井辺前山A管玉群	62	0.030 ± 0.003	1.048 ± 0.058	0.227 ± 0.059	0.275 ± 0.036	0.042 ± 0.003	0.198 ± 0.013
持田古墳A管玉群	119	0.046 ± 0.002	3.906 ± 0.225	0.152 ± 0.050	0.288 ± 0.013	0.218 ± 0.024	0.283 ± 0.023
持田古墳C管玉群(凝)	136	0.047 ± 0.003	0.680 ± 0.113	3.139 ± 0.513	0.737 ± 0.118	0.064 ± 0.006	0.048 ± 0.011
持田古墳D丸勾玉群	59	0.040 ± 0.004	2.833 ± 0.437	0.066 ± 0.020	0.033 ± 0.008	0.980 ± 0.226	1. 084 ± 0. 221
鳥居前古墳A管玉群	45	0.036 ± 0.002	2. 433 ± 0. 236	0.052 ± 0.049	0.801 ± 0.066	0.108 ± 0.009	0.260 ± 0.017
鳥居前古墳B管玉群	45	0.031 ± 0.002	1.960 ± 0.139	0.052 ± 0.030	0.948 ± 0.064	0.108 ± 0.015	0.254 ± 0.020
鳥居前古墳16管玉群	45	0.040 ± 0.001	2.941 ± 0.170	0.019 ± 0.007	0.280 ± 0.033	0.132 ± 0.018	0.229 ± 0.028
下里126701管玉群	45	0.061 ± 0.001	1.545 ± 0.087	2.353 ± 0.130	0.597 ± 0.064	0.017 ± 0.001	0.017 ± 0.003
下里126703管玉群	45	0.050 ± 0.001	1.260 ± 0.064	0.596 ± 0.044	0.867 ± 0.059	0.036 ± 0.001	0.055 ± 0.004
下里126704管玉群	45	0.050 ± 0.001	2.039 ± 0.052	0.194 ± 0.008	0.286 ± 0.015	0.050 ± 0.001	0.114 ± 0.004
下里126706管玉群	55	0.057 ± 0.001	2.989 ± 0.121	0.177 ± 0.041	0.231 ± 0.049	0.052 ± 0.001	0.110 ± 0.004
下里126707管玉群	45	0.054 ± 0.007	2.169 ± 0.114	0.409 ± 0.242	0.275 ± 0.059	0.048 ± 0.004	0.100 ± 0.007
尾原島127011管玉群	49	0.038 ± 0.001	3.098 ± 0.090	0.096 ± 0.007	0.048 ± 0.005	0.300 ± 0.008	0.393 ± 0.014
尾原島127012管玉群	49	0.061 ± 0.001	4.738 ± 0.086	0.208 ± 0.005	0.400 ± 0.012	0.159 ± 0.002	0.261 ± 0.007
高塚127014管玉群	49	0.014 ± 0.001	0.316 ± 0.006	0.314 ± 0.037	0.153 ± 0.058	0.025 ± 0.001	0.0781 ± 0.007
矢部南向127017管玉群	49	0.070 ± 0.004	3.673 ± 0.207	0.581 ± 0.028	0.643 ± 0.042	0.115 ± 0.006	0.167 ± 0.009
鹿田129901管玉群	49	0.052 ± 0.001	0.806 ± 0.050	3.614 ± 0.277	0.755 ± 0.074	0.055 ± 0.004	0.037 ± 0.009
千野管玉未製品5 (凝)	45	0.044 ± 0.003	1.164 ± 0.043	0.308 ± 0.092	1.895 ± 0.269	0.035 ± 0.001	0.090 ± 0.003
千野管玉未製品23(凝)	43	0.060 ± 0.002	2. 134 ± 0. 040	0.464 ± 0.050	0.194 ± 0.035	0.650 ± 0.064	1. 360 ± 0. 189
千野管玉未製品32(凝)	43	0.028 ± 0.001	1. 693 ± 0. 107	0.067 ± 0.021	1. 134 ± 0. 131	0.129 ± 0.024	0.187 ± 0.024
千野管玉未製品34(凝)	43	0.033 ± 0.001	2. 421 ± 0. 380	0.072 ± 0.041	0.447 ± 0.045	0. 114 ± 0. 023	0.140 ± 0.020
千野管玉未製品A群(凝)	51	0.034 ± 0.003	2.574 ± 0.423	0.058 ± 0.028	0.741 ± 0.120	0.139 ± 0.025	0.172 ± 0.019
千野管玉失敗品18群	44	0.038 ± 0.001	2.536 ± 0.066	0.040 ± 0.041	0.215 ± 0.012	0. 172 ± 0. 006	0.240 ± 0.014
藤井古墳J5管玉群	48	0.020 ± 0.001	0.807 ± 0.108	0.048 ± 0.015		0.102 ± 0.008	0.234 ± 0.009
波賀野S14剥片群	51	0.037 ± 0.002	3. 088 ± 0. 231	0.051 ± 0.019	0.112 ± 0.014	0.177 ± 0.014	0.342 ± 0.009
旧練兵場T-49管玉群	48	0.051 ± 0.001	0.865 ± 0.014	3.995 ± 0.066	1. 198 ± 0. 038	0.052 ± 0.001	0.063 ± 0.012
元素比番号		10	2	3	5	6	8

Xav:平均値、 σ:標準偏差値 比重2. 29以下は緑色凝灰岩女代南B:女代南遺跡(豊岡市)、未定C:字木汲田遺跡(唐津市)、車塚1, 2:車田1~4:梅田古墳(兵庫県和田山町)、梅田東1:梅田東古墳(兵庫県和田山町)、上ノ段1:上ノ段遺跡(兵庫県島町)、新方1~3:新方遺跡遺跡(岡山県)、昼飯3, 4:昼飯大塚古墳(大垣市)、斉当坊6:市田斉当坊(京都府久御山町)、笠見3~13: 笠見第3遺跡(鳥取県東伯町)矢野(会津坂下町)、美保1:中野美保遺跡(出雲市)、大代8・5:大代古墳(鳴門市),湯坂1,2:湯坂遺跡(鳥取県赤碕町),阿尾島田−1, −2:阿尾上:吹上遺跡(上越市)、妙見山:妙見山古墳(今治市)、山賀No. 283群:山賀遺跡(八尾市)、山持9. 20−21, 24, 25−26遺物群:山持遺跡(鳥根県)、群:室山5号墳(海南市)、唐古・鍵諸遺物群:唐古・鍵遺跡(含良県田原本町)、庄・蔵本8、9遺物群:庄・蔵本遺跡(徳島市)、原田No. 1遺物語・和歌山市)、旧古備中遺物群:旧古備中学校校庭遺跡(吉備町)、川辺遺物群:州辺遺跡(和歌山市)、天野諸遺物群:天野遺跡(協内市)、玉(韓国、保寧)、茶畑2遺物群:茶畑第2遺跡(鳥取県大山町)、茶畑1直遺物群:新穂村玉作遺跡群(佐渡市)、五千石諸遺物群:殿河内定屋ノ前遺跡(鳥取県大山町)、満地3両2場、「原田内本町)、田町、松原田中134、158、199、21遺物群:新恵村、「原東大山町)、福地頭給遺跡(鳥取県大山町)、本川田町・「原越7−8、9−10町)、松原田中134、158、199、21遺物群:新豊遺跡(鳥取県大山町)、笠石山15遺物群:笠石山遺跡(伊豆の国市)、土井ヶ浜諸群:土井ヶ浜遺跡(下古墳(城陽市)、新豊−01、0203遺物群:新豊遺跡(鳥取市)、笠石山15遺物群:西谷3号墳(出雲市)桜馬場47−5遺物群、半田引地遺物石材遺物群(東大阪市)、持田古墳諸群(宮崎県)、鳥居前古墳諸群:鳥居前古墳 (大山崎町)で使用されている原石産地不明の玉類で作った群。再発行された場合一致しない可能性があることに注意)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	比重 Xav ± σ 2. 24 2. 38 2. 054 2. 639 2. 248 ± 0. 029 2. 196 2. 512
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. 24 2. 38 2. 054 2. 639 2. 248 ± 0. 029 2. 196
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. 054 2. 639 2. 248 ± 0. 029 2. 196
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. 054 2. 639 2. 248 ± 0. 029 2. 196
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2. 639 2. 248 ± 0. 029 2. 196
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2. 248 ± 0. 029 2. 196
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2. 196
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2. 623
	2. 55
2.433 ± 0.161 0.979 ± 0.044 0.391 ± 0.071 0.246 ± 0.060 0.001 ± 0.002 0.090 ± 0.009 0.009 ± 0.010	2. 506
2.966 ± 0.368 0.175 ± 0.009 1.432 ± 0.440 0.032 ± 0.005 0.004 ± 0.002 0.021 ± 0.004 0.011 ± 0.005	2.08
3.089 ± 0.380 0.282 ± 0.012 0.418 ± 0.011 0.044 ± 0.006 0.001 ± 0.001 0.017 ± 0.002 0.014 ± 0.004	2. 259
$1,770 \pm 0.158$ $0,212 \pm 0.009$ 2.882 ± 0.057 0.027 ± 0.004 0.004 ± 0.002 0.038 ± 0.001 0.016 ± 0.004	2. 256
1.505 ± 0.096 0.574 ± 0.026 0.557 ± 0.026 0.0112 ± 0.013 0.001 ± 0.002 0.047 ± 0.003 0.018 ± 0.009	2. 608
1.708 ± 0.175 0.100 ± 0.021 9.162 ± 0.635 0.146 ± 0.012 0.031 ± 0.003	2. 250 ± 0. 024
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.331 ± 0.197
1.757 ± 0.445 0.109 ± 0.030 11.474 ± 2.045 0.150 ± 0.037 0.006 ± 0.007 0.030 ± 0.009 0.001 ± 0.003	2.255 ± 0.042
2.093 ± 0.120 0.0275 ± 0.033 7.330 ± 2.215 0.075 ± 0.007 0.001 ± 0.002 0.016 ± 0.002 0.010 ± 0.005	2.302~2.309
$3.263 \pm 0.257 0.943 \pm 0.032 0.575 \pm 0.050 0.173 \pm 0.026 0.001 \pm 0.002 0.060 \pm 0.004 0.007 \pm 0.010$	2.540~2.555
$1, 243 \pm 0, 533$ $0, 158 \pm 0, 016$ $11, 269 \pm 1, 169$ $0, 064 \pm 0, 012$ $0, 001 \pm 0, 001$ $0, 017 \pm 0, 004$ $0, 009 \pm 0, 004$	2. 268
2.226 ± 0.085 0.094 ± 0.019 8.829 ± 0.279 0.143 ± 0.012 0.024 ± 0.002	2. 227
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2. 504
0.970 ± 0.147 0.182 ± 0.025 5.436 ± 0.994 0.033 ± 0.010 0.001 ± 0.003 0.081 ± 0.013 0.008 ± 0.006	2. 250 – 2. 379
$ 8. \ 290 \pm 1. \ 145 1. \ 678 \pm 0. \ 281 0. \ 357 \pm 0. \ 141 0. \ 077 \pm 0. \ 077 0. \ 013 \pm 0. \ 015 0. \ 013 \pm 0. \ 003 0. \ 015 \pm 0. \ 024 $	2. 537
1.974 ± 0.940 0.227 ± 0.026 4.463 ± 0.153 0.732 ± 0.035 0.003 ± 0.006 0.089 ± 0.005	2. 268
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.417 ± 0.012
$\begin{bmatrix} 3.520 \pm 0.374 & 0.984 \pm 0.072 & 0.592 \pm 0.133 & 0.376 \pm 0.132 & 0.001 \pm 0.002 & 0.056 \pm 0.006 & 0.002 \pm 0.007 \end{bmatrix}$	2.543 ± 0.035
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.198 ± 0.046
$ \begin{bmatrix} 0.573 \pm 0.105 & 0.592 \pm 0.096 & 0.237 \pm 0.055 & 0.119 \pm 0.023 & 0.057 \pm 0.032 & 0.028 \pm 0.007 & 0.043 \pm 0.025 \end{bmatrix} $	2.558 ± 0.026
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.266 ± 0.033
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.266 ± 0.033
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2. 11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2. 561
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1. 995
4. 314 ± 0. 260 0. 490 ± 0. 024 0. 487 ± 0. 030 0. 148 ± 0. 007 0. 013 ± 0. 003 0. 013 ± 0. 001 0. 001 ± 0. 003	1. 838
	2. 036
4. 638 ± 0. 458 0. 457 ± 0. 021 1. 534 ± 0. 622 0. 181 ± 0. 095 0. 010 ± 0. 002 0. 012 ± 0. 004 0. 001 ± 0. 003	1. 988
2. 358 ± 0. 096 0. 920 ± 0. 040 0. 497 ± 0. 028 0. 105 ± 0. 016 0. 013 ± 0. 001 0. 022 ± 0. 018	2. 399
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2. 392
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2. 132
1. 217 ± 0. 054 0. 201 ± 0. 009 3. 482 ± 0. 058 0. 055 ± 0. 005 0. 066 ± 0. 002 0. 014 ± 0. 006	2. 339
2. 049 ± 0. 134 0. 070 ± 0. 018 7. 808 ± 0. 271 0. 193 ± 0. 013 0. 046 ± 0. 002 0. 035 ± 0. 002 0. 001 ± 0. 002	2. 203
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.186(吸水)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.367 (吸水)
	2.336(吸水)
$ 2.757 \pm 0.215 0.358 \pm 0.051 0.061 \pm 0.015 0.063 \pm 0.008 0.018 \pm 0.005 0.042 \pm 0.006 0.042 \pm 0.016 $	2.27 (吸水)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. 240±0. 048(吸水)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. 424
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. 532
	2. 565
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. 235
1 12 13 14 7 4 16	

塚古墳(交野市)、牟田辺:牟田辺遺跡(多久市)、長塚(1)、(2):長塚古墳(可児市)、No. 200 - 1 ~ 6:多摩ニュータウン遺跡(東京都)、梅(神戸市)、新井1:新井三丁目遺跡(東京都中野区)、亀川3:亀川遺跡(阪南市自然田)、東船1:東船遺跡(烏根県今津町)、山ノ奥1:山ノ奥4:矢野遺跡(徳島市)、青田77、78:青田遺跡(新潟県加治川村)、菜畑(唐津市)、石田2、3:石田古墳(松江市)、会津坂下N、G:経塚遺跡島田A1号墳(水見市)、中野清水1、3、4、5群、矢野No. 1、2、3群・中野清水・矢野遺跡(出雲市)、地方:八日市地方遺跡(小松市)、吹田能諸群:田能遺跡(尼崎市)、太田・黒田560遺物群:太田・黒田遺跡(和歌山市)、岡村07、224遺物群:岡道跡(橋本市)、室山54 4 遺物群:原田遺跡(奥出雲町)、北田井遺物群:北田井遺跡(和歌山市)、造山D、21、35C遺物群:造山3号墳(安永市)、西田井6 - 7 遺物群:西田井作諸群:玉作1、2遺跡(鶴岡市)、高擶南諸群:高擶南遺跡(天童市)、麻田里1遺物群:麻田里遺跡(韓国、論山)、寛倉里1、2遺物群:寛倉里遺跡棺群(北九州市),西谷63、69遺物群:西石井作諸群:玉作1、2遺跡(鶴岡市)、高擶南諸群:高擶南遺跡(天童市)、麻田里1遺物群:中原遺跡(佐賀県唐津市)、矢野5、6、7、8、A、B、五千石遺跡(長岡市、燕市)、秋月A、19、20遺物群:秋月遺跡(和歌山市)、遺物諸群:塚越古墳(平塚市)、東前諸群:東前遺跡(倉吉市)、城野諸群:城野遺跡3区(北九州市)、宮崎17、23遺物群:宮崎遺跡(福島県金山関市)、青谷上寺地遺物諸群:青首と寺地遺跡(鳥取市)、城の山-A、-4、-8遺物群:城の山古墳(胎内市)、芝ヶ原A、B、C遺跡群:芝ヶ原群(唐津市)、赤尾熊ヶ谷遺物・纏向諸群(桜井市)、金井東裏A遺物群(渋川市)、東条1号墳31群(伊賀市)、中増1遺物群(喜界島)、鬼塚A、B(注:遺跡の所在地名は最近の住所変更前の住所で遺物群を作ったときの遺跡報告書に記載した住所である。従って、遺跡報告書の住所が変更され