高岡町内遺跡VII

2002. 3

宮崎県高岡町教育委員会

高岡町内遺跡W

2002. 3

宮崎県高岡町教育委員会

未 訂 正 高岡町内遺跡畑正誤表

頁	行	誤	E
28	14	黒耀石の原産地は	黒耀石の原産地は
		黒耀石の原産地は	
28	15	各地に黒耀石の原	各地に分布する。
		産地は分布する。	

序 文

高岡町は、宮崎市の近郊に位置し諸開発の増加が予想されます。高岡町教育委員会では、これらに対応するため、平成3、4年度に実施した町内遺跡詳細分布調査の成果をもとに、開発に伴う遺跡の確認を目的とした町内遺跡発掘調査を実施しております。本書は、平成12、13年度に実施したそれらの調査の報告と平成9年度に実施した八久保遺跡発掘調査の本報告であります。この調査が、これからの開発と埋蔵文化財保存とが共存しうるきっかけになることを希望します。

最後に、調査に御協力頂いた諸関係機関や地権者の方々に深く感謝申し上げます。

平成14年3月

高岡町教育委員会教育長 中山芳教

- 1. 本書は、高岡町教育委員会が文化庁と宮崎県教育委員会の補助を受けて実施した町内遺跡発掘調査の報告書である。
- 2. 本書は、平成12年度試掘・確認調査、平成13年度試掘・確認調査、八久保第2遺跡発掘調査を掲載している。
- 3. 出土黒耀石の一部は、藁科哲男氏(京都大学原子炉実験所)のご厚意で産地同定のための蛍光 X 線分析をおこない、その成果はⅢ章 3 節に掲載している。また、黒耀石以外の石材については、宍戸章氏からご教授頂いた。
- 4. 遺物の実測及び製図は、 (高岡町埋蔵文化財調査室)の協力を得た。 また、石器については廣田晶子の手を煩わせた。
- 5. 本書の図面における方位は磁北、レベルは海抜高である。
- 6. 八久保第2遺跡の遺跡番号は334、遺物の注記は「遺跡番号-層位-取上番号」とし、遺物の保管は 高岡町教育委員会がおこなっている。
- 7. 本書の編集は島田正浩がおこなった。

目 次

	3. 0.19 (1.		
	節高岡の環境 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
Ⅱ 移	雀認調査		
第 1			7
第 2			7
第 3			8
Ⅲ <i>J</i>	∖久保第2遺跡の調査・・・・・・・・・・・・・・・		
第 1			9
1	. 調査に至る経緯		
2	7/ /		9
3	3. 遺跡の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
第 2	- N 13.4 TT		10
1			10
2			14
第3	7210 73 1/1		26
1	. 八久保第2遺跡出土の黒耀石製遺物の原材産		
第 4	節 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • • • •	39
	挿図	目》	
第1図] 町内遺跡調査位置図6	第7図	八久保第2遺跡出土土器実測図(2)・・・・・18
第2区] 八久保第2遺跡周辺地形図9	第8図	
第3区] 八久保第2遺跡グリット及び遺構配置図…11	第9図	
第4区		第10図	
第5区] 八久保第2遺跡遺物分布図16	第11図	
第6区] 八久保第2遺跡出土土器実測図(1)・・・・・・・17	第12図	黒耀石原産地・・・・・・27
	写真図)		
図版 1			4号集石、5号集石、6号集石・・・・・・・42
図版 2	1号集石、2号集石、3号集石41	図版 4	八久保第2遺跡出土遺物・・・・・・・・43
	-t- 10		
	表		[†] C
表 1	平成12年度町内遺跡調査一覧 … 7~8	表 7	九州西北地域原産地採取原石が各原石群に
表 2	平成13年度町内遺跡調査一覧 8		同定される割合の百分率・・・・・・36
表 3	八久保第2遺跡出土構成礫属性表13	表 8	八久保第2遺跡出土黒耀石製石器の元素比分析結果・・・・36~37
表 4	出土土器観察表21~22	表 9	八久保第2遺跡出土の黒耀石製遺物の
表 5	出土石器観察表23	•	原材産地推定結果・・・・・・・・37~38
表 6	各黒耀石の原産地における原石群の	表10	出土遺物集計表 · · · · · · · · 39
	元素比の平均値と標準偏差値32~35	表11	報告書登録抄 · · · · · · · · 44

I はじめに

第1節 高岡の環境

70%以上を山林が占める高岡町は、東側に宮崎平野を眼下にし標高170m以上の台地が西に広大に広がる。

高岡町の遺跡は、現在知られているだけで140箇所あり、それらの遺跡のほとんどは、町中央を東流する大淀川やその支流(内山川・浦之名川など)により形成された河岸段丘に位置している。

旧石器時代では、1993年に調査を実施した向屋敷遺跡は、集石遺構と共にナイフ形石器やスクレイパーが出土している。

縄文時代の遺跡は、特に早期と後期の遺跡が多く知られており、早期は、橋山第1遺跡・天ヶ城跡・宗栄司遺跡・橋上遺跡・久木野遺跡の5遺跡で、すでに発掘調査が実施されている。橋山第1遺跡は、早期と後期初頭の遺構遺物が検出された。早期は、幾形式かの集石遺構と、それに伴い、前平・塞ノ神式等の貝殻文系円筒土器や押型文土器、そして、環状石斧などが出土している。後期は、阿高系の岩崎式土器が出土している。また、多くの石錘が出土しており、当時の生活環境を知りうることができる。天ヶ城跡は、標高120mの独立した丘陵に位置し、集石遺構に伴い押型文を中心とした早期の遺物が出土している。表採資料からは、山子遺跡が以前から知られており、浦之名川上流に位置する赤木遺跡と同様に後期の貝殻条痕文土器が表採される。

弥生時代では、学頭遺跡があげられる。学頭遺跡は複合遺跡であり、時期は中期後半から終末までが確認されている。また、城ヶ峰遺跡では、後期の遺物が出土している。

古墳時代では、東高岡地区と浦之名一里山地区の丘陵を中心として遺跡が広がっている。久木野地下式横穴墓地群で3基の調査が行われており、1984年の調査では鉄斧と玉類が出土し6世紀前半とされている。また、学頭遺跡では初頭~前期にかけての遺物が出土し弥生時代から引き続き集落が営まれている。それに隣接した八児遺跡でも住居跡が検出されている。

古代は、文献によると高岡周辺は「穆佐郷」と言われていた。古代になると、宗栄司遺跡・蕨野遺跡・ 二反田遺跡があり前者2遺跡で調査が行われている。蕨野遺跡では、9C後半の土師器生産に伴う焼成土 坑(窯)が検出されている。

中世では、12世紀に「島津庄穆佐院」といわれ、南北朝期を経て、島津氏と伊東氏の興亡の歴史の中に入っていく。この時代の代表的なものは山城である。南北朝期は、穆佐城が日向の中心となり足利氏の九州における勢力拡大の拠点となった。それ以後、小規模な山城が点在したと考えられ、現在10箇所以上(文献等では18箇所)を確認している。穆佐城は、縄張り調査により、南九州特有の特徴をもつとともに、機能分化をもたせた山城として評価されている。その後、穆佐城は、津島久豊(8代)・忠国(9代)の居城、伊東氏48城のひとつとなるなど両氏の勢力争いの表舞台にあった。

この時期までの中心地が穆佐城周辺だったのに対して、近世となると天ヶ城周辺に一変する。薩摩藩は、天ヶ城(高岡郷)と穆佐城(穆佐郷)の裾地に多くの郷士を居住させた。そして、綾、倉岡とともに関外四ヶ郷として、特に高岡郷はその中心として薩摩藩の東側の防御の要として発展する。高岡麓遺跡では、計画的な街路設計がなされ郷士屋敷群と町屋群に分割されている。第1地点の町屋の調査では素掘の井戸や土坑等を検出し、また1994年・1997年・1998年の調査では、武家屋敷の一画を調査している。

1角ノ園地区 2穆佐城跡 3茶屋原遺跡 4川口遺跡 5梅木田遺跡 6高岡麓遺跡8久木野遺跡9朝羽田地区 10小田元地区 11小田元遺跡 12池ノ上遺跡13吹上遺跡14瀬ノ上地区15茶薗堀遺跡16永迫第1遺跡 17八久保第2遺跡

Ⅱ 確認調查

第1節 確認調査の概要

高岡町は、開発における地理的条件に恵まれているにも関わらず、宅地開発や、圃場整備事業などの大規模な開発がなかった。それにより破壊されることなく良好に残っている遺跡が多い。さて、最近の町内の傾向は、宮崎県中部農林振興局が事業主体となる農道関連の開発が増加しており、この傾向はしばらく続くものと思われる。それとは逆に、個人住宅などの民間開発は、景気低迷もあり横這い傾向である。

これらの開発に対しては、可能な限りの確認調査(試掘)と立ち会い調査で対応し、破壊される遺跡については本調査を実施している。教育委員会で把握できるものは、開発申請や建物の確認申請、農地転用関係であり、それ以外の開発は発見時での対応となる。そのため、工事の中断・工期の延長を引き起こしている。また、公共事業においても計画段階で協議を求めてくるのは希である。発掘調査が開発者側に課せられたものであることを周知徹底させ、計画段階で協議が出来る環境をつくることが必要である。ただし、教育委員会の現調査体制では対応することは困難であり、体制強化を図らなければならない。

確認調査の体制は次のとおりである。

平成12年度	教 育	長	中山芳教	平成13年度	教 育	長	中山芳教
	社会教育	育課長	四位行治		社会教育	育課長	赤池敏寛
	文化財份	系長	黒木敏幸		文化財色	系長	島田正浩
	主	查	島田正浩		主	事	廣田晶子
	主 事	補	廣田晶子		嘱	託	松本安紀彦
	嘱	託	西 慶喜		宮崎県プ	と 化課	松林豊樹
	宮崎県プ	と化課	飯田博之				

第2節 平成12年度の調査

平成12年度は確認調査を5箇所、試掘調査を1箇所、さらに穆佐城跡の範囲確認調査をおこなった。

表 1 平成12年度町内遺跡調査一覧

	遺跡名	場所	調査区分	調査期間	原因	成果
1	角ノ園遺跡	大字飯田	試掘調査	H12.4.12	区画	遺構、遺物無し
		26-1			整理	
2	穆佐城跡	大字小山田	確認調査	H12.7.19	町道	城域裾部を調査。土師器皿が数点出土した。
		991、994		~7.29	改良	
3	茶屋原遺跡	大字浦之名	確認調査	H12.8.24	施設	調査対象地の1/3はアワオコシ層まで削平されている。一部
		5070-3			建設	で縄文早期相当層が残り、焼礫、ピットが確認された。
4	川口遺跡	大字浦之名	確認調査	H13.1.9	農道	アカホヤ面からピットを検出した。
		2670			改良	
5	梅木田遺跡	大字小山田	確認調査	H13.1.10	農道	アカホヤ下から、焼礫、縄文土器数点を確認した。
		2048-2			改良	
6	高岡麓遺跡	大字内山	確認調査	H13.3.24	施設	0.5m掘削したところで、遺構検出面を出す。ピット、溝など
		2877			建設	の遺構の外、陶磁器を確認した。

	遺跡名	場所	調査区分	調査期間	原因	成果
7	穆佐城跡	大字小山田	確認調査	H12.7.24	国指	調査地を3箇所設定し行った。麓居住地跡からは近世の陶磁
		956-2、		~7.27	定申	器類は多く出土したが、中世と思われる遺構は確認できなか
		1017-1、			請	った。
		2475				

第3節 平成13年度の調査

平成13年度は開発に伴う確認調査を 6 箇所、試掘調査を 3 箇所おこなった。その結果 5 箇所で遺構や遺物が確認された。

表 2 平成13年度町内遺跡調査一覧

	遺跡名	場所	調査区分	調査期間	原因	成果							
8	久木野遺跡	大字浦之名	確認調査	H13.7.24	施設	降下小林軽石層上面でピット、下位から焼礫を確認した。							
		4921-3			建設								
9	朝羽田地区	大字飯田	試掘調査	H13.9.19	区画	遺構、遺物無し。							
		818外			整理								
10	小田元地区	大字浦之名	試掘調査	H13.9.26	農道	アカホヤ下位の牛のすねローム層やその下層、さらに降下小林							
		4907-19、			改良	軽石層下位層から焼礫が多数確認された。							
		4896-130、											
		4896-102											
11	小田元遺跡	大字浦之名	確認調査	H13.10.5	圃場	アカホヤ上面から弥生土器片数点が出土した。							
		4910-4			整備								
12	池ノ上遺跡	大字高浜	確認調査	H13.10.24	農道	遺構、遺物無し。							
		1555-2			改良								
13	吹上遺跡	大字高浜	確認調査	H13.10.1	農道	一部で縄文早期相当層から縄文土器片や焼礫が出土した。							
		914-1、		9、10.24	改良								
		944-1 外											
14	瀬ノ上地区	大字高浜	試掘調査	H13.10.25	農道	一部で縄文早期相当層から敲き石が出土した。							
		1651-2、			改良								
		1651-1外											
15	茶薗堀遺跡	大字高浜	確認調査	H13.10.2	農道	遺構、遺物無し。							
		856-1、883		4、25	改良								
		1255-1		H14.3.4		アカホヤ上面で青磁片出土。牛のすね下位層から焼礫出土。							
16	永迫第1遺	大字小山田	確認調査	H13.11.27	土砂	表土から土師器が数点出土したが、旧石器、縄文期に相当する							
	跡	3055、3050、			採取	ものは確認されなかった。							
		3054											

Ⅲ 八久保第2遺跡の調査

第1節 遺跡の概要

1. 調査に至る経緯

宮崎県では葉煙草の生産力向上のため反転客土事業を推進している。高岡町でも生産者が高岡町たばこ耕作振興会を通して反転客土を行っている。平成9年7月末に高岡町農林振興課から事業予定地内の埋蔵文化財の有無について照会があった。そのため、教育委員会では地権者や農林振興課と一緒に予定地の分布調査を行い、8月27日から8月29日まで4地区で確認調査(一部試掘)を実施した。その結果、1地区において遺物の出土が見られたことから、地権者や農林振興課と再度協議し、記録保存のための発掘調査を行うこととなった。11月7日に協定書を締結し、11月8日から12月19日まで本調査を行った。

2. 調查体制

調査体制は次のとおりである。

平成9年度(調査)

教 育 長 篠原和民

社会教育課長 小谷清男

課長補佐 梅元利隆

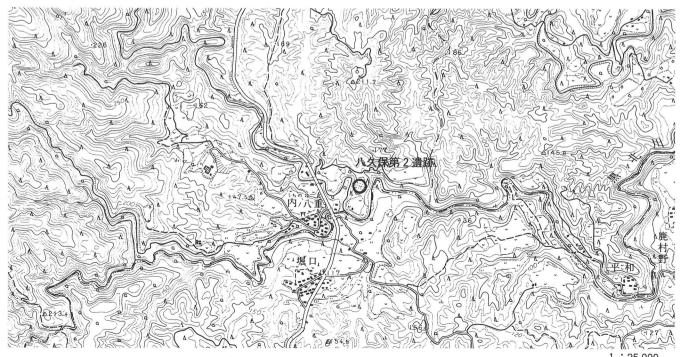
社会教育係長 梅元利隆

副 主 幹 春口洋子

主任主事 島田正浩

平成13年度(整理)

教 育 長 中山芳教


社会教育課長 赤池敏寛

副 主 幹 上地由紀子

文化財係長 島田正浩

主 事 廣田晶子

調査を実施するにあたり、地権者の方をはじめ関係機関の方々にご理解とご協力を頂いた。また、桑畑 光博(都城市)、藤木聡・松本茂(宮崎県埋蔵文化財センター)、馬籠亮道(鹿児島県埋蔵文化財センター) の各諸氏からご指導、助言を頂いた。記して感謝申し上げたい。

第2図 八久保第2遺跡周辺地形図

1:25,000

3. 遺跡の概要

(1)調査の場所と経過

調査地は、高岡町大字上倉永1255番地である。田野町との町境にある内ノ八重集落から県道を挟んで北東の尾根上に延びる丘陵の一角に位置する。その丘陵は適度に造成されており畑地として利用されている。その丘陵の先端は、町境となる黒北川が蛇行し深い谷を形成している。11月8日から11日にかけて重機で表土剥ぎを行い、牛のすねロームまで露呈させる。そこから人力による掘削に移行する。廃土はすべて耕作土以外の所に置き、耕作土と混ぜないようにした。まず、牛のすねローム層を掘削し遺物を取上後、その下の淡黄褐色粘性土層を掘削する。その層で土坑や集石遺構を確認する。全ての遺物や礫を取上げ、12月19日に全ての作業を終了する。調査に際しては、任意にグリットを10m四方で設定し、図面上左上から横列をアルファベットでA、B、C・・、縦列を数字で1、2、3・・、とした。

(2)遺跡概要

調査面積は843㎡で包含層を2層に分けて調査した。この遺跡の層位は、上から表土(第1層)、二次堆積のアカホヤ火山灰層(第2層)、アカホヤ火山灰層(第3層)、牛のすねローム層(第4層)、淡黄褐色粘性土層(第5層)となる。それ以下は事業の都合上確認することは出来なかった。また、調査区内のC2・D2グリットの北壁面付近とE3・E4グリットの東側は、アカホヤ火山灰層が畑地造成時に削平されており、表土下はすぐに牛のすねローム層が確認される。そのため、第4層から縄文後期と思われる土器片が2点混入していた。主となる包含層は第4・5層である。遺構は土坑が1基、集石遺構が6基検出され、すべて第5層で確認された。出土遺物は貝殻文系土器、押型文系土器、条痕文系土器、環状石斧、石匙などが出土した。また、第4層と第5層の遺物間で接合関係が認められたため、層位毎での詳細な分析はおこなわず一括して報告する。

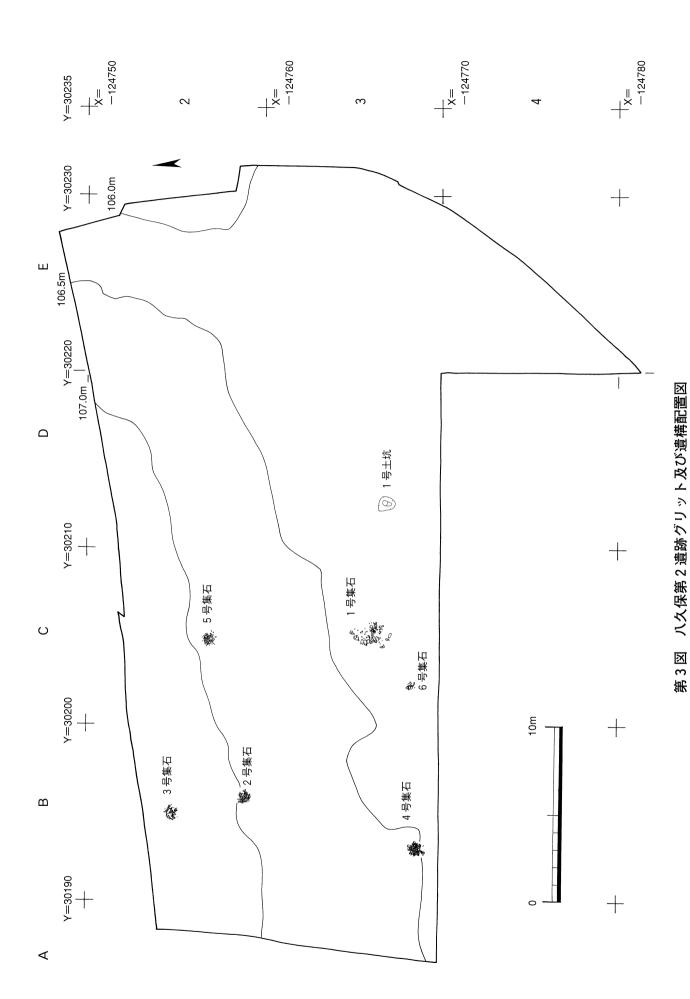
第2節 調查

1. 遺構

(1) 土坑

1号土坑 (第4図)

D3グリット 5 層上位で検出された。軸長0.9mの不定型なプランの土坑である。床面は北側に深く傾斜し、壁面は 45° \sim 60° の傾斜で立ち上がる。埋土は、色調が基本層序第 5 層よりも灰色気味で炭小片が多量に混入している。

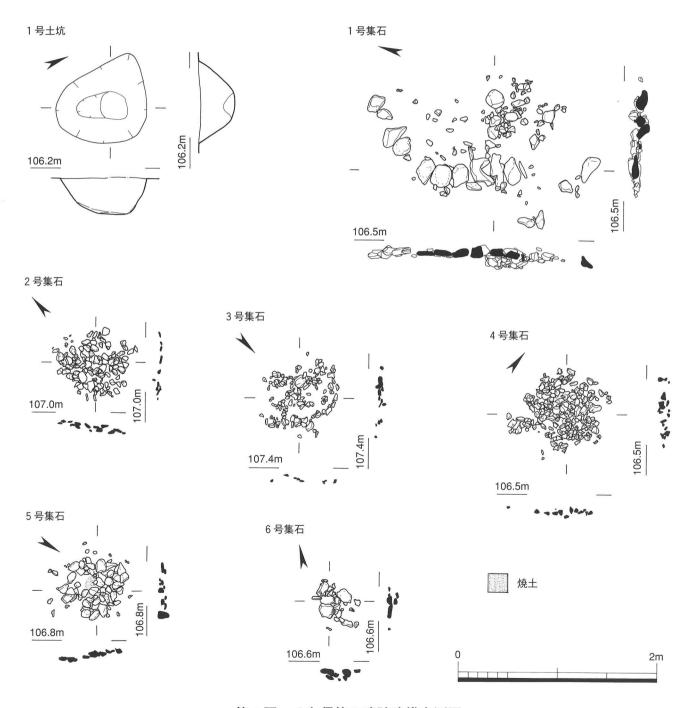

(2) 集石遺構

1 号集石 (第 4 図)

C3グリットの5層中位部で検出した。構成礫は118個でそのほとんどは砂岩である。礫集中部分は10~20cm大の礫と5cm前後の欠損した小礫から成る。中には底石風の形状の礫もあるが、原況を留めている状態ではない。また、炭化物の検出もない。その西側には20cm大の扁平礫が寝せた状態で環状気味に列ぶ。その扁平礫には敲打痕はなく、赤化している様ではない。また、この遺構周辺にピット等の検出はない。

2 号集石 (第 4 図)

B2グリットの5層内中位部で検出した。長軸0.7m、短軸0.6mの範囲に礫が集積するが礫同士はさほど重ならない。構成礫は111個で750g以下の礫から成る。底石、土坑はないが、埋土から炭化物が検出されている。


— 11 —

3号集石 (第4図)

B2グリットの5層内上位部で検出した。長軸0.7m、短軸0.6mの範囲に礫が集積する。構成礫は126個 (総重量8.851kg) である。完形礫は2個で少なく、ほとんど欠損している。礫の集積密度は低く、この遺構の中心が把握できない。また、土坑や底石は無い。

4号集石 (第4図)

B 3 グリットの 5 層内中位部で検出した。径0.9mの円形状に集積する。構成礫は536個で500g以上の礫はなく、50g以下の完形礫が多い。礫の重なりは多くて 3 重程度であるが、中央部が深くなるというものではない。土坑や底石は見られない。

第4図 八久保第2遺跡遺構実測図

表 3 八久保第 2 遺構出土構成礫属性表

		4層散石	了(礫群)	5 層散石	万(礫群)	1号	集石	2 号	集石	3号	集石	4 号	集石	5 号	集石	6 号	集石
	A	2,027	77.5%	3,847	42.9%	32	27.1%	14	12.6%	70	55.5%	381	71.1%	87	52.7%	7	21.2%
	В	326	12.4%	2,511	28.0%	26	22.0%	38	34.2%	33	26.2%	76	14.2%	21	12.7%	6	18.2%
	С	167	6.4%	1,692	18.8%	19	16.1%	40	36.1%	17	13.5%	63	11.8%	23	14.0%	8	24.2%
構成	D	43	1.6%	469	5.2%	8	6.8%	15	13.5%	5	4.0%	8	1.5%	16	9.7%	6	18.2%
礫の	Е	17	0.6%	198	2.2%	6	5.1%	2	1.8%		 	5	0.9%	5	3.0%	2	6.1%
数量	F	7	0.3%	91	1.0%	2	1.7%	1	0.9%			3	0.5%	2	1.2%		1
個数	G	11	0.4%	95	1.1%	3	2.6%	1	0.9%		1 1 1		1 1 1	8	4.9%		
	Н	8	0.3%	25	0.3%	2	1.7%		 	1	0.8%		 	2	1.2%	1	3.0%
	I	2	0.1%	22	0.2%	5	4.2%		1 				i 	1	0.6%	2	6.1%
	J	1	0.1%	5	0.1%	4	3.4%		- 		- -		 		 	1	3.0%
	K	8	0.3%	15	0.2%	11	9.3%		 		-		! ! !		l I		! ! !
	計	2,617	 	8,970] 	118	 	111	1 1 1	126	 	536	 	165	 	33	
	А	156	70.0%	332	33.6%	6	28.6%	4	40.0%		 	18	85.7%	3	21.4%		1 1 1
	В	23	10.3%	253	25.6%	3	14.3%	1	10.0%	2	100.0%	1	4.8%	2	14.3%	1	25.0%
	С	23	10.3%	233	23.6%		! ! !	3	30.0%		 	2	9.5%	4	28.6%	1	25.0%
完形	D	8	3.6%	64	6.5%		 	1	10.0%		 		 	1	7.1%	1	25.0%
礫	Е	4	1.8%	45	4.5%	1	4.7%		 		 		1 1 1	2	14.3%	1	25.0%
数量	F	1	0.4%	15	1.5%		1		E 1		 		 		 		
(個数	G	2	0.9%	26	2.6%		! ! !	1	10.0%		1		1	2	14.3%		
	Н	2	0.9%	9	0.9%		1 		 		 		 		 		! ! !
	Ι		1 	6	0.6%	1	4.7%		 		1 1 1		 		! ! !		I. I
	J			1	0.1%	3	14.3%		I I I		 		1 1 1 1 1 1 1 1 1 1		1		1
	K	4	1.8%	5	0.5%	7	33.4%		1 1 1		1				! !		- -
	計	223	 	989	 	21	1	10	1	2		21	 	14		4	

A…50g以下、 B…51~100、C…101~200、D…201~300、E…301~400、F…401~500、G…501~750、H…751~1,000、I…1,001~1,500、J…1,501~2,000、K…2,000以上

5号集石 (第4図)

C 2 グリットの 5 層内上位部で検出した。径0.6mの範囲に残存する。構成礫は165個で50g以下の小礫が多い。底石や土坑はないが、集積する礫の下から焼土がまとまって検出された。ただし、炭片は見られなかった。

6号集石 (第4図)

C3グリットの5層内上位部で検出した。径0.4mの範囲に残存する。構成礫は33個で200g前後の礫と1kgを越える底石と思われる扁平礫からなる。底石と思われる扁平礫の下に赤化した小礫が集積していることから、使用後の礫の上に新たに設営されたものかもしれない。

(3) 散石 (礫群)

第4層が2,617個の総重量171,249kg、第5層が8,970個の総重量966,602kgからなり、西側に比較的多く分布している。使用された礫は砂岩質のものが主体で、第4層223個(8.5%)と第5層989個(11%)の礫が完形礫であり、小規模な礫は欠損せずに多く残る。

2. 遺物

(1) 縄文土器

包含層出土遺物のほとんどは縄文早期と思われ、貝殻文系土器(Ⅰ群)、条痕文系土器(Ⅱ群)、押型文系土器(Ⅲ群)、その他(Ⅳ群)、無文土器(Ⅴ群)に分類される。器形や文様の特徴から、さらに分類した。

I 群 貝殼文系土器 (第 6 、7 、9 図 1 ~34、64)

1類(1~3)

口唇部に連続刻目、口縁部や胴部に貝殻復縁刺突文線を施すもの。また。口縁部に縦位の楔型突帯を貼り付ける。1は器壁が薄く、口縁部外面に横位の貝殻復縁刺突文線を3条廻らせ、その下に縦位の貝殻復縁刺突文線を施す。3は角筒形の胴部片と思われる。

2類(64)

押し引き文を主とするもの。64は貝殻腹縁による押し引き文を施す。

3類(4~7)

口縁部外面に、貝殻条痕後、斜位や縦位に貝殻腹縁やヘラ状工具を用いて刺突文を施すもの。 $4\sim6$ は 貝殻腹縁刺突文で、7 は縦位のヘラ状工具による刺突文である。

4類(8~13)

貝殻刺突文を器面全体に施文するもの。8と9は横位に貝殻腹縁の肋が爪形に連続表現されるもので口縁部がやや肥厚する。10は器面に対して鋭角な角度からランダムに刺突される。11~13は貝殻腹縁により列点状に表現されるものである。11は口縁部が内湾し外面横位に施文される。13は口縁部が小さく外反する。

5類(14~16)

短沈線文を羽状に施すもの。14は底部片で短沈線文の下に貝殼腹縁刺突文が施される。15は波状口縁を呈し、口縁端部にまで短沈線を施す。16は短沈線文を施し、その下に縦位の貝殼腹縁による押し引き文を連続で施す。

6類(17~33)

クシガキ文(櫛描文)が施文されるもの。器形は基本的に口縁部が肥厚し内湾する。17~25はクシガキ

文が羽状に施される。26~28は斜位のクシガキ文をランダムに施す。29は斜位のクシガキ文を挟むように 条線状のクシガキ文を施す。30・31は流水状にクシガキ文を施文する。

7類(34)

口縁部が外反し、外面に貝殻条痕をせもんするもの。34は口縁部が肥厚気味になり貝殻条痕を横方向に 荒く施文する。

II 群 条痕文系土器 (第7、8 図 35~37)

1類(35)

外面に縦方向の条痕文を施し、さらに口縁部へ横位や斜位の条痕文を重ねて施す。35は、口縁端部に連続刺突文を施す。推定口径は12.8cmである。

2類(36·37)

不規則な条痕文を荒く施文するもの。36・37は口縁端部に連続刺突文を施す。

Ⅲ群 押型文系土器 (第8、9 図 45~63)

1類(45~49)

山形押型文を施文するもの。45と46は、口縁部が外反するもので、外面は横施文で内面に横施文後柵状文(原体条痕)を施す。45は3単位(原体径5.6mm)の山形文で、原体条痕と言われる部分は4単位(原体径5.1mm)の回転押捺による柵状文である。推定口径は34.0cmで、口縁部が小さく外反する。47は外面に2cm幅の無紋帯を設けその下に横施文する。48は外面縦施文で内面横施文と柵状文(原体条痕)を施す。

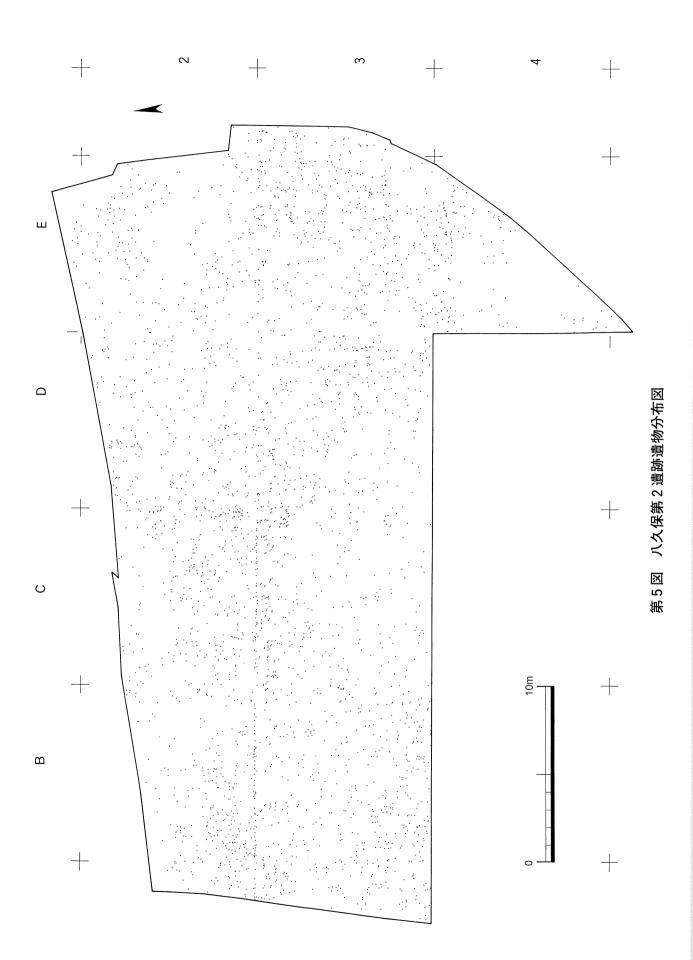
2類(50~59)

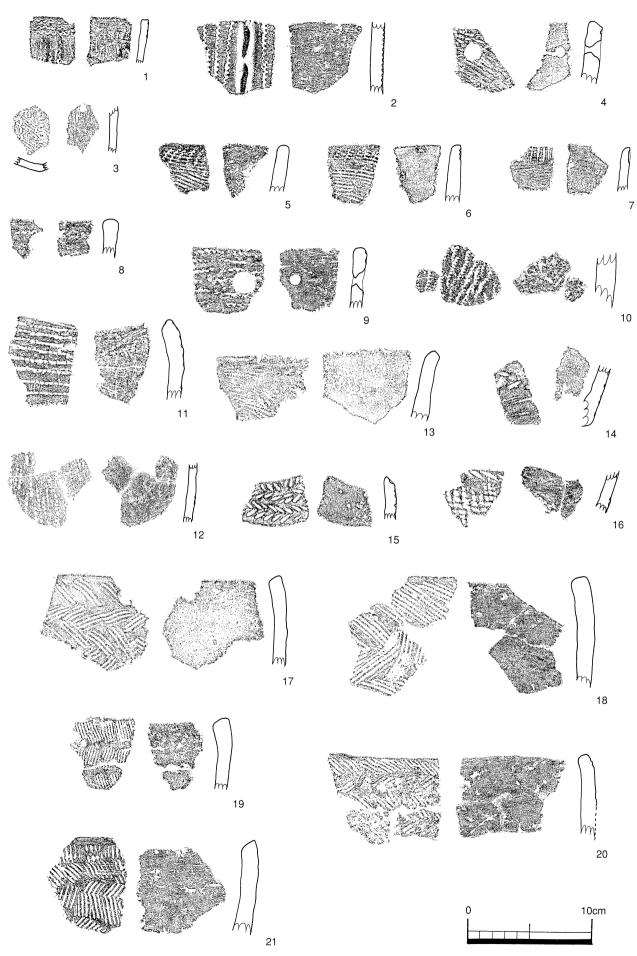
楕円押型文を施文するもの。50と52は口縁部が外反するもので、外面は横施文で内面に横施文後柵状文 (原体条痕文)を施す。53と54は内面に横施文、55と56は内面が無文である。57は口縁部が外反し、2単位の楕円文を外面は縦施文で内面は横施文する。58は外面斜位に施し内面横施文と柵状文(原体条痕文)を施す。59は外面斜方向に大きな楕円文を施し、内面に幅広の柵状文(原体条痕文)を施す。

3類(60)

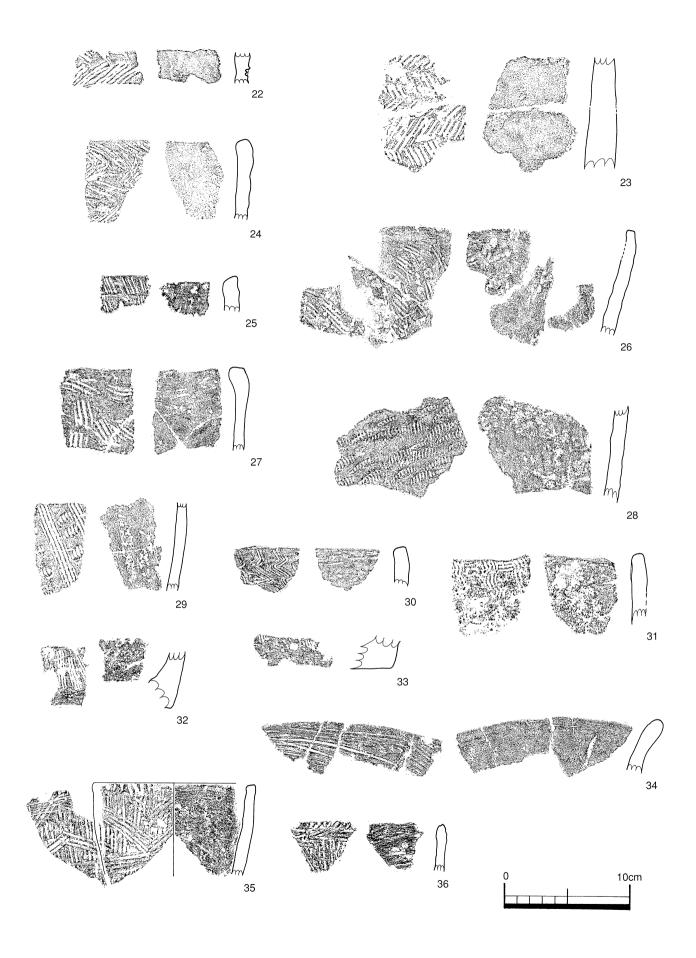
縄文を施文するもの。60は縄文を原体とし回転施文したもので、平栫式のものに似る。

4類(61、62)

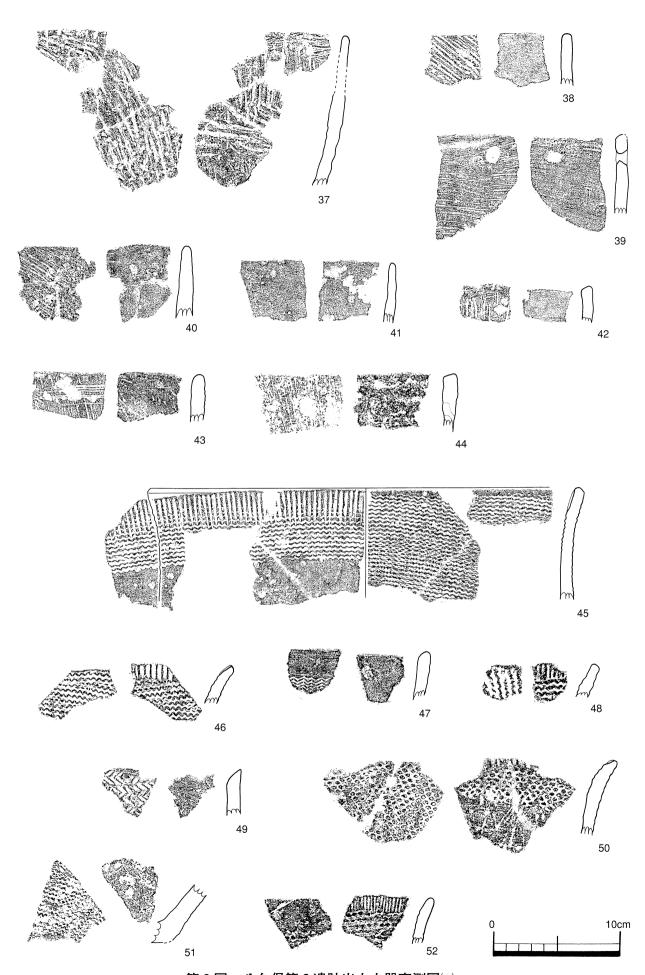

撚糸文を施文するもの。61は縦位と斜位に交差させる。62は口縁部が外反し、外面縦方向で内面横方向 に施す。

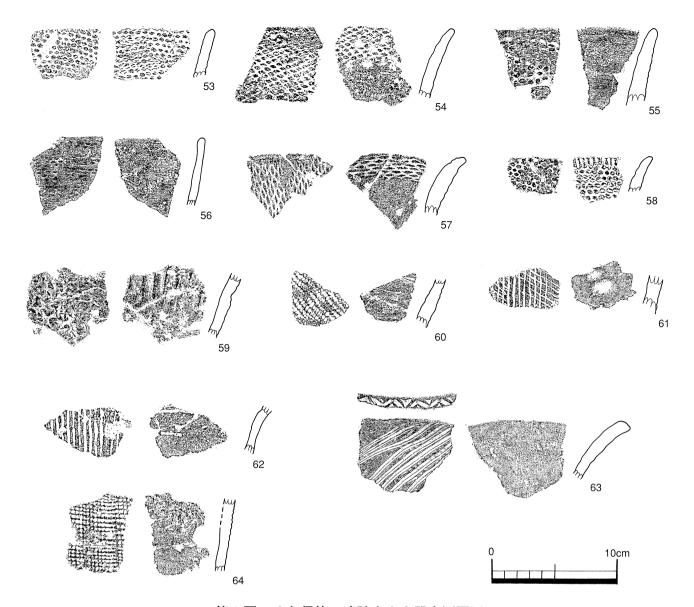

5類(63)

手向山式の範疇にはいるものと思われる。63は外面に2本単位の沈線を斜位に施し、口唇部に山形押型 文を施す。


Ⅳ群その他、Ⅴ群無文土器 (第8、9図 38~44)

38~40は斜位の条痕を施すもので、39・40は板状工具によるものと思われる。41は無文土器である。 42・43は板状工具のようなもので横位と縦位に施文する。44は縦位の沈線文を連続施文する。




第6図 八久保第2遺跡出土土器実測図(1)

第7図 八久保第2遺跡出土土器実測図(2)

第8図 八久保第2遺跡出土土器実測図(3)

第9回 八久保第2遺跡出土土器実測図(4)

(2) 石器

石器は2,013点出土した。その内訳は、石鏃(未製品含む)56点、尖頭器 7 点、石匙 3 、スクレイパー2 点、使用痕がある剥片 8 点、磨石12点、敲石31点、石斧 3 点、異形部分磨製石器 1 点で、台石は形状だけで見ると数点あるが、確実にそれと判断できるものは無い。それ以外は剥片が約1,890点で、その中の約 9 割は黒耀石やチャートの細片で占められるが、ブロックとしては認められなかった。

石 鏃 (65~83)

石鏃は三角形を呈するもの、基部をやや凹ませるもの、長い脚を有するもの(鍬形鏃を含む)などがある。 65、66は剥離面を残し、側縁を荒く二次加工を施す。

尖頭器 (84~88)

84~86、88は尖頭状石器といわれているものに類似する。87は簡単な基部調整をおこない両側縁は荒い剥離である。88は両側縁に押圧剥離を施す。

異形部分磨製石器 (89)

89は両側縁の脚部の上に少し抉りを有するもので、器形は石鏃に似ている。先端付近を磨いている。

表 4 出土土器観察表

貴物	挿	写真	出土	文様・	調整			
番号	図	番号	層位	外 面	内 面	色 調	胎 土	備考
1	6	4	5	②横方向の貝殻腹縁刺突文 縦方向の貝殻腹縁刺突文	②ナデ	外淡黄色 (2.5Y, 8/4)内橙色 (7.5YR, 7/6)	・微細な白色粒・黒色粒・透明粒少 ・1 mmの褐色粒少	
2	6		5	③月殼条痕後、縦方向の月殼腹縁刺突文 縦方向の貼付突帯	③横方向のナデ		・微細な黒色粒・透明白色粒 ・1 mmの透明粒	
3	6		4	③斜方向の貝殻条痕後 縦方向の貝殻腹縁刺突文	③ケズリ風のナデ	⑨にぶい黄橙色(10YR, 7/4) ৷ 図にぶい黄橙色(10YR, 7/4)	・微細な白色粒・黒色粒・透明粒 ・微細~1 mm大の赤褐色粒少	角筒
4	6		5	②斜方向の貝殻条痕後 貝殻腹縁刺突文	②ナデ	∞浅黄橙色 (10YR, 8/3)∞橙色 (7.5YR, 7/6)	・微細な黒色粒・白色粒・透明粒 ・1~2mmの白色粒・半透明粒・ 褐色粒	穿孔
5	6		5	②貝殼腹縁連続刺突文 貝殼条痕	②ナデ	例にぶい橙色(5YR, 6/3)例にぶい橙色(7.5YR, 6/4)	・微細な白色粒・透明粒 ・1~3 mmの半透明粒・灰色粒	
6	6		5	②横方向の貝殻条痕後 貝殻腹縁刺突文	②ナデ		 ・微細な白色粒・黒色粒・透明粒 ・1~2mmの白色粒 ・微細な黒色粒・透明粒 	
7	6	4	5	②横方向の貝殻条痕後 ヘラ状工具による連続刺突文 ②横方向の貝殻腹縁刺突文	②ナデ ②横方向のナデ		・1 mmの黒色粒・半透明粒 ・微細な白色粒・黒色粒・透明粒	
9	6	4	5	②横方向の貝殻腹縁刺突文 ②横方向の貝殻腹縁刺突文	②横方向のナデ	例にぶい黄色 (2.5Y, 6/3) 例にぶい橙色 (7.5YR, 6/4)	・微細な白色粒・黒色粒・透明粒	穿孔
10	6	1	5	③貝殻腹縁による縦・斜方	③ナデ	例にぶい橙色 (7.5YR, 6/4) 例にぶい黄橙色 (10YR, 7/3)	・微細な白色粒・黒色粒・透明粒	
11	6	4	5	向の連続刺突文 ②横方向の貝殼腹縁刺突文	②ナデ	例にぶい黄橙色 (10YR, 6/3) 砂浅黄色 (2.5Y, 7/3)	・微細な白色粒・黒色粒・透明粒	
12	6	1	4	③縦方向の貝殻腹縁刺突文	③ナデ	例にぶい黄色 (2.5Y, 6/3) 例浅黄色 (2.5Y, 7/3)	・微細な白色粒・黒色粒・透明粒	
13	6		5	②貝殼腹縁刺突文	②横方向のナデ	例にぶい黄色 (2.5Y, 6/3) 例 淡黄色 (2.5Y, 8/4)	・微細な黒色粒・白色粒・透明粒	
14	6		4	③羽状の沈線文	③サデ	例淡黄色 (2.5Y, 8/4) 例にぶい黄橙色 (10YR, 7/4)	・1~2mmの黒色粒 ・微細な白色粒・透明粒	
				貝殼腹縁刺突文		肉灰黄色 (2.5Y, 7/2)	・1~3 mmの白色粒・透明粒・雲母(金色) あり・微細な白色粒・透明粒	
15	6	4	5	②横方向のナデ 羽状の沈線文 	②横方向のナデ	®にぶい黄橙色 (10YR, 7/4)肉にぶい黄橙色 (10YR, 7/4)	・ 1 ~ 2 mmの白色粒・半透明粒 ・雲母(金色)あり	
16	6		5	③短沈線文 貝殻腹縁による押し引き文	③ナデ	 かにぶい橙色(7.5YR, 6/4) 肉にぶい橙色(7.5YR, 6/4)	・1~2mmの褐色粒・灰色粒 ・雲母(金色)あり	
17	6		5	②クシガキ文	②ナデ	砂浅黄色(2.5Y 7/3)肉にぶい黄橙色(10YR 7/3)	・微細な黒色粒・白色粒・透明粒 ・ 2 ~ 5 mm大の白色粒少	穿孔
18	6		5	②クシガキ文	②横方向のナデ	砂淡黄色 (2.5Y 8/4) 	 ・微細な黒色粒・白色粒・透明粒・1~2mmの白色粒・半透明粒・ 褐色粒 ・3mmの褐色粒・白色粒 	
19	6		5	②クシガキ文	②ナデ	 ・ のにぶい黄橙色 (10YR 7/4) ・ しゅにぶい黄橙色 (10YR 7/4)	・微細な黒色粒・白色粒・透明粒 ・1~2 mmの透明粒・半透明粒・ 褐色粒 ・3 mm大の乳白色粒少	
20	6		5	②クシガキ文	②横・斜方向のナデ	⑨にぶい黄橙色(10YR 6/3) ⑲にぶい黄橙色(10YR 7/3)	・微細な白色粒・透明粒・黒色粒・2 mm大の白色粒少・雲母(金色)あり	
21	6	4	5	②クシガキ文	②横・斜方向のナデ	例にぶい黄色(2.5Y 6/3) 例にぶい黄橙色(10YR 6/3)	・微細な白色粒・透明粒・黒色粒 ・1.5 ~2.5 mm大の白色粒少	
22	7		5	③クシガキ文	③不定方向のナデ		・微細な白色粒・黒色粒・透明粒 ・ 1 mmの半透明粒	
23	7		5	③クシガキ文	③ナデ	®にぶい橙色(5YR 6/4) 例にぶい赤褐色(5YR 5/3)	・微細な白色粒・黒色粒・透明粒 ・1~3mmの白色粒・透明粒・ 半透明粒 ・雲母(金色)あり	
24	7		5	②クシガキ文	②ナデ	郵橙色 (7.5YR 6/6)函期褐色 (7.5YR 5/6)	・微細な白色粒・透明粒 ・0.5 ~1.5 mm大の黒色粒少 ・1.5 ~ 3 mm大の灰色粒少	
25	7		5	②クシガキ文	②ナデ	例にぶい橙色(7.5YR 6/4) 例にぶい橙色(7.5YR 6/4)	・微細な白色粒・黒色粒・透明粒	
26	7		4	②クシガキ文	②ナデ	例にぶい黄橙色(10YR 7/3) 例にぶい黄橙色(10YR 7/3)	・微細な白色粒・黒色粒・透明粒	
27	7		5	②クシガキ文	②横方向のナデ	例にぶい黄橙色(10YR 7/4) 例にぶい黄橙色(10YR 7/4)	・微細な白色粒・黒色粒・透明粒 ・1~2mmの半透明粒・灰色粒	
28	7		5	③クシガキ文	③不定方向のナデ	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	・微細な黒色粒・透明粒 ・雲母(金色)あり ・1~2.5 mm大の赤褐色粒 ・微細~2 mm大の白色粒	
29	7	4	5	③クシガキ文	③ナデ	砂にぶい黄橙色 (10YR 6/4)肉にぶい黄橙色 (10YR 6/4)	- 微細な白色粒・透明粒 ・1~2 mmの白色粒・半透明粒・ 褐色粒 ・雲母(金色) あり	
30	7		4	②クシガキ文	②横方向のナデ	®にぶい橙色 (7.5YR 6/4)®にぶい橙色 (5YR 7/4)	・ 芸母 (金色) あり ・ 微細な白色粒・黒色粒・透明粒 ・ 1 mm大の透明粒・褐色粒 ・ 2 ~ 3 mmの灰白色粒	
31	7		5	②クシガキ文	②横・斜方向のナデ	例にぶい黄橙色(10YR 7/4) 肉にぶい黄橙色(10YR 7/4)	・微細な白色粒・透明粒・赤褐色粒 ・2~3 mm大の白色粒・灰色粒・ 赤褐色粒少 ・長さ9 mm大の白色粒少	

「文様・調整」(①…口唇部、②…口縁部、③…胴部、④…底部)

遺物	挿	写真	出土	文様・	調整			
番号	図	番号	層位	外 面	内 面	色調	胎土	備考
32	7		5	④クシガキ文 横方向のナデ	④不定方向のナデ	動にぶい橙色 (7.5YR 6/4) 肉橙色 (7.5YR 6/6)	・微細な黒色粒・赤褐色粒 ・微細~2 mm大の白色粒・透明粒	
33	7		5	④クシガキ文 横方向のナデ	④ナデ	例にぶい橙色(7.5YR 7/4)	・微細な透明粒・黒色粒	
34	7	4	5	②横・斜方向の貝殻条痕文	②ナデ	<u> </u> <u> </u>	・1.5 ~2.5 mm大の白色粒少 ・微細な黒色粒・赤褐色粒・透明粒	
35	7	4	4	②ヘラ状工具による連続刺突文 横、縦、斜方向の貝殻条痕文	②横方向のナデ	⑨橙色(7.5YR 7/6)	・微細な黒色粒・半透明粒	
36	7		4	(機、縦、斜方向の貝殻奈張又 ②斜方向の連続刺突文 横、縦、斜方向の貝殻条痕文	②横・斜方向の貝殻条痕	砂淡黄色 (2.5Y 8/3) 野にぶい黄橙色 (10YR 6/4) 肉にぶい黄橙色 (10YR 6/4)	・1 mmの黒色粒・半透明粒 ・微細な白色粒・黒色粒・透明粒	
37	8		4	②連続刺突文 ランダムな貝殻条痕	②ランダムな貝殻条痕	®橙色 (7.5YR 7/6) 肉にぶい黄橙色 (10YR 6/4)	・微細〜1.5 mm大の白色粒・黒色 粒・透明粒	
38	8		4	②斜方向の貝殻条痕文	②横・斜方向のナデ	の浅黄橙色 (10YR 8/3) の浅黄橙色 (10YR 8/3)	・微細な黒色粒・白色粒・透明粒 ・1mmの黒色粒・透明粒	
39	8		4	②横方向の浅い条痕	②横方向のナデ	受役員位已 (101K 8/3) 野にぶい赤褐色 (5YR 5/3) 肉にぶい赤褐色 (5YR 5/3)	・微細な黒色粒・白色粒・透明粒	穿孔
40	8		5	②浅い条痕	②横方向のナデ	受送責任 (2.5Y 7/3)受送責任 (2.5Y 7/4)	・微細な白色粒・黒色粒・透明粒	
41	8		5	②横、斜方向のナデ	②横・斜方向のナデ	例にぶい黄橙色 (10YR 6/4) 例にぶい黄橙色 (10YR 6/4)	 ・微細な黒色粒 ・微細~1 mm大の透明粒 ・微細~1.5 mm大の白色粒 	
42	8		5	②横方向のナデ	②横方向のナデ	®橙色 (5YR 6/6)	・微細な白色粒・黒色粒・透明粒	
43	8	4	5	<u>クシガキ文?</u> ②クシガキ文? (縦方向施文後横方向)	②ナデ	砂橙色(5YR 6/6) 砂にぶい黄橙色(10YR 7/4) のにぶい黄橙色(10YR 7/4)	・1 mmの半透明粒・白色粒 ・微細な白色粒・黒色粒・透明粒	
44	8	4	5	②沈線文	②ナデ 一部指頭痕	母にぶい黄褐色 (10YR 5/3)母浅黄色 (2.5Y 7/3)母浅黄色 (2.5Y 7/3)	・微細な白色粒・黒色粒・透明粒・15・・2・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
45	8		5	②横方向の山形押型文	②柵状文(原体条痕) 横方向の山形押型文 ③ナデ	図(後頁色 (2.5Y //3) 例にぶい黄橙色 (10YR 7/4) 例にぶい黄橙色 (10YR 7/3)	・1.5 ~ 3 mm大の灰色粒少 ・微細な白色粒・黒色粒・透明粒	
46	8		5	①ナデ ②横方向の山形押型文	②柵状文(原体条痕)	®淡黄色(2.5Y 8/4)	・微細な白色粒・黒色粒・透明粒	
47	8		5	②横方向のナデ	横方向の山形押型文 ②横方向のナデ	・ 改黄色 (2.5Y 8/4)・ 改黄色 (2.5Y 7/3)	・1 mmの透明粒・灰色粒 ・微細な白色粒・黒色粒・透明粒	
48	8		5	横位の山形押型文 ②縦方向の山形押型文	②柵状文(原体条痕)	砂浅黄色 (2.5Y 7/4)砂にぶい橙色 (7.5YR 7/4)	・ 1 ∼2.5 mmの黒色光沢粒 ・微細な白色粒・黒色粒・透明粒	
49	8		5	②縦方向の山形押型文	横方向の山形押型文 ②横方向のナデ	- 個浅黄橙色 (10YR 8/4) - 例にぶい黄橙色 (10YR 7/4) - 例にぶい黄橙色 (10YR 7/4)	・1 mmの灰色粒・白色粒・黒色粒・微細な白色粒・黒色粒・1~2 mmの灰白色粒・黒色粒	
50	8		5	①横方向のナデ ②楕円押型文	②柵状文(原体条痕) 楕円押型文 横方向のナデ	例にぶい黄橙色(10YR 7/4) 肉にぶい黄橙色(10YR 7/4)	・3~4mmの白色粒・灰白色粒少 ・微細な白色粒・黒色粒・透明粒	
51	8		5	④横方向の山形押型文 ナデ	④ナデ	野淡黄色 (2.5Y 8/4)炒淡黄色 (2.5Y 8/4)	・微細な白色粒・黒色粒・透明粒 ・2mmの細長い黒色光沢粒	
52	8		4	②横方向のナデ 横方向の楕円押型文	②柵状文(原体条痕) 横方向の楕円押型文	砂浅黄色 (2.5Y 7/4)砂淡黄色 (2.5Y 8/3)	- 微細な白色粒 ・微細~1.5 mm大の黒色光沢粒 ・微細~1. mm大の透明粒	
53	9		5	①ナデ ②斜方向、楕円押型文	②横方向楕円押型文	郵灰黄褐色(10YR 5/2) 母灰黄褐色(10YR 5/2)	・微細な白色粒・黒色粒・透明粒	
54	9		4	①ナデ ②楕円押型文	②楕円押型文	例淡黄色 (2.5Y 8/4) 例淡黄色 (2.5Y 8/4)	・微細な黒色粒・白色粒・透明粒 ・1 mmの透明粒・白色粒・灰色粒	
55	9		5	②横方向の楕円押型文	②横方向のナデ	例にぶい黄橙色 (10YR 7/4) 例にぶい黄橙色 (10YR 7/3)	・微細な白色粒・透明粒・黒色粒	
56	9		5	②横方向の楕円押型文	②横方向のナデ 一部指頭痕あり	例にぶい黄橙色 (101R 7/3) 例にぶい黄橙色 (10YR 7/3) 例にぶい黄橙色 (10YR 7/3)	・2~3mmの灰色粒少 ・微細な白色粒・黒色粒・透明粒	
57	9		5	①横方向のナデ ②縦方向の楕円押型文	②横方向の楕円押型文 横方向のナデ	例浅黄橙色(10YR 8/4)	・微細な黒色粒・透明粒・褐色粒	
58	9		5	② 斜方向 楕円 である	便万円のケララ ②柵状文(原体条痕) 横方向楕円	_改 浅黄橙色(10YR 8/4) 切にぶい橙色(5YR 6/4) 肉にぶい橙色(5YR 6/4)	・ 1 ~1.5 mm大の灰色粒少 ・微細な黒色粒	
59	9		5	③斜方向の楕円押型文	個万円楕円 ③柵状文(原体条痕) ナデ	例にあい位色 (5YR 6/4) 卵 橙色 (5YR 7/6) 肉 橙色 (5YR 7/6)	・2 mmの灰色粒・褐色粒 ・微細な白色粒・黒色粒・透明粒 ・1~2 mmの褐色粒・半透明粒・	
60	9		5	③縄文	③ナデ	例にぶい黄橙色(10YR 7/3) 例にぶい黄橙色(10YR 7/3)	黒色粒・灰色粒 ・微細な黒色粒・白色粒・透明粒 ・1~2 mm大の白色粒・半透明	
61	9		5	③撚糸文	③不定方向のナデ	動にぶい黄橙色 (10YR 6/4)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	粒・黒色粒 ・微細な白色粒・黒色粒・透明粒・	
62	9		4	②縦方向撚糸文	②横方向の撚糸文	肉にぶい黄橙色 (10YR 6/3)肉にぶい橙色 (7.5YR 6/4)肉にぶい巻条 (10YB 7/2)	半透明粒・微細な白色粒・黒色粒	
63	9	4	5	①山形押型文 ②斜方向沈線文	②ナデ	・ 関にぶい黄橙色 (10YR 7/3)・ のにぶい黄橙色 (10YR 6/4)・ のにぶい黄橙色 (10YR 6/4)	・1~2mm大の乳白色粒・微細な白色粒・黒色粒・透明粒・微細~1mm大の金色粒	
64	9		5	③貝殻腹縁押し引き文	③剥離 ナデ	例にぶい黄橙色(10YR 7/4) 肉にぶい黄橙色(10YR 7/3)	・微細〜1.5 mm大の半透明粒 ・微細〜1.5 mm大の白色粒・黒色 粒 ・微細〜2 mm大の透明粒	

「文様・調整」(①…口唇部、②…口縁部、③…胴部、④…底部)

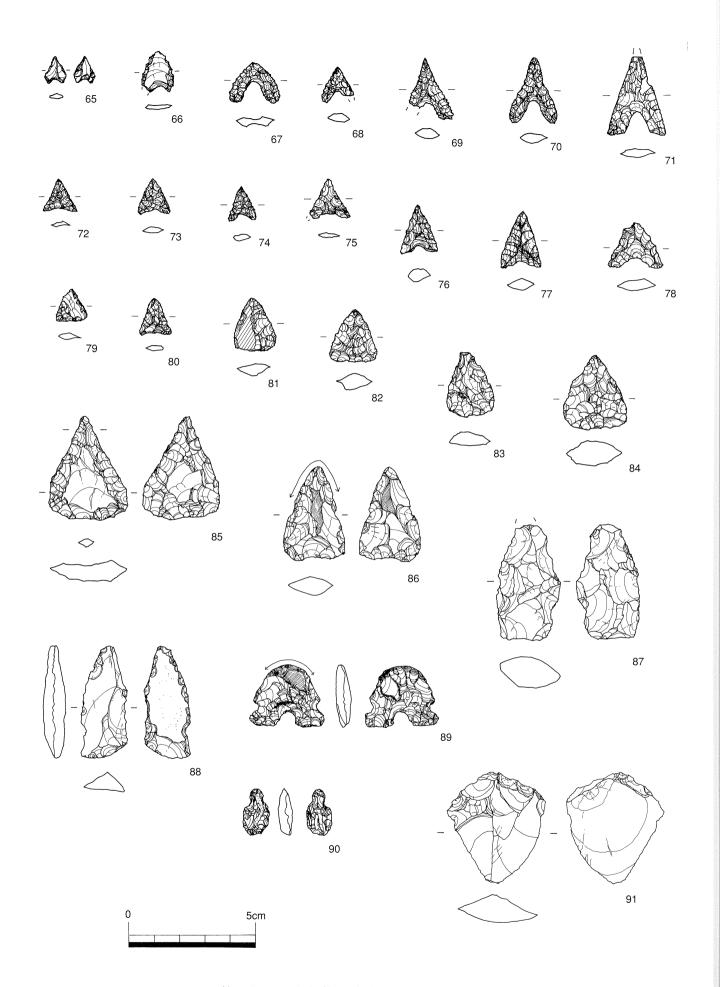
石 匙 (90)

小型ではあるが、つまみを持ち両面刃部調整がみられる。

石 斧 (92~94)

92は基端に調整をおこない、両面両側縁に粗雑な剥離がみられる。刃部は両面を磨いている。93は基部中央の両側縁に抉りを有する。表面は一部磨かれ裏面は剥離面をそのまま残し未調整である。94は環状石 答で両面磨かれているが穿孔部分はそれがみられない。

磨石・敲き石 (95~100)


96は両面に深い凹みがある。97はチャートの原石であり敲石とは厳密には区別すべきものと思われるがとりあえずここに入れた。100は磨石で尾鈴山酸性岩類を使用している。

その他 (91)

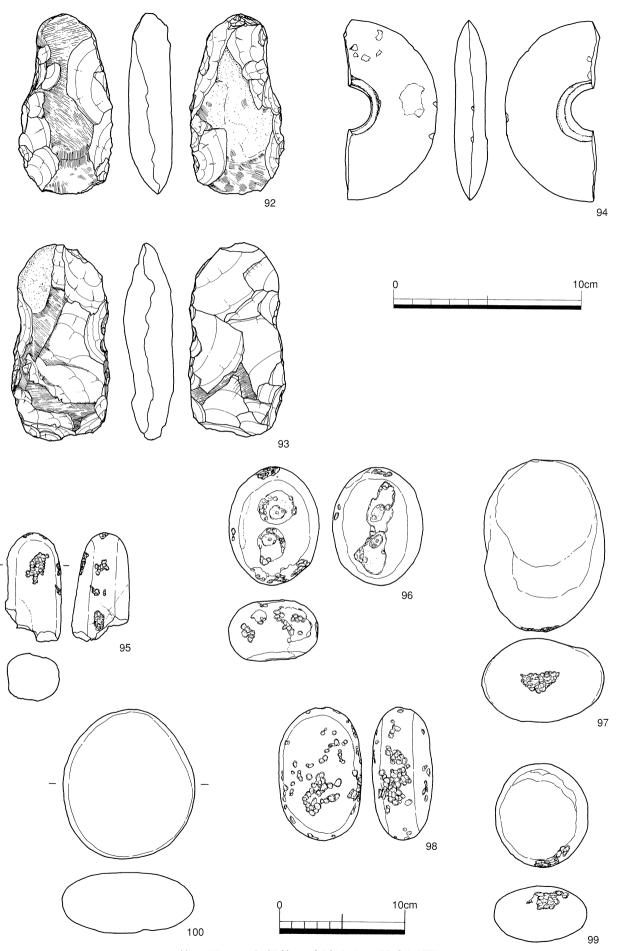
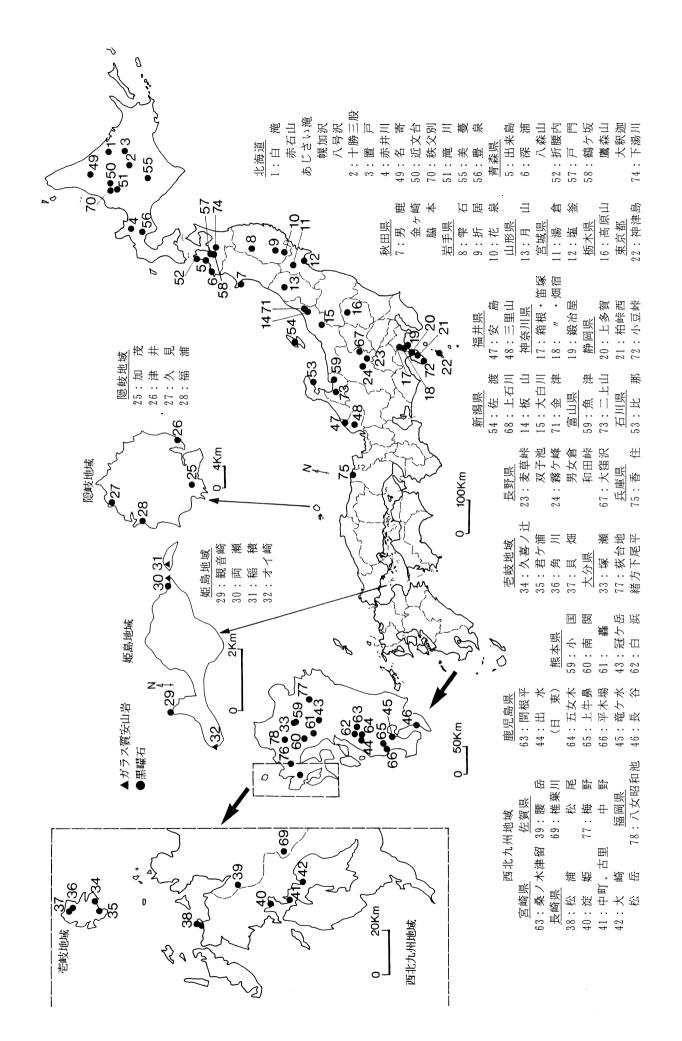

91は頭部調整を施した剥片で、この他にも数点出土している。

表 5 出土石器観察表

хэ д	1 TT 1 TI TI #/										
No.	挿図	図版	出土層位	器種	最大長(cm)	最大幅(cm)	最大厚(cm)	重量(g)	石 材	備	考
65	10		4	石鏃	1.05	0.85	0.18	0.1	黒耀石		
66	10		5	石鏃	1.6	1.28	1.6	0.5	チャート		
67	10		4	石鏃	1.65	2.0	0.4	0.8	チャート		
68	10		4	石鏃	1.4	1.3	0.36	0.3	黒耀石		
69	10		5	石鏃	2.45	1.7	2.45	1.1	チャート		
70	10		4	石鏃	2.6	1.88	0.35	1.1	チャート		
71	10		4	石鏃	3.1	2.3	0.3	1.7	頁岩		
72	10		4	石鏃	1.3	1.35	0.2	0.2	チャート		
73	10		5	石鏃	1.4	1.25	0.2	0.3	黒耀石		
74	10	Mary.	4	石鏃	1.4	1.1	0.25	0.2	チャート		
75	10		5	石鏃	1.58	1.58	0.2	0.4	チャート		
76	10		4	石鏃	1.95	1.45	0.5	0.9	チャート		
77	10		5	石鏃	2.2	1.6	0.45	0.9	黒耀石		
78	10		4	石鏃	1.8	2.15	0.5	1.2	チャート		
79	10		4	石鏃	1.3	1.25	0.25	0.3	黒耀石		
80	10		5	石鏃	1.45	1.3	0.2	0.3	黒耀石		
81	10		5	石鏃	2.1	1.65	0.45	1.9	チャート		
82	10		5	石鏃	2.1	1.85	0.6	2.0	チャート		
83	10		4	石鏃	2.6	1.9	0.55	2.2	チャート		
84	10		4	尖頭器	2.95	2.5	1.0	5.8	チャート		
85	10		4	尖頭器	4.1	3.15	0.85	9.0	流紋岩		
86	10		4	尖頭器	3.7	2.45	0.75	6.5	頁岩		
87	10		5	尖頭器	4.6	2.5	1.2	15.6	チャート		
88	10	4	4	尖頭器	4.45	1.88	0.8	5.8	頁岩		
89	10	4	5	異形部分 磨製石器	2.5	2.9	0.55	3.5	黒耀石		
90	10	4	4	石匙	1.82	1.05	0.55	0.9	黒耀石		
91	10		4	剥片	4.4	3.9	1.05	15.8			
92	11	4	5	局部磨製 石斧	9.52	4.95	2.3	134	ホルンフェル	ス	
93	11	4	5	局部磨製石斧	10.3	5.1	2.65	160	ホルンフェル	ス	
94	11	4	4	環状石斧	9.45		1.6	92	砂岩		
95	11		5	敲石	8.75	4.5	3.8	198	砂岩		
96	11		4	敲石	9.45	7.25	4.85	436	砂岩		
97	11		4	敲石	13.75	9.7	6.8	1145	チャート		
98	11		5	敲石	10.7	6.65	4.8	482	砂岩		
99	11		4	敲石	8.35	7.4	4.45	352	砂岩		
100	11		5	磨石	12.0	10.5	4.9	910	尾鈴山酸性岩		

第10図 八久保第2遺跡出土石器実測図(1)

第11図 八久保第2遺跡出土石器実測図(2)


第3節 分析

1. 八久保第2遺跡出土の黒耀石製遺物の原材産地分析

藁科 哲男 (京都大学原子炉実験所)

はじめに

石器石材の産地を自然科学的な手法を用いて、客観的に、かつ定量的に推定し、古代の交流、交易およ び文化圏、交易圏を探ると言う目的で、蛍光X線分析法によりサヌカイトおよび黒耀石遺物の石材産地推 定を行なっている^{1,2,3}。石材移動を証明するには必要条件と十分条件を満たす必要がある。地質時代に 自然の力で移動した岩石の出発露頭を元素分析で求めるとき、移動原石と露頭原石の組成が一致すれば必 要条件を満たし、その露頭からの流れたルートを地形学などで証明できれば、他の露頭から原石が流れて 来ないことが証明されて、十分条件を満たし、ただ一カ所の一致する露頭産地の調査のみで移動原石の産 地が特定できる。遺物の産地分析では『石器とある産地の原石の成分が一致したからと言って、そこの産 地のものと言い切れないことは、他の産地にも一致する可能性が推測されるからで、しかし一致しなかっ た場合そこの産地のものでないと言い切れる。』が大原則である。考古学では、人工品の様式が一致する と言う結果が非常に重要な意味があり、見える様式としての形態、文様、見えない様式として土器、青銅 器、ガラスなどの人手が加わった調合素材があり一致すると言うことは古代人が意識して一致させた可能 性があり、一致すると言うことは、古代人の思考が一致すると考えてもよく、相互関係を調査する重要な 意味をもつ結果である。石器の様式による分類ではなく、自然の法則で決定した石材の元素組成を指標に した分類では、例えば石材産地が遺跡から近い、移動キャンプ地のルート上に位置する、産地地方との交 流を示す土器が出土しているなどを十分条件の代用にすると産地分析は中途半端な結果となり、遠距離伝 播した石材を近くの産地と誤判定する可能性がある。人が移動させた石器の元素組成とA産地原石の組成 が一致し、必要条件を満足しても、原材産地と出土遺跡の間に地質的関連性がないため、十分条件の移動 ルートを自然の法則に従って地形学で証明できず、その石器原材がA産地の原石と決定することができな い。従って、石器原材と産地原石が一致したことが、直ちに考古学の資料とならない、確かにA産地との 交流で伝播した可能性は否定できなくなったが、B、C、Dの産地でないとの証拠がないために、A産地 だと言い切れない。B産地と一致しなかった場合、結果は考古学の資料として非常に有用である。それは 石器に関してはB産地と交流がなかったと言い切れる。ここで、十分条件として、可能なかぎり地球上の 全ての原産地(A、B、C、D・・・・)の原石群と比較して、A産地以外の産地とは一致しないことを 十分条件として証明すれば、石器がA産地の原石と決定することができる。この十分条件を肉眼観察で求 めることは分類基準が混乱し不可能であると思われる。また、自然科学的分析を用いても、全ての産地が 区別できるかは、それぞれが使用している産地分析法によって、それぞれ異なり実際に行ってみなければ 分からない。産地分析の結果の信頼性は何ヶ所の原材産地の原石と客観的に比較して得られたかにより、 比較した産地が少なければ、信頼性の低い結果と言える。黒耀石、サヌカイトなどの主成分組成は、原産 地ごとに大きな差はみられないが、不純物として含有される微量成分組成には異同があると考えられるた め、微量成分を中心に元素分析を行ない、これを産地を特定する指標とした。分類の指標とする元素組成 を遺物について求め、あらかじめ、各原産地ごとに数十個の原石を分析して求めておいた各原石群の元素 組成の平均値、分散などと遺物のそれを対比して、各平均値からの離れ具合(マハラノビスの距離)を求 める。次に、古代人が採取した原石産出地点と現代人が分析のために採取した原石産出地と異なる地点の

可能性は十分に考えられる。従って、分析した有限個の原石から産地全体の無限の個数の平均値と分散を推測して判定を行うホテリングのT2乗検定を行う。この検定を全ての産地について行い、ある原石遺物原材と同じ成分組成の原石はA産地では10個中に一個みられ、B産地では一万個中に一個、C産地では百万個中に一個、D産地では・・・一個と各産地毎に求められるような、客観的な検定結果からA産地の原石を使用した可能性が高いと同定する。即ち多変量解析の手法を用いて、各産地に帰属される確率を求めて産地を同定する。今回分析した遺物は宮崎県東諸県郡高岡町に位置する八久保第2遺跡出土の黒耀石製遺物81個について産地分析の結果が得られたので報告する。

黒耀石原石

黒耀石原石の自然面を打ち欠き、新鮮面を出し、塊状の試料を作り、エネルギー分散型蛍光X分析装置 によって元素分析を行なう。分析元素はAl、Si、K、Ca、Ti、Mn、Fe、Rb、Sr、Y、Zr、Nbの12元素を それぞれ分析し、塊試料の形状差による分析値への影響を打ち消すために元素量の比を取り、それでもっ て産地を特定する指標とした。黒耀石は、Ca/K、Ti/K、Mn/Zr、Fe/Zr、Rb/Zr、Sr/Zr、Y/Zr、 Nb/Zrの比量を産地を区別する指標をしてそれぞれ用いる。黒耀石の原産地は黒耀石の原産地は北海道、 東北、北陸、東関東、中信高原、伊豆箱根、伊豆七島の神津島、山陰、九州、の各地に黒耀石の原産地は 分布する。調査を終えた原産地を図11に示す。黒耀石原産地のほとんどすべてがつくされ、元素組成に よってこれら原石を分類して表6に示す。この原石群に原石産地が不明の遺物で作った遺物群を加えると 202個の原石群になる。佐賀県の腰岳地域および大分県の姫島地域の観音崎、両瀬の両地区は黒耀石の有 名な原産地で、姫島地域ではガラス質安山岩もみられ、これについても分析を行なった。隠岐島、壱岐島、 青森県、和田峠の一部の黒耀石には、Srの含有量が非常に少なく、この特徴が産地分析を行う際に他の原 産地と区別する、有用な指標となっている。九州西北地域の原産地で採取された原石は、相互に組成が似 た原石がみられる (表 7)。西北九州地域で似た組成を示す黒耀石の原石群は、腰岳、古里第一、松浦第 一の各群(腰岳系と仮称する)および淀姫、中町第二、古里第三、松浦第四の各群(淀姫系と仮称する) などである。淀姫産原石の中で中町第一群に一致する原石は12%個で、一部は淀姫群に重なるが中町第一 群に一致する遺物は中町系と分類した。また、古里第二群原石と肉眼的および成分的に似た原石は嬉野町 椎葉川露頭で多量に採取でき、この原石は姫島産乳灰色黒耀石と同色調をしているが、組成によって姫島 産の黒耀石と容易に区別できる。もし似た組成の原石で遺物が作られたとき、この遺物は複数の原産地に 帰属され原石産地を特定できない場合がある。たとえ遺物の原石産地がこれら腰岳系、淀姫系の原石群の 中の一群および古里第二群のみに帰属されても、この遺物の原石産地は腰岳系、淀姫系および古里第二群 の原石を産出する複数の地点を考えなければならない。角礫の黒耀石の原産地は腰岳および淀姫で、円礫 は松浦(牟田、大石)、中町、古里(第二群は角礫)の各産地で産出していることから、似た組成の原石 産地の区別は遺物の自然面から円礫か角礫かを判断すれば原石産地の判定に有用な情報となる。旧石器の 遺物の組成に一致する原石を産出する川棚町大崎産地から北方4kmに位置する松岳産地があるが、現在、 露頭からは8㎜程度の小礫しか採取できない。また、佐賀県多久のサヌカイト原産地からは黒耀石の原石 も採取され梅野群を作った。九州中部地域の塚瀬と小国の原産地は隣接し、黒耀石の生成マグマは同質と 推測され両産地は区別できない。また、熊本県の南関、轟、冠ケ岳の各産地の原石はローム化した阿蘇の 火砕流の層の中に含まれる最大で親指大の黒耀石で、非常に広範囲な地域から採取される原石で、福岡県 八女市の昭和溜池からも同質の黒耀石が採取され昭和池群を作った。従って南関等の産地に同定された遺 物の原材産地を局所的に特定できない。桑の木津留原産地の原石は元素組成によって2個の群に区別する ことができる。桑の木津留第1群は道路切り通し面の露頭から採取できるが、桑の木津留第2群は転礫と して採取でき、これら両者を肉眼的に区別はできない。また、間根ヶ平原産地では肉眼観察で淀姫黒耀石 のような黒灰色不透明な黒耀石から桑ノ木津留に似た原石が採取され、これらについても原石群を確立し 間根ヶ平産黒耀石を使用した遺物の産地分析を可能にした。遺物の産地分析によって桑の木津留第1群と 第2群の使用頻度を遺跡毎に調査して比較することにより、遺跡相互で同じ比率であれば遺跡間の交易、 交流が推測できるであろう。石炭様の黒耀石は大分県萩台地、熊本県滝室坂、箱石峠、長谷峠、五ヶ瀬川 の各産地および大柿産、鹿児島県の樋脇町上牛鼻産および平木場産の黒耀石は似ていて、肉眼観察ではそ れぞれ区別が困難であるが、大半は元素組成で区別ができるが、上牛鼻、平木場産の両原石については各 元素比が似ているため区別はできない。これは両黒耀石を作ったマグマは同じで地下深くにあり、このマ グマが地殻の割れ目を通って上牛鼻および平木場地区に吹きだしたときには、両者の原石の組成は似ると 推定できる。従って、産地分析で上牛鼻群または平木場群のどちらかに同定されても、遺物の原石産地は 上牛鼻系として上牛鼻または平木場地区を考える必要がありる。出水産原石組成と同じ原石は日東、五女 木の各原産地から産出していてこれらは相互に区別できず日東系とした。竜ケ水産原石は桜島の対岸の竜 ケ水地区の海岸および海岸の段丘面から採取される原石で元素組成で他の産地の黒耀石と容易に弁別き る。

結果と考察

遺跡から出土した黒耀石製石器、石片は風化に対して安定で、表面に薄い水和層が形成されているにすぎないため、表面の泥を水洗するだけで完全な非破壊分析が可能であると考えられる。黒耀石製の石器で、水和層の影響を考慮するとすれば、軽い元素の分析ほど表面分析になるため、水和層の影響を受けやすいと考えられる。Ca/K、Ti/Kの両軽元素比量を除いて産地分析を行なった場合、また除かずに産地分析を行った場合、いずれの場合にも同定される産地は同じである。他の元素比量についても風化の影響を完全に否定することができないので、得られた確率の数値にはや、不確実さを伴うが、遺物の石材産地の判定を誤るようなことはない。

今回分析した八久保第 2 遺跡出土の黒耀石製遺物の分析結果を表 8 に示した。石器の分析結果から石材産地を同定するためには数理統計の手法を用いて原石群との比較をする。説明を簡単にするためRr/Zrの一変量だけを考えると、表 8 の試料番号76235番の遺物ではRr/Zrの値は1.01で、桑ノ木津留第1群の[平均値] ± [標準偏差値]は、 1.080 ± 0.048 である。遺物と原石群の差を標準偏差値(σ)を基準にして考えると遺物は原石群から 1.4σ 離れている。ところで桑ノ木津留第1群の原産地から100ケの原石を採ってきて分析すると、平均値から $\pm 1.4\sigma$ のずれより大きいものが16個ある。すなわち、この遺物が、桑ノ木津留第1群の原石から作られていたと仮定しても、 1.4σ 以上離れる確率は16%であると言える。だから、桑ノ木津留第1群の平均値から 1.4σ しか離れていないときには、この遺物が桑ノ木津留第1群の原石から作られたものでないとは、到底言い切れない。ところがこの遺物を腰岳群に比較すると、腰岳群の平均値からの隔たりは、約 6σ である。これを確率の言葉で表現すると、腰岳の産地の原石を採ってきて分析したとき、平均値から 6σ 以上離れている確率は、百万分の一であると言える。このように、百万個に一個しかないような原石をたまたま採取して、この遺物が作られたとは考えられないから、この遺物は、腰岳産の原石から作られたものではないと断定できる。これらのことを簡単にまとめて言うと、「この遺物は

桑ノ木津留第1群に16%の確率で帰属され、信頼限界の0.1%を満たしていることから桑ノ木津留第1群 原石が使用されていると同定され、さらに腰岳群に一万分の一%の低い確率で帰属され、信頼限界の 0.1%に満たないことから腰岳産原石でないと同定される」。遺物が一ヶ所の産地(桑ノ木津留第1群産地) と一致したからと言って、例え桑ノ木津留第1群と腰岳群の原石は成分が異なっていても、分析している 試料は原石でなく遺物で、さらに分析誤差が大きくなる不定形(非破壊分析)であることから、他の産地 に一致しないとは言えない、同種岩石の中での分類である以上、他の産地にも一致する可能性は推測され る。即ちある産地(桑ノ木津留第1群)に一致し必要条件を満たしたと言っても一致した産地の原石とは 限らないために、帰属確率による判断を表6の202個すべての原石群について行ない、十分条件である低 い確率で帰属された原石群を消していくことにより、はじめて桑ノ木津留第1群産地の石材のみが使用さ れていると判定される。実際はRr/Zrといった唯1ヶの変量だけでなく、前述した8ヶの変量で取り扱う ので変量間の相関を考慮しなければならならい。例えばA原産地のA群で、Ca元素とSr元素との間に相 関があり、Caの量を計ればSrの量は分析しなくても分かるようなときは、A群の石材で作られた遺物で あれば、A群と比較したとき、Ca量が一致すれば当然Sr量も一致するはずである。もしSr量だけが少し ずれている場合には、この試料はA群に属していないと言わなければならない。このことを数量的に導き 出せるようにしたのが相関を考慮した多変量統計の手法であるマハラノビスの距離を求めて行なうホテリ ングのT2乗検定である。これによって、それぞれの群に帰属する確率を求めて、産地を同定する⁴、⁵。 産地の同定結果は1個の遺物に対して、黒耀石製では202個の推定確率結果が得られている。今回産地分 析を行った遺物の産地推定結果については低い確率で帰属された原産地の推定確率は紙面の都合上記入を 省略しているが、本研究ではこれら産地の可能性が非常に低いことを確認したという非常に重要な意味を 含んでいる、すなわち、桑ノ木津留第1群産原石と判定された遺物について、台湾の台東山脈産原石、北 朝鮮の会寧遺跡で使用された原石と同じ組成の原石とか、信州和田峠、霧ケ峰産の原石の可能性を考える 必要がない結果で、高い確率で同定された産地のみの結果を表りに記入した。原石群を作った原石試料は 直径3cm以上であるが、小さな遺物試料によって原石試料と同じ測定精度で元素含有量を求めるには、測 定時間を長くしなければならない。しかし、多数の試料を処理するために、1個の遺物に多くの時間をか けられない事情があり、短時間で測定を打ち切る。また、検出された元素であっても、含有量の少ない元 素では、得られた遺物の測定値には大きな誤差範囲が含まれ、原石群の元素組成のバラツキの範囲を越て 大きくなる。したがって、小さな遺物の産地推定を行なったときに、判定の信頼限界としている0.1%に 達しない確率を示す場合が比較的多くみられる。この場合には、原石産地(確率)の欄の確率値に替えて、 マハラノビスの距離 D 2 乗の値を記した。この遺物については、記入された D 2 乗の値が原石群の中で最 も小さなD2乗値で、この値が小さい程、遺物の元素組成はその原石群の組成と似ているといえるため、 推定確率は低いが、そこの原石産地と考えてほゞ間違いないと判断されたものである。今回、分析した八 久保第2遺跡出土の黒耀石製遺物81個の各産地別使用頻度の中で最も多数使用された産地は桑ノ木津留産 原石で44%(36個)、次に腰岳系原石で23%(19個)、原石産地が未発見のUT1遺物群の原石は11%(9 個)、姫島産は4%(3個)で、淀姫産は4%(3個)、上牛鼻産が4%(3個)であった。また、日東・ 五女木、竜ケ水、長谷峠、五ヶ瀬川、大串、嬉野・松尾産が各1%(1個)使用が確認された。今回の分 析で初めて使用が確認された阿蘇外輪山から産出する石炭様の黒耀石は大分県萩台地、熊本県滝室坂、箱 石峠、長谷峠、五ヶ瀬川の各産地および大柿産で、これら原石の成分組成は相互に似ていて、明確に区別 出来ない場合がみられる。さらに、この石炭様黒耀石は、鹿児島県の樋脇町上牛鼻産および平木場産黒耀

石に肉眼観察も酷似し、また元素比組成も比較的に似ているが上牛鼻産と阿蘇外輪系の原石は区別できる が、遺物を分析したとき、例えば上牛鼻、五ヶ瀬川の両産地に信頼限界としている0.1%以上で同定される ことがしばしばある。両産地に同定されたときは、遺物を何回も分析し、何時も上牛鼻産に同定確率が高 い場合は上牛鼻産と判定する。上牛鼻産原石は鹿児島県の遺跡で多用されていることがすでに判明してい るが、阿蘇外輪山から採取される長谷峠、五ヶ瀬川産黒耀石が使用された例は初めてで、今回分析した分 析番号76267と76298番の遺物は風化層(水和層)を通して分析してときに、阿蘇系の長谷峠、五ヶ瀬川産 黒耀石と同定されたが、風化層の影響ために阿蘇系に同定された可能性も推測されたため、エアーブレイ シブ処理を行い新鮮面だして分析を行い、阿蘇系の長谷峠、五ヶ瀬川産黒耀石と確定した。しかし、自然 科学的分析では両原石産地を元素組成で明確に区別できず厳密には、信頼限界の0.1%以上の確率で同定さ れた原石産地全てを考慮する必要がある。ただ、同定された産地以外の表 6 の約200個の原石群には一致 しないことを確認しているため、考古学的考察を行うことで、先史時代の原石供給源を推測できる可能性 がある。分析番号76273番と76276番の遺物は珪素が含有量が大きく、フリント、碧玉系など黒耀石でない 可能性があるが、他の遺跡で使用圏を求めるために、この遺物の分析場所を変えて48回分析し、HB-42、 HB-45遺物群をそれぞれ作り、同質の石器原材が他の遺跡で使用されているときに、判定出来るようにし、 原石群簿に登録した。また、嬉野・松尾産黒耀石の使用は八久保第2遺跡の次に鹿児島県計志加里遺跡で も使用が確認されている。嬉野産の椎葉川産黒耀石が、針尾島古里海岸に流れていることから、同じ、嬉 野松尾地区の安山岩、黒耀石も古里地区に流れた可能性を考慮しなければならぬが、今回分析した76257 番の松尾産の遺物は角礫であることから、嬉野松尾地区から伝播した可能性を推測した。今回の結果では 西北九州地域として腰岳、淀姫、大串、松尾産などの原石が多数使用されていることから、西北九州地方 との交易、交流が活発で、また、姫島産黒耀石が使用されていることから、瀬戸内内海西部地域の情報も 入手していた可能性が推測され、また使用頻度の高い原石産地地方とより活発な交流があり生活情報、文 化情報を伝達、授受していたと推測しても産地分析の結果と矛盾しない。

参考文献

- 1) 藁科哲男・東村武信 (1975)、蛍光 X 線分析法によるサヌカイト石器の原産地推定 (Ⅱ)。考古学と自然科学、8:61-69
- 2) 藁科哲男・東村武信・鎌木義昌 (1977)、(1978)、蛍光 X 線分析法によるサヌカイト石器の原産地推定 (Ⅲ)。 (Ⅳ)。考古学と自然科学、10、11:53-81:33-47
- 3) 藁科哲男・東村武信(1983)、石器原材の産地分析。考古学と自然科学、16:59-89
- 4) 東村武信(1976)、産地推定における統計的手法。考古学と自然科学、9:77-90
- 5) 東村武信(1980)、考古学と物理化学。学生社

表 6 各黒耀石の原産地における原石群の元素比の平均値と標準偏差値

Al/K Si/K	3 ± 0.002 0.451 ± 0.010 3 ± 0.007 0.394 ± 0.010	\$\pmod 0.374 \pmod 0.010\$ \$\pmod 0.002 0.368 \pmod 0.006\$ \$\pmod 0.008 0.359 \pmod 0.042\$ \$\pmod 0.002 0.369 \pmod 0.007\$ \$\pmod 0.005 0.365 \pmod 0.011\$	1 0.002 0.457 ± 0.008 1 0.002 0.442 ± 0.009 1 0.002 0.443 ± 0.013 1 0.003 0.371 ± 0.013 1 0.003 0.370 ± 0.023 1 0.004 0.393 ± 0.001 1 0.002 0.412 ± 0.010 1 0.002 0.412 ± 0.010	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.002 0.330 ± 0.013 ± 0.002 0.442 ± 0.005 ± 0.002 0.449 ± 0.009	± 0.002 0.371 ± 0.009 ± 0.007 0.371 ± 0.007 ± 0.002 0.469 ± 0.013 ± 0.005 0.431 ± 0.010 ± 0.004 0.347 ± 0.011	± 0.002 0.348 ± 0.010 ± 0.003 0.499 ± 0.013	± 0.002 0.379 ± 0.010 ± 0.005 0.384 ± 0.009	+ 0.002 0.362 ± 0.015 + 0.002 0.369 ± 0.007 ± 0.002 0.496 ± 0.018 ± 0.005 0.383 ± 0.018 ± 0.042 0.858 ± 0.088	± 0.003 0.385 ± 0.018 ± 0.014 1.409 ± 0.044	± 0.002 0.368 ± 0.008 ± 0.006 0.367 ± 0.009	± 0.002 0.443 ± 0.014 ± 0.003 0.460 ± 0.010	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.003 0.956 ± 0.040 ± 0.002 0.720 ± 0.032	± 0.002 0.516 ± 0.012	
Nb/Zr A	0.024 ± 0.016 0.033 0.026 ± 0.020 0.028	$\begin{array}{c} 0.073 \pm 0.026 & 0.028 \\ 0.107 \pm 0.019 & 0.027 \\ 0.076 \pm 0.046 & 0.027 \\ 0.103 \pm 0.027 & 0.027 \\ 0.076 \pm 0.044 & 0.027 \end{array}$	0.039 ± 0.016 0.035 0.041 ± 0.019 0.035 0.078 ± 0.008 0.034 0.027 ± 0.016 0.027 0.038 ± 0.018 0.027 0.032 ± 0.023 0.030 0.044 ± 0.020 0.030 0.026 ± 0.014 0.032	$.037 \pm 0.020 0.03$ $.030 \pm 0.013 0.03$ $.064 \pm 0.025 0.02$	0.039 ± 0.023 0.029 0.033 ± 0.022 0.033	$\begin{array}{c} 0.058 \pm 0.023 & 0.027 \\ 0.021 \pm 0.029 & 0.025 \\ 0.025 \pm 0.017 & 0.032 \\ 0.007 \pm 0.015 & 0.030 \\ 0.085 \pm 0.031 & 0.031 \end{array}$	0.076 ± 0.021 0.024 0.179 ± 0.031 0.038	0.035 ± 0.004 0.026 0.034 ± 0.006 0.027	$\begin{array}{c} 0.076 \pm 0.025 \\ 0.033 \pm 0.005 \\ 0.186 \pm 0.037 \\ 0.049 \pm 0.036 \\ 0.169 \pm 0.031 \end{array}$	0.047 ± 0.040 0.028 0.027 ± 0.014 0.124	$0.098 \pm 0.040 0.029$ $0.108 \pm 0.034 0.028$	0.119 ± 0.033 0.033 0.056 ± 0.015 0.033	0.045 ± 0.014 0.041 0.045 ± 0.011 0.041 0.044 ± 0.013 0.041	$0.020 \pm 0.013 0.073 \\ 0.037 \pm 0.018 0.077$	0.023 ± 0.014 0.036	+ 960 0 + 000 0
Y/Zr	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 0.341 ± 0.030 6 0.492 ± 0.039 9 0.475 ± 0.045 0 0.470 ± 0.037 5 0.457 ± 0.035	0.165 ± 0.020 2.0197 ± 0.024 2.0199 ± 0.039 2.0239 ± 0.024 2.0197 ± 0.026 5.0233 ± 0.029 0.0192 ± 0.029 0.0179 ± 0.028 0.0179 ± 0.028 0.0179 ± 0.028 0.0179 ± 0.028	0.167 ± 0 0.170 ± 0 0.334 ± 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 1 & 0.249 \pm 0.024 \\ 6 & 0.245 \pm 0.021 \\ 8 & 0.157 \pm 0.020 \\ 8 & 0.177 \pm 0.016 \\ 7 & 0.269 \pm 0.068 \end{array}$	$\begin{array}{ccc} 4 & 0.141 \pm 0.033 \\ 6 & 0.399 \pm 0.038 \end{array}$	$\begin{array}{ccc} 2 & 0.064 \pm 0.007 \\ 2 & 0.070 \pm 0.005 \end{array}$	$\begin{array}{c} 3 & 0.277 \pm 0.065 \\ 2 & 0.069 \pm 0.010 \\ 0.390 \pm 0.039 \\ 8 & 0.288 \pm 0.037 \\ 2 & 0.155 \pm 0.015 \end{array}$	7 0.286 ± 0.035 3 0.244 ± 0.022	$3 0.287 \pm 0.039$ $4 0.286 \pm 0.045$	$\begin{array}{ccc} 1 & 0.276 \pm 0.036 \\ 3 & 0.212 \pm 0.020 \end{array}$	$\begin{array}{c} 1 & 0.209 \pm 0.016 \\ 1 & 0.228 \pm 0.079 \\ 5 & 0.220 \pm 0.016 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	s 0.190 ± 0.017	7 0 947 + 0 091
比 Sr/Zr	$\begin{array}{ccc} .032 & 0.574 \pm 0.022 \\ .044 & 0.265 \pm 0.011 \end{array}$	9 0.283 ± 0.01 8 0.097 ± 0.01 5 0.105 ± 0.01 7 0.104 ± 0.01 6 0.115 ± 0.01	7 0.941 ± 0.03 8 0.815 ± 0.04 8 0.815 ± 0.04 7 0.458 ± 0.02 7 0.459 ± 0.02 9 0.459 ± 0.02 9 0.459 ± 0.02 14 0.454 ± 0.02 14 0.454 ± 0.02 14 0.454 ± 0.02	$0.636 \pm 0.$ $0.712 \pm 0.$ $0.434 \pm 0.$	$\begin{array}{cccc} 0.93 & 0.454 \pm 0.023 \\ 0.061 & 0.707 \pm 0.044 \\ 0.040 & 0.764 \pm 0.051 \end{array}$	60 0428 ± 0.021 45 0.436 ± 0.026 27 0.607 ± 0.028 19 0.513 ± 0.018 24 1.475 ± 0.207	.046 0.318 ± 0.014 .044 1.106 ± 0.056	$\begin{array}{ccc} .008 & 0.002 \pm 0.002 \\ .005 & 0.002 \pm 0.002 \end{array}$	062 0.521 ± 0.063 006 0.002 ± 0.002 052 1.081 ± 0.060 069 0.568 ± 0.108 021 1.708 ± 0.102	.065 0.558 ± 0.087 .014 1.621 ± 0.063	81 0.930 ± 0.043 72 0.939 ± 0.054	.069 1.022 ± 0.071 .025 0.441 ± 0.023	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 39 & 0.658 \pm 0.024 \\ 18 & 1.298 \pm 0.063 \end{array}$	25 0.502 ± 0.028	7500+0890 260
素 Rb/Zr	$.063 0.614 \pm 0.03$ $.055 0.696 \pm 0.04$	142 1.340 \pm 0.05 181 1.855 \pm 0.08 127 1.846 \pm 0.06 102 1.794 \pm 0.07 125 1.787 \pm 0.07	1.17 0.604 ± 0.03 1.097 0.812 ± 0.03 1.125 0.814 ± 0.03 1.069 0.805 ± 0.04; 1.090 1.017 ± 0.04; 1.072 0.802 ± 0.03; 1.062 0.812 ± 0.03; 1.072 0.824 ± 0.03; 1.072 0.824 ± 0.03; 1.072 0.449 ± 0.02;	86 0.595 ± 0. 26 0.606 ± 0. 87 1.097 ± 0.	81 0.802 ± 0. 51 0.762 ± 0.	104 0.969 ± 0.066 0.083 0.970 ± 0.043 0.072 0.438 ± 0.02 0.06 0.516 ± 0.013 1.82 2.043 ± 0.22	$.066 1.241 \pm 0.04 \\ .085 0.865 \pm 0.04 $	$\begin{array}{ccc} 021 & 0.128 \pm 0.00 \\ 018 & 0.134 \pm 0.00 \end{array}$	257 1.168 ± 0.06 .021 0.123 ± 0.00 .143 0.861 ± 0.05 .131 1.149 ± 0.06 .500 0.090 ± 0.02	$\begin{array}{ccc} 148 & 1.147 \pm 0.06 \\ 336 & 0.068 \pm 0.0 \end{array}$	$081 1.493 \pm 0.08$ $077 1.503 \pm 0.07$	$.096 0.966 \pm 0.06$ $.054 0.580 \pm 0.02$.061 0.305 ± 0.016 .062 0.306 ± 0.03: .072 0.314 ± 0.019	$\begin{array}{ccc} .49 & 0.116 \pm 0.00 \\ 150 & 0.168 \pm 0.01 \end{array}$	0.381 ± 0.02	070 071 + 0.03
元 ir Fe/Zr	$0.007 2.011 \pm 0$ $0.006 1.774 \pm 0$	013 2.714 ± 0.015 3.049 ± 0.017 3.123 ± 0.015 2.975 ± 0.014 3.038 ± 0.014	0.00 0.090 0.773 ± 0 0.014 0.011 0.011 0.750 ± 0 0.09 0.09 0.09 0.008	$\begin{array}{cccc} .011 & 2.555 \pm 0 \\ .014 & 2.631 \pm 0 \\ .010 & 2.281 \pm 0 \end{array}$	2.231 ± 0.00 2.635 ± 0.10 2.010 ± 0.00 2.010 ± 0.00	010 2.213 ± 0.010 2.207 ± 0.015 1.764 ± 0.008 1.723 ± 0.032 1.834 ± 0.032	$0.008 1.575 \pm 0.009 2.268 \pm 0.009 2.26$	$0.002 0.697 \pm 0.002 0.701 \pm 0.002$	012 2.358 ± 0 002 0.691 ± 0 023 2.261 ± 0 033 2.548 ± 0 217 21.648 ± 1	$0.029 2.519 \pm 0.018 7.570 \pm 0.018$.018 1.644 ± 0 .017 1.671 ± 0 .	$0.016 1.906 \pm 0.0017 1.806 \pm 0.0017$	007 1.764 ± 0 007 1.751 ± 0 008 1.742 ± 0	$\begin{array}{ccc} .005 & 2.544 \pm 0.1 \\ .017 & 11.362 \pm 1.1 \end{array}$	$0.007 2.016 \pm 0.1$	011 1729+0
K Mn/Z	$\begin{array}{ccc} 0.005 & 0.035 \pm 0 \\ 0.005 & 0.021 \pm 0 \end{array}$	$\begin{array}{cccc} 0.003 & 0.079 \pm 0 \\ 0.002 & 0.102 \pm 0 \\ 0.002 & 0.105 \pm 0 \\ 0.001 & 0.099 \pm 0 \\ 0.001 & 0.101 \pm 0 \end{array}$	0.006 0.081 ± 0 0.005 0.067 ± 0 0.005 0.076 ± 0 0.005 0.078 ± 0 0.005 0.070 ± 0 0.005 0.045 ± 0 0.005 0.045 ± 0	$\begin{array}{ccc} 0.011 & 0.051 \pm \\ 0.005 & 0.056 \pm \\ 0.005 & 0.068 \pm \\ \end{array}$	0.007 0.052 ± 0 0.012 0.056 ± 0	$\begin{array}{cccc} 0.004 & 0.086 \pm 0 \\ 0.002 & 0.080 \pm 0 \\ 0.007 & 0.060 \pm 0 \\ 0.006 & 0.055 \pm 0 \\ 0.005 & 0.193 \pm 0 \end{array}$	$\begin{array}{ccc} 0.003 & 0.040 \pm 0 \\ 0.007 & 0.231 \pm 0 \end{array}$	$\begin{array}{ccc} 0.011 & 0.013 \pm 0 \\ 0.003 & 0.013 \pm 0 \end{array}$	0.003 0.068 ± 0 0.004 0.013 ± 0 0.007 0.232 ± 0 0.009 0.079 ± 0 0.149 3.267 ± 0	$0.008 0.077 \pm 0$ $0.055 0.161 \pm 0$	$\begin{array}{ccc} 0.004 & 0.220 \pm 0 \\ 0.004 & 0.219 \pm 0 \end{array}$	$0.007 0.182 \pm 0$ $0.005 0.049 \pm 0$	$\begin{array}{ccc} 0.012 & 0.052 \pm 0 \\ 0.016 & 0.058 \pm 0 \\ 0.018 & 0.056 \pm 0 \end{array}$	$\begin{array}{ccc} 0.017 & 0.057 \pm 0 \\ 0.104 & 0.178 \pm 0 \end{array}$	0.010 0.044 =	0.005 0.102 ± 0
Ca/K Ti/K	$\pm 0.011 0.121 \pm 0.015 0.103 \pm 0.015$	± 0.014 0.061 ± ± 0.004 0.021 ± ± 0.010 0.022 ± ± 0.009 0.023 ± ± 0.010 0.023 ±	2.013 0.165 ± 2.011 0.099 ± 2.011 0.099 ± 2.017 0.122 ± 2.016 0.098 ± 2.015 0.098 ± 2.008 0.128 ± 2.008 0.138 ± 2.016 0.138 ± 2.016 0.138 ± 2.016 0.138 ± 2.016 0.138 ± 2.016 0.138 ± 2.016 0.138 ± 2.016 0.138 ± 2.016 0.138 ± 2.016 0.138 ± 2.016 0.140 ± 2.	± 0.056 0.110 ± 0.011 0.145 ± 0.018 0.074	± 0.020 0.124 ± 0.036 0.144 ±	± 0.029 0.070 ± ± 0.065 0.072 ± ± 0.019 0.148 ± ± 0.009 0.133 ± ± 0.026 0.087 ±	± 0.015 0.075 ± ± 0.022 0.132 ±	± 0.008 0.097 ± ± 0.005 0.098 ±	± 0.024 0.069 ± ± 0.006 0.104 ± ± 0.017 0.132 ± ± 0.017 0.068 ± ± 0.479 2.703 ±	$\pm 0.016 0.067 \pm 0.243 2.484 \pm$	± 0.009 0.087 ± ± 0.008 0.087 ±	± 0.021 0.123 ± 0.008 0.116 \pm	± 0.033 0.187 ± 0.055 0.180 ± 0.046 0.177 ±	± 0.068 0.349 ± 0.395 1.630 ±	± 0.067 0.200 ±	±0.014 0.136 ±
台 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	. 114 0.478 35 0.309	27 0.138 30 0.138 23 0.139 29 0.142	30 0.819 ± 107 0.517 ± 0.517 ± 0.517 ± 0.517 ± 0.517 ± 0.510 ±	68 0.575 65 0.676 60 0.256	41 0.499 28 0.593	50 0.254 30 0.258 75 0.473 40 0.377 58 0.285	35 0.190 27 0.346	36 0.080 41 0.077	28 0.250 28 0.084 33 0.344 47 0.252 36 9.673	67 0.253 41 8.905	43 0.294 45 0.295	44 0.285 48 0.385	25 0.636 22 0.615 30 0.596	21 2.174 37 4.828	40 0.738	56 0.381
産 地 原石群名	名寄ん	白鷺地区 本日人 ストート 大学になった。 といいが、 では、 では、 では、 では、 では、 では、 では、 では、 では、 では	置置	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	- 美 - 演 	赤井川第一 (本) (東三 (東) (東) (東) (東) (東) (東)	折 腰 出 来 島	深浦 大 八 無	青森市口 鶴騰下口 鶴騰下門 夕森湯丁二坂山川	大 無 例 石	男金ケ崎鹿脇木木	月 第 河 江	李	指置級	高 原 山	神 津 鼻第一津
道	北海道						青森県				秋田県	山形県	岩手県	宮城県	栃木県	東京都

	10	w 0 ::		~ -1 :-2	12117802397763	8666433			~ ~ ~	10.20.10	182492	6	1868680
Si/K	1.528 ± 0.046 1.126 ± 0.031 0.904 ± 0.020	0.856 ± 0.018 0.663 ± 0.020 0.429 ± 0.016	0.372 ± 0.009	0.392 ± 0.018 0.599 ± 0.024 0.412 ± 0.025	0.361 ± 0.013 0.355 ± 0.016 0.348 ± 0.007 0.348 ± 0.017 0.331 ± 0.019 0.313 ± 0.011 0.313 ± 0.011 0.354 ± 0.011 0.354 ± 0.011 0.401 ± 0.01 0.401 ± 0.01 0.401 ± 0.01 0.401 ± 0.01 0.401 ± 0.01	0.338 ± 0.013 0.338 ± 0.009 0.359 ± 0.009 0.359 ± 0.009 0.491 ± 0.014 0.402 ± 0.012 0.340 ± 0.030	0.396 ± 0.017	0.450 ± 0.010 0.381 ± 0.008	0.365 ± 0.008 0.446 ± 0.012	0.249 ± 0.016 0.244 ± 0.008 0.315 ± 0.006	0.507 ± 0.011 0.507 ± 0.013 0.500 ± 0.012 0.500 ± 0.014 0.487 ± 0.016 0.476 ± 0.012	0.279 ± 0.009	0.321 ± 0.011 0.328 ± 0.008 0.345 ± 0.009 0.335 ± 0.008 0.388 ± 0.009 0.376 ± 0.008 0.378 ± 0.008
A1/K	0.140 ± 0.008 0.080 ± 0.005 0.067 ± 0.005	0.059 ± 0.004 0.047 ± 0.004 0.025 ± 0.014	0.027 ± 0.002	0.015 ± 0.014 0.020 ± 0.020 0.015 ± 0.014	0.026 ± 0.002 0.025 ± 0.002 0.025 ± 0.002 0.025 ± 0.003 0.021 ± 0.002 0.021 ± 0.002 0.026 ± 0.002 0.026 ± 0.002 0.026 ± 0.002 0.027 ± 0.002 0.029 ± 0.002 0.033 ± 0.005 0.033 ± 0.005	$\begin{array}{c} 0.024 \pm 0.004 \\ 0.026 \pm 0.002 \\ 0.026 \pm 0.007 \\ 0.027 \pm 0.002 \\ 0.036 \pm 0.003 \\ 0.027 \pm 0.003 \\ 0.027 \pm 0.009 \\ 0.027 \pm 0.009 \\ 0.027 \pm 0.009 \\ 0.023 \pm 0.007 \end{array}$	0.032 ± 0.002	0.032 ± 0.002 0.028 ± 0.002	$0.024 \pm 0.007 \\ 0.026 \pm 0.012$	0.020 ± 0.001 0.020 ± 0.002 0.023 ± 0.002	0.041 ± 0.004 0.045 ± 0.004 0.041 ± 0.003 0.041 ± 0.005 0.041 ± 0.005 0.041 ± 0.005 0.038 ± 0.004	0.024 ± 0.006	0.023 ± 0.007 0.026 ± 0.008 0.028 ± 0.005 0.025 ± 0.002 0.030 ± 0.007 0.032 ± 0.003 0.033 ± 0.003
Nb/Zr	0.025 ± 0.019 0.011 ± 0.010 0.011 ± 0.009	0.010 ± 0.009 0.009 ± 0.009 0.087 ± 0.057	0.102 ± 0.021	0.047 ± 0.031 0.051 ± 0.031 0.067 ± 0.053	$\begin{array}{c} 0.112 \pm 0.023 \\ 0.139 \pm 0.026 \\ 0.136 \pm 0.025 \\ 0.090 \pm 0.022 \\ 0.090 \pm 0.022 \\ 0.006 \pm 0.023 \\ 0.010 \pm 0.017 \\ 0.142 \pm 0.017 \\ 0.055 \pm 0.017 \\ 0.055 \pm 0.017 \\ 0.007 \pm 0.003 \\ 0.007 \pm 0.003 \\ 0.007 \pm 0.003 \\ 0.007 \pm 0.003 \\ 0.003 \pm$	0.049 ± 0.017 0.046 ± 0.015 0.038 ± 0.027 0.154 ± 0.034 0.033 ± 0.011 0.035 ± 0.018 0.035 ± 0.018	0.052 ± 0.018	$\begin{array}{c} 0.061 \pm 0.016 \\ 0.062 \pm 0.013 \end{array}$	0.139 ± 0.018 0.138 ± 0.024	0.154 ± 0.018 0.144 ± 0.008 0.238 ± 0.011	0.065 ± 0.019 0.042 ± 0.013 0.061 ± 0.020 0.073 ± 0.021 0.047 ± 0.013 0.072 ± 0.013	0.034 ± 0.008	0.075 ± 0.018 0.059 ± 0.014 0.380 ± 0.047 0.256 ± 0.043 0.255 ± 0.040 0.255 ± 0.040 0.255 ± 0.037 0.194 ± 0.028
Y/Zr	0.252 ± 0.017 0.202 ± 0.011 0.154 ± 0.009	0.138 ± 0.011 0.143 ± 0.007 0.547 ± 0.054	0.194 ± 0.014	0.121 ± 0.026 0.118 ± 0.025 0.127 ± 0.041	0.275 ± 0.030 0.409 ± 0.048 0.517 ± 0.044 0.574 ± 0.048 0.263 ± 0.038 0.184 ± 0.042 0.1942 ± 0.039 0.422 ± 0.039 0.111 ± 0.024 0.101 ± 0.018 0.111 ± 0.024 0.111 ± 0.024 0.111 ± 0.024 0.111 ± 0.024 0.111 ± 0.024 0.111 ± 0.024 0.111 ± 0.024	0.142 ± 0.018 0.091 ± 0.023 0.182 ± 0.023 0.374 ± 0.047 0.150 ± 0.015 0.181 ± 0.016 0.309 ± 0.036	0.172 ± 0.028	0.113 ± 0.020 0.069 ± 0.020	0.097 ± 0.021 0.112 ± 0.026	0.061 ± 0.015 0.060 ± 0.013 0.109 ± 0.013	$\begin{array}{c} 0.026 \pm 0.026 \\ 0.024 \pm 0.019 \\ 0.023 \pm 0.027 \\ 0.029 \pm 0.025 \\ 0.038 \pm 0.023 \\ 0.029 \pm 0.023 \\ 0.029 \pm 0.023 \\ \end{array}$	0.071 ± 0.009	0.103 ± 0.018 0.069 ± 0.016 0.104 ± 0.032 0.311 ± 0.046 0.147 ± 0.035 0.171 ± 0.032
比 Sr/Zr	1.757 ± 0.061 0.680 ± 0.029 0.629 ± 0.025	0.551 ± 0.023 0.391 ± 0.022 0.154 ± 0.030	0.641 ± 0.046	0.665 ± 0.029 0.840 ± 0.050 1.222 ± 0.088	0.360 ± 0.023 0.112 ± 0.056 0.024 ± 0.012 0.205 ± 0.0104 0.206 ± 0.030 0.275 ± 0.058 0.134 ± 0.031 0.045 ± 0.010 0.409 ± 0.052 0.764 ± 0.031 0.802 ± 0.058 0.802 ± 0.058	0.288 ± 0.018 0.326 ± 0.029 0.773 ± 0.034 0.772 ± 0.046 0.332 ± 0.011 0.283 ± 0.012 0.084 ± 0.012	0.534 ± 0.023	0.675 ± 0.030 0.798 ± 0.039	0.265 ± 0.012 0.397 ± 0.020	0.009 ± 0.003 0.015 ± 0.005 0.007 ± 0.003	1.350 ± 0.082 1.044 ± 0.077 1.335 ± 0.091 1.386 ± 0.088 1.010 ± 0.073 1.256 ± 0.050	0.283 ± 0.015	0.348 ± 0.015 0.397 ± 0.014 1.269 ± 0.058 0.414 ± 0.042 2.015 ± 0.099 2.023 ± 0.122 1.907 ± 0.119
素 Rb/Zr	0.048 ± 0.017 0.062 ± 0.007 0.073 ± 0.008	0.087 ± 0.009 0.113 ± 0.007 0.829 ± 0.089	0.906 ± 0.057	0.740 ± 0.052 0.413 ± 0.028 0.794 ± 0.155	1.076 ± 0.047 1.853 ± 0.124 2.449 ± 0.135 1.673 ± 0.140 1.311 ± 0.037 1.053 ± 0.196 1.523 ± 0.067 0.701 ± 0.109 0.532 ± 0.048 0.669 ± 0.052 0.182 ± 0.052 0.182 ± 0.052 0.158 ± 0.016	0.821 ± 0.047 0.717 ± 0.106 0.981 ± 0.042 1.772 ± 0.098 0.261 ± 0.012 0.618 ± 0.027 1.615 ± 0.063	0.639 ± 0.028	0.643 ± 0.041 0.608 ± 0.031	0.883 ± 0.034 0.813 ± 0.045	0.278 ± 0.017 0.301 ± 0.014 0.386 ± 0.011	$\begin{array}{c} 0.686 \pm 0.065 \\ 0.423 \pm 0.058 \\ 0.669 \pm 0.078 \\ 0.707 \pm 0.061 \\ 0.494 \pm 0.080 \\ 0.895 \pm 0.048 \end{array}$	0.326 ± 0.013	0.628 ± 0.028 0.455 ± 0.017 1.046 ± 0.065 1.000 ± 0.086 1.253 ± 0.081 1.170 ± 0.114 0.856 ± 0.070
元 Fe/Zr	9.282 ± 0.622 2.912 ± 0.104 2.139 ± 0.097	1.697 ± 0.068 1.699 ± 0.167 3.211 ± 0.319	2.084 ± 0.095	1.720 ± 0.080 1.994 ± 0.152 2.251 ± 0.138	1.339 ± 0.057 1.346 ± 0.085 1.461 ± 0.039 1.520 ± 0.085 1.373 ± 0.086 1.373 ± 0.064 1.253 ± 0.064 1.169 ± 0.041 1.169 ± 0.081 1.403 ± 0.069 1.630 ± 0.079 2.005 ± 0.135 7.380 ± 0.366	1.492 ± 0.079 1.501 ± 0.053 2.051 ± 0.070 2.178 ± 0.110 1.608 ± 0.049 1.711 ± 0.066 1.354 ± 0.058	2.699 ± 0.167	1.628 ± 0.051 1.561 ± 0.081	1.828 ± 0.056 1.764 ± 0.066	0.899 ± 0.031 0.940 ± 0.041 0.980 ± 0.023	3.126 ± 0.170 2.860 ± 0.160 3.138 ± 0.163 3.202 ± 0.163 3.125 ± 0.179 3.305 ± 0.199	0.798 ± 0.027	1.619 ± 0.083 1.535 ± 0.039 4.239 ± 0.205 2.572 ± 0.212 2.947 ± 0.142 4.692 ± 0.369 6.666 ± 0.342
m Mn/Zr	0.228 ± 0.019 0.076 ± 0.007 0.056 ± 0.007	0.041 ± 0.006 0.031 ± 0.004 0.297 ± 0.038	0.064 ± 0.008	0.040 ± 0.008 0.054 ± 0.011 0.079 ± 0.021	0.104 ± 0.011 0.117 ± 0.011 0.151 ± 0.010 0.094 ± 0.003 0.073 ± 0.011 0.095 ± 0.012 0.059 ± 0.008 0.059 ± 0.008 0.059 ± 0.008 0.042 ± 0.010 0.059 ± 0.008	0.020 ± 0.005 0.020 ± 0.005 0.069 ± 0.011 0.169 ± 0.017 0.030 ± 0.005 0.099 ± 0.011	0.060 ± 0.009	0.038 ± 0.006 0.036 ± 0.006	0.045 ± 0.007 0.048 ± 0.009	0.014 ± 0.003 0.015 ± 0.003 0.021 ± 0.004	0.032 ± 0.008 0.035 ± 0.007 0.035 ± 0.012 0.038 ± 0.012 0.042 ± 0.009 0.043 ± 0.014	0.033 ± 0.003	0.027 ± 0.005 0.027 ± 0.005 0.071 ± 0.013 0.075 ± 0.019 0.101 ± 0.017 0.125 ± 0.018 0.126 ± 0.013
Ti/K	2.219 ± 0.057 0.669 ± 0.019 0.381 ± 0.019	0.294 ± 0.018 0.314 ± 0.028 0.052 ± 0.004	0.065 ± 0.004	0.113 ± 0.006 0.202 ± 0.008 0.108 ± 0.014	0.066 ± 0.003 0.049 ± 0.008 0.032 ± 0.003 0.064 ± 0.012 0.063 ± 0.004 0.075 ± 0.010 0.055 ± 0.005 0.042 ± 0.002 0.102 ± 0.010 0.129 ± 0.011 0.129 ± 0.011 0.129 ± 0.011 0.129 ± 0.011	0.078 ± 0.006 0.097 ± 0.018 0.070 ± 0.003 0.068 ± 0.003 0.142 ± 0.007 0.097 ± 0.037 0.053 ± 0.005	0.087 ± 0.004	0.123 ± 0.005 0.123 ± 0.008	$\begin{array}{c} 0.062 \pm 0.002 \\ 0.100 \pm 0.004 \end{array}$	0.093 ± 0.008 0.132 ± 0.182 0.061 ± 0.003	0.141 ± 0.010 0.194 ± 0.018 0.144 ± 0.011 0.143 ± 0.008 0.203 ± 0.023 0.116 ± 0.012	0.211 ± 0.007	$\begin{array}{c} 0.087 \pm 0.003 \\ 0.104 \pm 0.003 \\ 0.202 \pm 0.006 \\ 0.031 \pm 0.005 \\ 0.071 \pm 0.005 \\ 0.153 \pm 0.029 \\ 0.307 \pm 0.010 \\ \end{array}$
Ca/K	6.765 ± 0.254 2.056 ± 0.064 1.663 ± 0.071	1.329 ± 0.078 1.213 ± 0.164 0.110 ± 0.008	0.278 ± 0.013	0.319 ± 0.017 0.710 ± 0.017 0.441 ± 0.052	0.138 ± 0.009 0.167 ± 0.028 0.146 ± 0.003 0.144 ± 0.014 0.176 ± 0.019 0.156 ± 0.011 0.138 ± 0.004 0.253 ± 0.026 0.253 ± 0.027 0.252 ± 0.027 0.252 ± 0.027 0.252 ± 0.027 0.253 ± 0.027 0.253 ± 0.027 0.253 ± 0.027 0.254 ± 0.027 0.255 ± 0.027 0.257 ± 0.027	0.228 ± 0.013 0.263 ± 0.032 0.321 ± 0.007 0.232 ± 0.011 0.569 ± 0.012 0.331 ± 0.011	0.370 ± 0.014	0.407 ± 0.007 0.350 ± 0.018	$\begin{array}{c} 0.216 \pm 0.005 \\ 0.278 \pm 0.012 \end{array}$	0.166 ± 0.006 0.161 ± 0.008 0.145 ± 0.006	1.202 ± 0.077 1.585 ± 0.126 1.224 ± 0.081 1.186 ± 0.057 1.467 ± 0.120 1.018 ± 0.043	0.261 ± 0.010	0.267 ± 0.007 0.345 ± 0.007 0.657 ± 0.014 0.211 ± 0.009 0.414 ± 0.009 0.600 ± 0.067 0.953 ± 0.027
分面数	30 41 31	31 35 40	12	36 40 45	171 1443 177 173 173 173 173 173 173 173 173 17	48144246 4864566	17	21	30	20 30 31	51 50 50 39 34	89	39 39 44 40 40 40 40 40
産 地工群名	箱根·笛塚 / · 知宿 般 冶 屋	上右小多峠豆賀西岸	魚	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	霧和 應男麦双大横田。。。。。山子峠 · 女草子窪 佛子兰三四五六田倉峠池沢川	佐 上板大金羽波。石 白 根第第一二川山川川川川津川	北潮	(三) (五) (三) (五) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三	香住第一群 《第二群	口 世 人 数 井 民	魔池等一群 (* 第二群 (* 第二群 (* 第二年 (* 14年) (* 14年) (* 14年) (* 14年) (* 14年)	八女昭和溜池	中、梅腰維松。野、尾、兔等、紫绵、紫绵等、紫绵等,其外等。 医足术性 计二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十
原 産原石群	神奈川県	静岡県	富山県	極屋七		新潟県	石川県	福井県	兵庫県	島根県	香川県	福岡県	佐賀県

×	0.011 0.009 0.011 0.017 0.014 0.015	0.009 0.011 0.016	0.007 0.008 0.010 0.015	0.006 0.010 0.011 0.011 0.001 0.005 0.008 0.008 0.010	0.007 0.008 0.008 0.009 0.003 0.012 0.012 0.0010	0.011 0.019 0.022	0.014 0.013 0.019 0.006 0.006 0.011 0.011	0.010	0.030
Si/K	0.418 ± 0.419 ± 0.451 ± 0.471 ± 0.469 ± 0.448 ±	0.371 ± 0.310 ± 0.288 ±	0.276 ± 0.275 ± 0.338 ± 0.339 ±	0.340 ± 0.337 ± 1 ± 0.337 ± 1 ± 0.333 ± 1 ± 0.345 ± 0.345 ± 0.	0.320 0.243 # # # # # # # # # # # # # # # # # # #	0.314 ± 0.323 ± 0.446 ±	0.358 0.378 ± 0.390 ± 0.275 ± 0.275 ± 0.275 ± 0.391 ± 0.408 ± 0.524 ±	$0.407 \pm$	0.460 ±
Al/K	0.035 ± 0.002 0.035 ± 0.002 0.038 ± 0.002 0.040 ± 0.004 0.040 ± 0.003 0.037 ± 0.002	0.028 ± 0.002 0.032 ± 0.005 0.012 ± 0.010	$\begin{array}{c} 0.023 \pm 0.002 \\ 0.023 \pm 0.003 \\ 0.023 \pm 0.002 \\ 0.021 \pm 0.009 \end{array}$	$\begin{array}{c} 0.025 \pm 0.002 \\ 0.024 \pm 0.002 \\ 0.025 \pm 0.002 \\ 0.026 \pm 0.002 \\ 0.026 \pm 0.002 \\ 0.026 \pm 0.002 \\ 0.028 \pm$	$\begin{array}{c} 0.023 \pm 0.002 \\ 0.021 \pm 0.002 \\ 0.020 \pm 0.003 \\ 0.035 \pm 0.003 \\ 0.027 \pm 0.004 \\ 0.031 \pm 0.003 \\ 0.037 \pm 0.003 \\ 0.037 \pm 0.003 \\ 0.030 \pm 0.004 \\ 0.032 \pm 0.004 \\ 0.022 \pm 0.004 \\ 0.002 \pm$	$\begin{array}{c} 0.020 \pm 0.003 \\ 0.022 \pm 0.002 \\ 0.035 \pm 0.019 \end{array}$	$\begin{array}{c} 0.022 \pm 0.008 \\ 0.024 \pm 0.008 \\ 0.023 \pm 0.014 \\ 0.019 \pm 0.001 \\ 0.019 \pm 0.001 \\ 0.038 \pm 0.003 \\ 0.033 \pm 0.003 \\ 0.037 \pm 0.003 \\ 0.037 \pm 0.003 \end{array}$	0.029 ± 0.007	0.039 ± 0.010
Nb/Zr	0.622 ± 0.099 0.669 ± 0.105 0.240 ± 0.041 0.137 ± 0.028 0.133 ± 0.025 0.245 ± 0.050	0.102 ± 0.020 0.032 ± 0.018 0.055 ± 0.021	0.354 ± 0.014 0.356 ± 0.012 0.717 ± 0.047 0.714 ± 0.040	$\begin{array}{c} 0.254 \pm 0.046 \\ 0.204 \pm 0.049 \\ 0.139 \pm 0.036 \\ 0.132 \pm 0.036 \\ 0.119 \pm 0.017 \\ 0.047 \pm 0.023 \\ 0.047 \pm 0.024 \\ 0.265 \pm 0.044 \\ 0.247 \pm 0.039 \\ 0.137 \pm 0.039 \\ 0.133 \pm 0.024 \\ 0.134 \pm$	$\begin{array}{c} 0.097 \pm 0.017 \\ 0.031 \pm 0.009 \\ 0.031 \pm 0.009 \\ 0.041 \pm 0.012 \\ 0.047 \pm 0.013 \\ 0.029 \pm 0.014 \\ 0.029 \pm 0.014 \\ 0.043 \pm 0.013 \\ 0.040 \pm 0.008 \\ 0.040 \pm 0.009 \\ 0.040 \pm 0.002 \\ 0.027 \pm 0.022 \\ 0.027 \pm$	0.063 ± 0.024 0.047 ± 0.036 0.000 ± 0.000	$\begin{array}{c} 0.041 \pm 0.032 \\ 0.039 \pm 0.027 \\ 0.036 \pm 0.013 \\ 0.029 \pm 0.013 \\ 0.022 \pm 0.003 \\ 0.022 \pm 0.000 \\ 0.021 \pm 0.010 \\ 0.069 \pm 0.022 \\ 0.066 \pm 0.020 \\ 0.066 \pm 0.020 \\ \end{array}$	0.024 ± 0.017	0.009 ± 0.014
Y/Zr	0.325 ± 0.088 0.355 ± 0.057 0.144 ± 0.031 0.109 ± 0.021 0.101 ± 0.022 0.151 ± 0.033	0.175 ± 0.018 0.097 ± 0.016 0.089 ± 0.018	0.135 ± 0.018 0.129 ± 0.014 0.344 ± 0.040 0.334 ± 0.046	0.271 ± 0.064 0.244 ± 0.074 0.1248 ± 0.052 0.135 ± 0.035 0.135 ± 0.035 0.135 ± 0.035 0.136 ± 0.025 0.144 ± 0.037 0.127 ± 0.032	$\begin{array}{c} 0.175 \pm 0.233 \\ 0.069 \pm 0.012 \\ 0.096 \pm 0.011 \\ 0.096 \pm 0.011 \\ 0.064 \pm 0.011 \\ 0.103 \pm 0.014 \\ 0.098 \pm 0.016 \\ 0.101 \pm 0.016 \\ 0.091 \pm 0.016 \\ 0.091 \pm 0.016 \\ 0.091 \pm 0.016 \\ 0.0162 \pm 0.027 \\ \end{array}$	0.266 ± 0.034 0.205 ± 0.029 0.035 ± 0.019	$\begin{array}{c} 0.281 \pm 0.031 \\ 0.235 \pm 0.020 \\ 0.143 \pm 0.023 \\ 0.100 \pm 0.018 \\ 0.108 \pm 0.015 \\ 0.087 \pm 0.009 \\ 0.093 \pm 0.010 \\ 0.127 \pm 0.023 \\ 0.146 \pm 0.021 \end{array}$	0.123 ± 0.012	0.126 ± 0.011
比 Sr/Zr	$\begin{array}{c} 1.572 \pm 0.180 \\ 1.660 \pm 0.173 \\ 3.162 \pm 0.189 \\ 4.002 \pm 0.174 \\ 4.010 \pm 0.197 \\ 3.234 \pm 0.264 \end{array}$	0.686 ± 0.082 1.526 ± 0.053 0.712 ± 0.043	$\begin{array}{c} 0.011 \pm 0.004 \\ 0.013 \pm 0.005 \\ 0.035 \pm 0.008 \\ 0.022 \pm 0.013 \end{array}$	$\begin{array}{c} 0.429 \pm 0.026 \\ 0.309 \pm 0.083 \\ 0.4054 \pm 0.093 \\ 0.454 \pm 0.039 \\ 0.485 \pm 0.039 \\ 0.485 \pm 0.028 \\ 0.421 \pm 0.060 \\ 1.877 \pm 0.048 \\ 0.419 \pm 0.048 \\ 0.219 \pm 0.025 \\ 0.181 \pm 0.022 \\ 0.181 $	$\begin{array}{c} 0.703 \pm 0.044 \\ 0.278 \pm 0.015 \\ 0.275 \pm 0.010 \\ 0.275 \pm 0.010 \\ 0.2736 \pm 0.092 \\ 0.2736 \pm 0.017 \\ 1.154 \pm 0.055 \\ 0.811 \pm 0.046 \\ 1.285 \pm 0.104 \\ 1.285 \pm 0.122 \\ 0.351 \pm 0.037 \\ 0.351 \pm 0.037 \end{array}$	0.418 ± 0.020 0.753 ± 0.039 0.155 ± 0.005	$\begin{array}{c} 0.340 \pm 0.032 \\ 0.428 \pm 0.049 \\ 0.675 \pm 0.049 \\ 0.408 \pm 0.025 \\ 0.405 \pm 0.021 \\ 1.105 \pm 0.056 \\ 1.266 \pm 0.049 \\ 0.688 \pm 0.052 \\ 0.553 \pm 0.029 \\ \end{array}$	0.519 ± 0.017	0.497 ± 0.016
素 Rb/Zr	$\begin{array}{c} 1.829 \pm 0.220 \\ 1.917 \pm 0.194 \\ 0.614 \pm 0.077 \\ 0.305 \pm 0.067 \\ 0.286 \pm 0.048 \\ 0.605 \pm 0.096 \end{array}$	0.600 ± 0.051 0.284 ± 0.031 0.303 ± 0.019	0.385 ± 0.012 0.389 ± 0.012 1.726 ± 0.085 1.834 ± 0.064	$\begin{array}{c} 1.538 \pm 0.176 \\ 1.523 \pm 0.193 \\ 0.8526 \pm 0.112 \\ 0.853 \pm 0.030 \\ 0.533 \pm 0.030 \\ 0.533 \pm 0.089 \\ 0.654 \pm 0.085 \\ 1.714 \pm 0.195 \\ 1.204 \pm 0.105 \\ 0.788 \pm 0.108 \\ 0.833 \pm 0.058 \\ 0.833 \pm 0.038 \\ 0.912 \pm 0.036 \\ 0.912 $	$\begin{array}{c} 0.611 \pm 0.032 \\ 0.326 \pm 0.012 \\ 0.329 \pm 0.017 \\ 0.247 \pm 0.014 \\ 0.256 \pm 0.018 \\ 0.279 \pm 0.018 \\ 0.253 \pm 0.015 \\ 0.253 \pm 0.015 \\ 0.252 \pm 0.016 \\ 0.257 \pm 0.016 \\ 0.257 \pm 0.016 \\ 1.021 \pm 0.099 \\ \end{array}$	1.080 ± 0.048 1.242 ± 0.060 0.009 ± 0.004	0.948 ± 0.055 0.768 ± 0.034 0.742 ± 0.021 0.705 ± 0.027 0.188 ± 0.013 0.184 ± 0.013 0.614 ± 0.028	0.353 ± 0.019	0.199 ± 0.011
元 Fe/Zr	6.897 ± 0.806 7.248 ± 0.668 4.399 ± 0.322 3.491 ± 0.231 3.460 ± 0.301 4.398 ± 0.425	1.489 ± 0.124 5.509 ± 0.269 1.361 ± 0.095	1.176 ± 0.043 1.174 ± 0.035 1.691 ± 0.100 1.746 ± 0.073	$\begin{array}{c} 2.554 \pm 0.181 \\ 2.288 \pm 0.319 \\ 1.933 \pm 0.231 \\ 1.890 \pm 0.157 \\ 1.744 \pm 0.069 \\ 1.849 \pm 0.104 \\ 1.849 \pm 0.105 \\ 2.649 \pm 0.195 \\ 2.866 \pm 0.173 \\ 2.865 \pm 0.146 \\ 1.687 \pm 0.146 \\ 1.686 \pm 0.114 \\ 1.710 \pm 0.081 \\ \end{array}$	1.441 ± 0.070 0.788 ± 0.033 0.794 ± 0.078 4.494 ± 0.460 0.780 ± 0.038 6.205 ± 0.305 1.208 ± 0.023 4.977 ± 0.587 4.571 ± 0.572 1.382 ± 0.086	1.521 ± 0.075 1.743 ± 0.095 0.038 ± 0.002	$\begin{array}{c} 1.611 \pm 0.079 \\ 1.488 \pm 0.074 \\ 1.484 \pm 0.097 \\ 1.178 \pm 0.040 \\ 1.170 \pm 0.064 \\ 3.372 \pm 0.115 \\ 3.375 \pm 0.182 \\ 1.494 \pm 0.093 \\ 1.815 \pm 0.062 \\ \end{array}$	1.862 ± 0.079	1.572 ± 0.059
Mn/Zr	0.428 ± 0.057 0.450 ± 0.061 0.194 ± 0.026 0.126 ± 0.016 0.122 ± 0.012 0.189 ± 0.030	$\begin{array}{c} 0.065 \pm 0.010 \\ 0.096 \pm 0.008 \\ 0.051 \pm 0.008 \end{array}$	0.030 ± 0.005 0.033 ± 0.006 0.059 ± 0.009 0.056 ± 0.009	$\begin{array}{c} 0.072 \pm 0.016 \\ 0.071 \pm 0.024 \\ 0.051 \pm 0.016 \\ 0.045 \pm 0.015 \\ 0.044 \pm 0.009 \\ 0.057 \pm 0.015 \\ 0.083 \pm 0.018 \\ 0.084 \pm 0.023 \\ 0.051 \pm 0.009 \\ 0.051 \pm 0.009 \\ 0.051 \pm 0.009 \\ 0.051 \pm 0.009 \\ 0.041 \pm 0.002 \\ 0.041 \pm 0.012 \end{array}$	0.063 ± 0.007 0.034 ± 0.003 0.073 ± 0.005 0.075 ± 0.008 0.085 ± 0.011 0.045 ± 0.005 0.080 ± 0.011 0.078 ± 0.011 0.078 ± 0.011 0.075 ± 0.011	0.070 ± 0.009 0.066 ± 0.010 0.041 ± 0.002	$\begin{array}{c} 0.047 \pm 0.008 \\ 0.047 \pm 0.008 \\ 0.037 \pm 0.007 \\ 0.022 \pm 0.007 \\ 0.019 \pm 0.003 \\ 0.053 \pm 0.006 \\ 0.065 \pm 0.006 \\ 0.065 \pm 0.013 \\ 0.065 \pm 0.013 \\ 0.065 \pm 0.010 \end{array}$	0.038 ± 0.007	0.046 ± 0.007
Ti/K	0.045 ± 0.003 0.045 ± 0.003 0.140 ± 0.013 0.211 ± 0.026 0.224 ± 0.024 0.141 ± 0.016	0.127 ± 0.009 0.670 ± 0.013 0.286 ± 0.015	0.066 ± 0.002 0.065 ± 0.002 0.038 ± 0.002 0.037 ± 0.002	$\begin{array}{c} 0.032 \pm 0.008 \\ 0.031 \pm 0.005 \\ 0.066 \pm 0.006 \\ 0.080 \pm 0.004 \\ 0.081 \pm 0.015 \\ 0.081 \pm 0.015 \\ 0.076 \pm 0.005 \\ 0.055 \pm 0.007 \\ 0.051 \pm 0.015 \\ 0.055 \pm 0.005 \\ 0.051 \pm 0.015 \\ 0.051 \pm 0.015 \\ 0.052 \pm 0.005 \\ 0.055 \pm 0.010 \\ 0.055 \pm 0.010 \\ 0.055 \pm 0.005 \\ 0.055 \pm 0.010 \\ 0.055 \pm 0.010 \\ 0.055 \pm 0.010 \\ 0.055 \pm 0.005 \\ 0.055 \pm 0.010 \\ 0.055 \pm 0.005 \\ 0.055 \pm$	0.127 ± 0.005 0.214 ± 0.007 0.214 ± 0.006 0.665 ± 0.035 0.722 ± 0.046 0.722 ± 0.009 0.694 ± 0.036 0.602 ± 0.041 0.612 ± 0.030	0.094 ± 0.006 0.094 ± 0.006 5.001 ± 0.175	$\begin{array}{c} 0.083 \pm 0.005 \\ 0.106 \pm 0.006 \\ 0.176 \pm 0.006 \\ 0.143 \pm 0.006 \\ 0.140 \pm 0.006 \\ 0.804 \pm 0.037 \\ 0.912 \pm 0.028 \\ 0.167 \pm 0.006 \\ 0.137 \pm 0.006 \\ 0.137 \pm 0.006 \end{array}$	0.198 ± 0.007	0.166 ± 0.007
Ca/K	0.216 ± 0.017 0.221 ± 0.021 0.634 ± 0.047 1.013 ± 0.140 1.074 ± 0.110 0.653 ± 0.066	0.313 ± 0.023 1.615 ± 0.042 0.482 ± 0.036	0.172 ± 0.009 0.174 ± 0.007 0.146 ± 0.009 0.135 ± 0.010	0.215 ± 0.018 0.183 ± 0.011 0.284 ± 0.023 0.384 ± 0.014 0.243 ± 0.019 0.199 ± 0.011 0.266 ± 0.035 0.266 ± 0.035 0.176 ± 0.012	$\begin{array}{c} 0.317 \pm 0.023 \\ 0.261 \pm 0.016 \\ 0.258 \pm 0.009 \\ 1.534 \pm 0.0139 \\ 0.261 \pm 0.012 \\ 1.599 \pm 0.107 \\ 0.791 \pm 0.082 \\ 1.668 \pm 0.165 \\ 1.471 \pm 0.136 \\ 0.208 \pm 0.021 \\ 0.208 \pm 0.021 \\ \end{array}$	$\begin{array}{c} 0.207 \pm 0.015 \\ 0.261 \pm 0.015 \\ 35.158 \pm 1.118 \end{array}$	0.186 ± 0.010 0.247 ± 0.018 0.584 ± 0.018 0.262 ± 0.012 0.266 ± 0.021 1.629 ± 0.098 1.629 ± 0.098 0.533 ± 0.032 0.553 ± 0.032	0.510 ± 0.010	0.473 ± 0.012
公 面 村数	141 332 10 229 259	30 50 64	37 28 28 49	22 24 22 24 25 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27	08847223447 088472488447 088447	47 33 36	444464646 66727714880	37	72
群 相	観両**** 音瀬。。才稲 音第第第イ 略字第第	黎 获 白 踏方下尾平	を有して、なり、なり、なり、なり、なり、なり、なり、なり、なり、は、は、は、は、は、は、	松 淀中 古 松大浦、、、 町、里、、第第第第 第第第第第 一二三三四姫一二二二三百倍	小南 大冠湾箱長五御白蕪 ケ空石合瀬 園関 柿岳坂峠峠 船浜	秦 へ 本 ・ 第 ・ 第 ・ 第 ・ 第 ・ 第 ・ 第 ・ 第 ・ 第 ・ 第 ・ 第 一 群 一 に ま の に に ま の に に ま の に に ま の に に に に に に に に に に に に に	間、。。日五上平竜長大第第第 女牛木ケ平二三二十二二十十二三二十十二二十十二二十十十二二十十十二二十十十二二十十十二	台東山脈	カムチャッカ
魔 原石群(岳								
道	大分県		長崎県		票本	宮崎県	鹿児島」	一分	ロシア

原石群名 1 分析 Ca/K	S 1 遺物群 67 0.241±0.021 0 R 2 遺物群 67 0.453±0.011 0 R 2 遺物群 51 0.643±0.012 0 R 3 遺物群 59 0.535±0.061 0 H 4 遺物群 44 0.261±0.043 0 T 1 遺物群 32 0.898±0.037 0 T 2 遺物群 32 0.898±0.035 0 S 1 遺物群 38 0.959±0.007 0 S 2 遺物群 48 0.275±0.007 0 S 2 遺物群 48 0.674±0.011 0 S 2 遺物群 48 0.164±0.007 0 S 3 遺物群 48 0.164±0.007 0	HY遺物群 31 0.238 ± 0.011 0.13 SN1遺物群 33 0.287 ± 0.006 0.08 SN2遺物群 29 0.209 ± 0.006 0.11 KN遺物群 107 0.351 ± 0.011 0.12	日 遺物 群 60 0.252 ± 0.014 0.1 当 適	A C 1 遺物群 63 0.479 ± 0.014 0.192 A C 2 遺物群 48 0.251 ± 0.007 0.081 I N 2 遺物群 48 0.251 ± 0.016 0.144 I N 2 遺物群 48 0.326 ± 0.012 0.078 I N 2 遺物群 48 0.745 ± 0.013 0.110	県 NK遺物群 57 0.566±0.019 0.1	県 YM遺物群 56 0.381±0.016 0.138 NM遺物群 40 0.330±0.010 0.103 MK - 1 遺物群 48 0.087±0.008 0.059 MK - 2 遺物群 48 0.258±0.010 0.026	県 HB1遺物群 48 0.197±0.035 0.7 HB2遺物群 48 0.414±0.100 1.5	島県 KI1遺物群 45 0.383±0.012 0.1 KI2遺物群 46 0.402±0.015 0.1 UT1遺物群 46 0.297±0.013 0.1 SG遺物群 48 1.668±0.034 0.7 KK1遺物群 32 1.371±0.074 0.6 KK2遺物群 48 0.347±0.010 0.6 KK2遺物群 46 0.521±0.012 0.1	無 会警城外遺跡 70 0.135±0.012 0.0遺物群	イリスタヤ 26 18.888 ± 2.100 6.0 パラトウンカー1 56 0.706 ± 0.048 0.2 パラトウンカー2 48 0.384 ± 0.008 0.0 パラトウンカー3 48 0.384 ± 0.008 0.0 パラトウンカー4 48 0.141 ± 0.007 0.0 アバチャ 40 0.220 ± 0.008 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	群=歯戸・電戸山群に一致、FR2群=ケショマップ第一幕 土橋準偏差値、 **・ガラン宮安山は、NK追物群:中ッ関 物群:楠木造跡、UT遺物群:内屋敷造跡、A1遺物群: 物群:北区1遺跡、K5遺物群:キウス4道跡A1上銭
Ti/K Mn/Zr	$\begin{array}{c} 1.07\pm0.005 \\ 1.35\pm0.008 \\ 1.35\pm0.008 \\ 1.35\pm0.008 \\ 1.36\pm0.008 \\ 1.36\pm0.007 \\ 1.36\pm0.007 \\ 1.36\pm0.009 \\ 1.36\pm0.019 $	$31 \pm 0.006 0.048 \pm 0.008 87 \pm 0.004 0.033 \pm 0.005 16 \pm 0.006 0.076 \pm 0.008 21 \pm 0.006 0.053 \pm 0.007 $	# 0.007 0.124 # 0.01 # 0.010 0.078 # 0.00 # 0.021 0.080 # 0.00 # 0.025 0.067 # 0.00 # 0.027 0.101 # 0.00 # 0.027 0.101 # 0.00 # 0.027 0.101 # 0.00 # 0.016 0.118 # 0.01	22 ± 0.006 0.054 ± 0.008 31 ± 0.003 0.112 ± 0.013 14 ± 0.005 0.083 ± 0.010 78 ± 0.004 0.066 ± 0.010 10 ± 0.004 0.140 ± 0.015	63 ± 0.007 0.086 ± 0.011	38 ± 0.005 0.038 ± 0.012 33 ± 0.003 0.042 ± 0.012 59 ± 0.002 0.010 ± 0.003 26 ± 0.002 0.055 ± 0.013	54 ± 0.055 0.098 ± 0.042 57 ± 0.674 0.110 ± 0.044	$\begin{array}{c} 1.01 \pm 0.005 & 0.061 \pm 0.024 \\ 1.46 \pm 0.008 & 0.060 \pm 0.017 \\ 1.07 \pm 0.005 & 0.053 \pm 0.010 \\ 1.087 \pm 0.025 & 0.061 \pm 0.008 \\ 0.802 \pm 0.025 & 0.061 \pm 0.008 \\ 0.803 \pm 0.003 & 0.081 \pm 0.012 \\ 0.804 \pm 0.003 & 0.081 \pm 0.012 \\ 0.004 & 0.076 \pm 0.013 \\ 0.012 \pm 0.003 & 0.014 \\ 0.016 \pm 0.013 \\ 0.018 \pm 0.$	$062 \pm 0.006 0.017 \pm 0.003$	$\begin{array}{c} 088 \pm 0.868 & 0.293 \pm 0.032 \\ 225 \pm 0.011 & 0.048 \pm 0.010 \\ 269 \pm 0.006 & 0.031 \pm 0.006 \\ 097 \pm 0.004 & 0.043 \pm 0.007 \\ 074 \pm 0.003 & 0.029 \pm 0.004 \\ 104 \pm 0.004 & 0.099 \pm 0.016 \\ 160 \pm 0.005 & 0.029 \pm 0.004 \\ \end{array}$	+ +	群に一致 原遺跡、 R Y 遺物群:日和山道 相ノ沢遺跡、 F S 遺物群: 房 / S G 遺物群: 志 風頭遺跡、 O S G 遺物群: 志 風頭遺跡、 O
元 素 Fe/Zr Rb/Zr	$\begin{array}{c} 1.296 \pm 0.077 & 0.430 \pm 0.0 \\ 1.765 \pm 0.075 & 0.448 \pm 0.0 \\ 2.545 \pm 0.138 & 0.557 \pm 0.0 \\ 2.548 \pm 0.145 & 0.586 \pm 0.0 \\ 2.540 \pm 0.101 & 0.426 \pm 0.0 \\ 2.540 \pm 0.101 & 0.426 \pm 0.0 \\ 2.540 \pm 0.101 & 0.426 \pm 0.0 \\ 2.882 \pm 0.092 & 0.542 \pm 0.0 \\ 1.751 \pm 0.051 & 0.836 \pm 0.0 \\ 1.755 \pm 0.126 & 1.480 \pm 0.0 \\ 2.565 \pm 0.126 & 1.031 \pm 0.0 \\ 2.162 \pm 0.122 & 1.031 \pm 0.0 \\ \end{array}$	$\begin{array}{c} 1.636 \pm 0.066 & 0.418 \pm 0.0 \\ 1.597 \pm 0.037 & 0.244 \pm 0.0 \\ 1.571 \pm 0.082 & 0.716 \pm 0.0 \\ 1.581 \pm 0.071 & 0.347 \pm 0.0 \\ \end{array}$	849±0.073 0.167±0. 752±0.062 0.094±0. 752±0.000 0.114±0. 055±0.077 0.083±0. 787±0.108 0.117±0. 922±0.077 0.117±0.	$\begin{array}{c} 1.561 \pm 0.075 & 0.400 \pm 0.0 \\ 2.081 \pm 0.076 & 0.904 \pm 0.0 \\ 1.891 \pm 0.051 & 0.202 \pm 0.0 \\ 2.056 \pm 0.177 & 0.901 \pm 0.0 \\ 3.176 \pm 0.212 & 0.728 \pm 0.0 \\ \end{array}$	1.822 ± 0.084 0.467 ± 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.099 ± 0.844 0.434 ± 0.000	$\begin{array}{c} 1.913 \pm 0.158 & 0.985 \pm 0.0 \\ 1.529 \pm 0.148 & 0.729 \pm 0.0 \\ 1.638 \pm 0.104 & 1.012 \pm 0.0 \\ 4.106 \pm 0.222 & 0.202 \pm 0.0 \\ 3.085 \pm 0.155 & 0.887 \pm 0.0 \\ 3.125 \pm 0.222 & 0.877 \pm 0.0 \\ \end{array}$	1.118 ± 0.051 0.585 ± 0.0	$\begin{array}{c} 27.963 \pm 2.608 & 0.055 \pm 0.0181 \\ 1.851 \pm 0.180 & 0.246 \pm 0.01604 \pm 0.049 \pm 0.0180 \\ 1.642 \pm 0.053 & 0.262 \pm 0.0180 \pm 0.029 \pm 0.0180 \\ 1.261 \pm 0.065 & 0.083 \pm 0.0181 \\ 1.121 \pm 0.034 & 0.192 \pm 0.0181 \\ \end{array}$	0.993 ± 0.	遺跡、SN遺物群:三内丸山遺跡出ノ沢遺跡、SD遺物群:下舘銅属遺水、BD遺物群:下舘銅属遺影、K遺物群:與在電池時、時間の場份。
比 Sr/Zr	0.16 0.153 ± 0.009 (0.021 0.419 ± 0.019 (0.021 0.419 ± 0.019 (0.051 0.685 ± 0.022 (0.056 0.679 ± 0.032 (0.058 0.679 ± 0.032 (0.058 0.679 ± 0.032 (0.058 0.468 ± 0.032 (0.058 0.468 ± 0.021 (0.058 0.468 ± 0.021 (0.058 0.468 ± 0.021 (0.058 0.468 ± 0.021 (0.058 0.468 ± 0.021 (0.058 0.468 ± 0.021 (0.058 0.468 ± 0.021 (0.058 0.468 ± 0.021 (0.058 0.468 ± 0.019 (0.058 0.458 ± 0.025 (0.058 0.025 (0.058 0.025 (0.058 0.025 (0.058 0.036 0.025 (0.058 0.036 0.025 (0.058 0.036 0.025 (0.058 0.036 0.025 (0.058 0.036 0.025 (0.058 0.036 0.025 (0.058 0.036 0.025 (0.058 0.036 0.036 0.025 (0.058 0.036 0.036 0.025 (0.058 0.036 0.036 0.025 (0.058 0.036 0.025 (0.058 0.036 0.036 0.036 0.025 (0.058 0.036 0.036 0.025 (0.058 0.036 0.0	0.028 1.441 ± 0.015 (0.011 0.258 ± 0.011 (0.035 0.292 ± 0.017 (0.020 0.219 ± 0.014 0	0.003 ± 0.038 0.752 6 ± 0.017 0.716 ± 0.019 0.090 ± 0.028 0.831 ± 0.030 0.832 ± 0.026 0.453 ± 0.024 0.906 ± 0.024	017 0.440 ± 0.019 035 0.406 ± 0.020 010 0.381 = 0.017 048 0.751 ± 0.045 039 1.582 ± 0.080	$0.31 1.691 \pm 0.064$	039 0.497 ± 0.026 057 0.518 ± 0.034 097 0.006 ± 0.002 092 0.297 ± 0.029	062 0.975 ± 0.130 088 1.209 ± 0.459	057 0.527 ± 0.038 0056 0.565 ± 0.038 0056 0.738 ± 0.039 0.014 0.699 ± 0.025 0.012 0.579 ± 0.027 0.36 1.487 ± 0.065 0.48 1.500 ± 0.074	0.068 ± 0.019	$\begin{array}{c} 0.017 & 2.716 \pm 0.162 \\ 0.014 & 0.752 \pm 0.070 \\ 0.007 & 0.398 \pm 0.0.16 \\ 0.011 & 0.753 \pm 0.026 \\ 0.007 & 0.150 \pm 0.006 \\ 0.28 & 0.500 \pm 0.026 \\ 0.007 & 0.151 \pm 0.008 \\ 0.007 & 0.151 \pm 0.008 \\ \end{array}$	$0.036 1.331 \pm 0.046$	
Y/Zr	$\begin{array}{c} 0.140 \pm 0.015 & 0.008 \\ 0.130 \pm 0.015 & 0.015 \\ 0.156 \pm 0.015 & 0.004 \\ 0.165 \pm 0.021 & 0.016 \\ 0.165 \pm 0.021 & 0.017 \\ 0.155 \pm 0.021 & 0.017 \\ 0.109 \pm 0.013 & 0.017 \\ 0.107 \pm 0.015 & 0.012 \\ 0.180 \pm 0.013 & 0.012 \\ 0.180 \pm 0.012 & 0.023 \\ 0.389 \pm 0.042 & 0.037 \\ 0.389 \pm 0.042 & 0.050 \\ 0.263 \pm 0.028 & 0.050 \\ \end{array}$	0.482 ± 0.024 0.0 0.281 ± 0.012 0.0 0.264 ± 0.029 0.0 0.216 ± 0.015 0.0	251 ± 0.023 0 251 ± 0.013 0 242 ± 0.011 0 1.77 ± 0.010 0 207 ± 0.018 0 246 ± 0.013 0	$\begin{array}{c} 0.169 \pm 0.019 & 0.0 \\ 0.409 \pm 0.024 & 0.1 \\ 0.286 \pm 0.018 & 0.0 \\ 0.172 \pm 0.030 & 0.0 \\ 0.104 \pm 0.030 & 0.0 \\ \end{array}$	0.102 ± 0.021 0.0	0.128 ± 0.022 0.0 0.196 ± 0.037 0.0 0.125 ± 0.012 0.2 0.202 ± 0.037 0.1	$0.368 \pm 0.079 0.1$ $0.327 \pm 0.052 0.1$	0.197 ± 0.030 0.0 0.137 ± 0.024 0.0 0.168 ± 0.027 0.0 0.122 ± 0.014 0.0 0.119 ± 0.036 0.1 0.109 ± 0.034 0.1	$0.150 \pm 0.022 0.3$	0.163 ± 0.019 0.0 0.075 ± 0.016 0.0 0.095 ± 0.008 0.0 0.066 ± 0.026 0.0 0.106 ± 0.009 0.0 0.122 ± 0.030 0.0	0.02	2.排沢遺跡、HS邁 (麓郷1,2.遺跡、 4.遺物群:長林遺跡 3.湯物群・半井
	## 0.013	29 ± 0.028 0.020 ± 0.020 ± 0.021 ± 0.021 ± 0.021 ± 28 ± 0.030 0.023 ± 0.037 0.029 ± 0.037 0.029 ± 0.037 0.029 ± 0.037 0.029 ± 0.037 0.029 ± 0.037 0.029 ± 0.037 0.029 ± 0.037 0.029 ± 0.037 0.037 0.039 ± 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.	09 ± 0.037 0.020 ± 0.09 ± 0.012 0.058 ± 0.014 0.083 ± 11 ± 0.013 0.064 ± 0.027 0.091 ± 0.027 0.017 0.083 ± 0.017 0	.061 ± 0.015 0.033 ±	041 ± 0.028 $0.038 \pm$	$\begin{array}{c} 0.47 \pm 0.016 & 0.023 \pm \\ 0.58 \pm 0.018 & 0.022 \pm \\ 2.92 \pm 0.010 & 0.022 \pm \\ 1.77 \pm 0.022 & 0.021 \pm \end{array}$	$26 \pm 0.079 0.093 \pm 0.069 0.178 \pm$	$\begin{array}{c} .079 \pm 0.028 & 0.028 \pm 0.083 \pm 0.026 & 0.029 \pm 0.034 \pm 0.028 & 0.027 \pm 0.019 \pm 0.019 \pm 0.027 \pm 0.023 \pm 0.023 & 0.027 \pm 0.023 & 0.035 & $	372 ± 0.035 0.025 ±	$\begin{array}{cccc} 036\pm0.030 & 0.173\pm\\ 0.15\pm0.008 & 0.041\pm\\ 0.16\pm0.006 & 0.031\pm\\ 0.13\pm0.062 & 0.017\pm\\ 0.04\pm0.006 & 0.016\pm\\ 0.04\pm0.007 & 0.026\pm\\ 0.04\pm0.007 & 0.026\pm\\ 0.026\pm0.007 & 0.026\pm0.007 & 0.026\pm\\ 0.026\pm0.007 & 0.026\pm0.007 & 0.026\pm\\ 0.026\pm0.007 & 0.026\pm0.007 & 0.026\pm0.$	105 ± 0.017 0.028 ±	め群:北進遺跡、 F 日遺物群:東9線 M K 遺物群:南9線 H 声略 T T P 1
Si/K	0.012 0.325 ± 0.042 0.010 0.500 ± 0.015 0.011 0.407 ± 0.043 0.009 0.292 ± 0.037 0.008 0.292 ± 0.037 0.003 0.447 ± 0.011 0.003 0.447 ± 0.011 0.007 0.516 ± 0.010 0.007 0.515 ± 0.010 0.007 0.337 ± 0.010 0.002 0.337 ± 0.013 0.002 0.337 ± 0.013	0.015 0.481 ± 0.068 0.006 0.329 ± 0.006 0.009 0.383 ± 0.015 0.011 0.475 ± 0.040	017 0.929 ± 0.005 0.376 ± 0.002 0.353 ± 0.005 1.005 ± 0.005 0.002 0.002 0.001 0.339 ± 0.001 0.339 ± 0.003 0.	$\begin{array}{c} 0.005 & 0.427 \pm 0.016 \\ 0.003 & 0.419 \pm 0.007 \\ 0.005 & 0.616 \pm 0.013 \\ 0.030 & 0.338 \pm 0.007 \\ 0.003 & 0.396 \pm 0.010 \\ \end{array}$	$0.003 0.500 \pm 0.014$	$\begin{array}{c} 0.003 & 0.331 \pm 0.013 \\ 0.003 & 0.326 \pm 0.011 \\ 0.002 & 0.337 \pm 0.010 \\ 0.002 & 0.268 \pm 0.007 \end{array}$	$0.022 6.312 \pm 0.525$ $0.044 9.938 \pm 1.532$	$\begin{array}{cccc} 0.002 & 0.409 \pm 0.009 \\ 0.003 & 0.443 \pm 0.022 \\ 0.011 & 0.390 \pm 0.014 \\ 0.021 & 0.553 \pm 0.033 \\ 0.018 & 0.518 \pm 0.021 \\ 0.002 & 0.265 \pm 0.009 \\ 0.004 & 0.359 \pm 0.010 \\ \end{array}$	0.004 0.319 ± 0.012	$\begin{array}{cccc} 0.029 & 1.674 \pm 0.240 \\ 0.004 & 0.482 \pm 0.022 \\ 0.003 & 0.402 \pm 0.010 \\ 0.003 & 0.176 \pm 0.009 \\ 0.003 & 0.346 \pm 0.004 \\ 0.003 & 0.340 \pm 0.006 \\ 0.003 & 0.303 \pm 0.007 \end{array}$	$0.002 0.342 \pm 0.004$	8 遺跡、 7 遺跡、 7 道跡、 7 世 1 ント株)・7 久 年

九州西北地域原産地採取原石が各原石群に同定される割合の百分率(%) 表 7

			九州西	北地域原産地	也地区名(原	石個数)		
原 石 群	腰岳 (26)	淀姫 (44)	古里 陸地 (66)	古里 海岸 (21)	中町 (44)	牟田 (46)	大石 (39)	椎葉川 (59)
腰岳群	100		37			24	33	
淀 姫 群		100						
古里第一群	100		63	5		43	51	
第二群			11	57	2			100
第三群		95	25	33	88	50	26	
中町第一群		12	14	24	68	26	18	
第二群		98	14	24	57	39	28	
松浦第一群	88		32			24	33	
第二群	96		51	5	2	39	51	
第三群		57	24	33	91	54	49	
第四群		93	17	24	80	52	33	
椎 葉 川群			9	48	2			100

表 8 八久保第 2 遺跡出土黒耀石製石器の元素比分析結果

分析番号	Ca/K	Ti/K	Mn/Zr	元 Fe/Zr	素 Rb/Zr	比 Sr/Zr	Y/Zr	Nb/Zr	Al/K	Si/K
н Э	Ca/ II	1 1/ 11		1 C/ Z1	107 21	J1 / Z1	1 / 21	IND/ Z1	A1/ IX	
76232	0.305	0.104	0.038	1.647	1.040	0.713	0.200	0.064	0.031	0.372
76233	0.179	0.024	0.133	2.840	1.641	0.467	0.269	0.307	0.027	0.290
76234	0.220	0.092	0.077	1.452	0.958	0.400	0.305	0.062	0.027	0.354
76235	0.214	0.086	0.073	1.537	1.010	0.417	0.270	0.069	0.026	0.355
76236	0.210	0.094	0.088	1.712	1.097	0.390	0.275	0.052	0.028	0.367
76237	1.599	0.744	0.050	3.112	0.193	1.025	0.093	0.044	0.046	0.454
76238	0.116	0.051	0.065	1.452	1.048	0.355	0.299	0.099	0.017	0.223
76239	0.203	0.086	0.074	1.546	1.056	0.444	0.251	0.057	0.027	0.370
76240	0.303	0.102	0.062	1.888	1.138	0.747	0.185	0.112	0.035	0.394
76241	0.203	0.028	0.069	2.589	1.601	0.441	0.313	0.202	0.028	0.326
76242	0.179	0.023	0.077	2.704	1.679	0.457	0.297	0.190	0.024	0.277
76243	0.227	0.097	0.073	1.450	0.984	0.379	0.225	0.055	0.029	0.360
76244	0.227	0.094	0.063	1.584	1.054	0.370	0.277	0.086	0.029	0.369
76245	0.208	0.032	0.122	2.722	1.621	0.439	0.280	0.286	0.030	0.339
76246	0.173	0.026	0.080	2.427	1.540	0.383	0.288	0.256	0.023	0.276
76247	1.578	0.769	0.051	3.258	0.191	1.020	0.099	0.029	0.051	0.427
76248	0.231	0.032	0.090	2.918	1.678	0.439	0.319	0.272	0.032	0.359
76249	0.206	0.088	0.077	1.662	1.104	0.441	0.314	0.096	0.028	0.346
76250	0.242	0.030	0.088	2.809	1.590	0.429	0.344	0.310	0.031	0.350
76251	0.222	0.091	0.064	1.591	1.073	0.403	0.277	0.088	0.027	0.357
76252	0.220	0.102	0.078	1.492	0.999	0.412	0.267	0.061	0.030	0.339
76253	0.202	0.030	0.065	2.890	1.677	0.440	0.300	0.223	0.030	0.345
76254	0.353	0.083	0.059	1.713	0.560	0.510	0.106	0.103	0.032	0.366
76255	0.209	0.100	0.061	1.548	1.065	0.415	0.306	0.103	0.028	0.350
76256	0.215	0.030	0.068	2.542	1.531 0.820	0.423	0.356	0.274	0.027	0.351
76257	1.060	0.320	0.118	6.679	0.820	1.862	0.161	0.172	0.035	0.383
76258	0.207	0.096	0.059	1.472	1.011	0.437	0.291	0.065	0.030	0.363
76259	0.224	0.095	0.075	1.547	1.020	0.395	0.267	0.032	0.027	0.361
76260	$0.222 \\ 0.277$	$0.097 \\ 0.100$	0.062	1.480	1.037	0.384	0.288	0.075	0.029	0.341
76261	0.277	0.100	0.056	1.650	1.230	0.731	0.213	0.047	0.029	0.346
76262	$0.220 \\ 0.282$	$0.045 \\ 0.094$	0.404	6.546	$1.759 \\ 1.255$	$\frac{1.550}{0.781}$	0.399	0.535	0.041	0.394
76263 76264	$0.282 \\ 0.229$	$0.094 \\ 0.045$	0.102	1.853	$\frac{1.255}{2.036}$		0.238	0.060	0.032	0.366
76265	$0.229 \\ 0.282$	$0.045 \\ 0.095$	0.380	7.074	$\frac{2.036}{1.254}$	$\frac{1.668}{0.761}$	0.305	0.628	0.039	0.414
76266	0.282 0.205	0.095 0.085	$0.055 \\ 0.080$	$\frac{1.851}{1.708}$	$\frac{1.254}{1.086}$	$0.761 \\ 0.433$	$0.125 \\ 0.304$	$0.079 \\ 0.058$	$0.029 \\ 0.030$	$0.346 \\ 0.351$
76267	$\frac{0.203}{1.179}$	0.085	0.065	3.568	0.275	1.035	$0.304 \\ 0.089$	0.038 0.037	0.030 0.031	$0.351 \\ 0.294$
76268	0.514	$0.369 \\ 0.156$	0.063 0.054	1.585	0.273 0.628	0.671	0.089 0.118	0.037 0.056	$0.031 \\ 0.042$	0.294
76269	$0.314 \\ 0.223$	$0.130 \\ 0.091$	$0.054 \\ 0.063$	1.585 1.544	1.014	$0.671 \\ 0.400$	0.118 0.285	0.036	0.042 0.028	0.367
76270	0.223 0.216	0.031	0.065	$\frac{1.344}{2.745}$	1.649	$0.400 \\ 0.426$	$0.285 \\ 0.354$	0.083	0.028 0.026	0.335
76271	0.210 0.211	0.030 0.097	0.005	$\frac{2.743}{1.631}$	1.133	0.420 0.458	0.334 0.241	0.233 0.084	0.020	0.333 0.341
76272	0.211 0.263	0.094	0.069	1.857	1.133	0.438 0.787	0.241 0.264	0.050	0.031	0.341 0.332
76273	0.203 0.297	0.034 0.922	0.003 0.154	7.121	0.417	0.767	0.204 0.295	0.030	0.030 0.116	7.005
76274	0.224	0.093	0.134 0.071	1.534	1.036	0.300 0.471	0.233 0.242	0.103	0.031	0.342
76275	1.632	0.739	0.049	3.009	0.191	1.044	0.093	0.024	0.049	0.342 0.447
76276	0.578	3.078	0.055	5.063	0.075	0.621	0.258	0.019	0.278	12.122
76277	0.217	0.091	0.075	1.710	1.113	0.469	0.235	0.076	0.025	0.358
76278	0.356	0.081	0.035	1.828	0.527	0.481	0.114	0.124	0.039	0.349
76279	0.279	0.100	0.054	1.823	1.276	0.746	0.210	0.071	0.032	0.357
76280	0.212	0.032	0.089	2.595	1.566	0.409	0.392	0.252	0.031	0.342
76281	0.222	0.092	0.087	1.666	1.063	0.459	0.309	0.063	0.031	0.355

注:同定確率を1%以上に設定した。古里陸地で採取された原石1個(No.6)判定例 =古里第1群(62%)、松浦第1群(37%)、松浦第2群(23%)、腰岳(21%)が1%以上で同定され残りの125個の原石群に対しては1%以 下の同定確率であった。古里陸地(66個)の腰岳群37%は66個の中の37%個は腰岳群に1%以上の同定確率で帰属される。

分 析番 号	Ca/K	Ti/K	Mn/Zr	元 Fe/Zr	素 Rb/Zr	比 Sr/Zr	Y/Zr	Nb/Zr	A1/K	Si/K
76282	0.271	0.091	0.078	1.984	1.265	0.733	0.215	0.068	0.032	0.379
76283	0.241	0.091	0.078	1.632	1.011	0.418	0.317	0.058	0.029	0.352
76284	0.211	0.033	0.081	$\frac{1.032}{2.473}$	1.494	0.441	0.270	0.240	0.030	0.345
76285	0.223	0.023	0.095	1.659	1.049	0.375	0.326	0.061	0.032	0.374
76286	0.722	0.033 0.102	0.190	3.421	0.681	1.980	0.149	0.229	0.039	0.433
76287	0.229	0.093	0.075	1.580	0.989	0.403	0.331	0.070	0.031	0.344
76288	0.212	0.094	0.061	1.517	1.072	0.417	0.273	0.090	0.028	0.347
76289	0.212	0.033	0.084	2.445	1.573	0.422	0.341	0.281	0.035	0.342
76290	0.223	0.111	0.078	1.564	0.970	0.714	0.138	0.073	0.033	0.391
76291	0.204	0.031	0.071	2.601	1.564	0.412	0.243	0.233	0.032	0.349
76292	0.218	0.095	0.073	1.656	1.073	0.436	0.331	0.082	0.031	0.345
76293	0.211	0.084	0.090	1.587	1.061	0.388	0.261	0.074	0.026	0.344
76294	0.293	0.106	0.069	1.774	1.033	0.750	0.193	0.040	0.031	0.397
76295	0.210	0.030	0.058	2.341	1.470	0.421	0.294	0.252	0.029	0.336
76296	0.207	0.030	0.076	2.661	1.663	0.470	0.305	0.269	0.028	0.322
76297	0.205	0.030	0.095	2.759	1.651	0.438	0.296	0.259	0.030	0.339
76298	1.459	0.698	0.077	4.360	0.259	1.244	0.092	0.045	0.044	0.295
76299	0.271	0.088	0.052	1.650	1.182	0.693	0.145	0.048	0.028	0.361
76300	0.267	0.087	0.058	1.852	1.218	0.712	0.218	0.056	0.030	0.368
76301	0.304	0.113	0.043	1.552	0.925	0.668	0.169	0.066	0.031	0.363
76302	0.306	0.107	0.068	1.601	0.982	0.713	0.176	0.050	0.035	0.367
76303	0.179	0.029	0.070	2.328	1.446	0.411	0.307	0.260	0.025	0.262
76304	0.307	0.108	0.053	1.785	1.012	0.748	0.159	0.068	0.032	0.383
76305	0.230	0.046	0.586	8.026	1.987	1.630	0.409	0.633	0.041	0.404
76306	0.216	0.091	0.075	1.529	1.038	0.420	0.249	0.067	0.025	0.348
76307	0.210	0.029	0.059	2.688	1.621	0.467	0.265	0.255	0.032	0.340
76308	0.235	0.097	0.084	1.616	1.048	0.451	0.286	0.088	0.029	0.328
76309	0.344	0.085	0.038	1.832	0.541	0.496	0.071	0.114	0.034	0.343
76310	0.237	0.132	0.024	1.192	0.706	0.396	0.121	0.041	0.024	0.313
76311	0.323	0.118	0.044	1.462	0.970	0.692	0.139	0.022	0.036	0.379
76312	0.227	0.105	0.056	1.637	1.134	0.419	0.297	0.086	0.031	0.366
JG-1	0.811	0.221	0.070	3.899	0.930	1.279	0.310	0.073	0.022	0.299

JG-1:標準試料 - Ando, A., Kurasawa, H., Ohmori, T. & Takeda, E. 1974 compilation of data on the GJS geochemical reference samples JG-1 granodiorite and JB-1 basalt. Geochemical Journal, Vol.8 175-192 (1974)

表 9 八久保第 2 遺跡出土の黒耀石製遺物の原材産地推定結果

分 析番 号	遺物番号	層位	取 上番 号	原 石 産 地(確率)	判 定	備 考
76232		4	3	UT 1 遺物群(62%)	UT1遺物群	石鏃
76233	65	4	80	古里第1群(1%)	腰岳	石鏃
76234		4	102	桑ノ木津留第1群(30%)	桑ノ木津留	石鏃
76235		4	230	桑ノ木津留第1群 (60%)	桑ノ木津留	石鏃
76236		4	268	桑ノ木津留第1群(14%)	桑ノ木津留	石鏃
76237		4	271	上牛鼻(87%)、五ヶ瀬川(0.7%)	上牛鼻	石鏃
76238		4	395	【桑ノ木津留第1群(5%)】	桑ノ木津留	石鏃
76239		4	552	桑ノ木津留第1群 (70%)	桑ノ木津留	石鏃
76240		4	554	UT 1 遺物群 (4%) 、桑ノ木津留第2群 (0.3%)	UT1遺物群	石鏃
76241		4	708	腰岳 (82%) 、古里第1群 (78%) 、松浦第1群 (84%)	腰岳	石鏃
76242		4	852	松浦第2群(34%)、古里第1群(8%)、腰岳(4%)	腰岳	石鏃
76243		4	937	桑ノ木津留第1群 (50%)	桑ノ木津留	石鏃
76244		4	961	桑ノ木津留第1群 (7%)	桑ノ木津留	石鏃
76245		4	966	古里第1群(72%)、腰岳(32%)、松浦第1群(46%)	腰岳	石鏃
76246		4	984	古里第1群(37%)、松浦第1群(47%)、腰岳(1%)	腰岳	石鏃
76247	79	4	1052	上牛鼻 (82%)	上牛鼻	石鏃
76248	68	4	1081	古里第1群(37%)、松浦第1群(38%)、腰岳(16%)	腰岳	石鏃
76249		4	1116	桑ノ木津留第1群 (24%)	桑ノ木津留	石鏃
76250	90	4	1170	松浦第1群(24%)、古里第1群(11%)、腰岳(3%)	腰岳	石匙
76251		4	1297	桑ノ木津留第1群 (42%)	桑ノ木津留	未石匙
76252		4	1375	桑ノ木津留第1群(36%)、滝川第1群(3%)	桑ノ木津留	スクレイパー
76253		4	877	腰岳 (40%) 、古里第1群 (33%) 、松浦第1群 (27%)	腰岳	未石鏃
76254		4	1315	中町第2群(85%)、淀姫(25%)、古里第3群(29%)、松浦第4群(7%)	淀姫	未製品
76255		4	8	桑ノ木津留第1群(78%)	桑ノ木津留	
76256		4	136	腰岳 (94%) 、松浦第1群 (96%) 、古里第1群 (70%)	腰岳	角礫
76257		4	231	松尾第3群(15%)、松尾第2群(4%)	松尾	
76258		4	285	桑ノ木津留第1群(45%)、滝川第1群(3%)	桑ノ木津留	
76259		4	436	桑ノ木津留第1群(59%)	桑ノ木津留	
76260		4	498	桑ノ木津留第1群(76%)	桑ノ木津留	使用痕剥片

分 析 番 号	遺 物 番 号	層位	取 上番号	原 石 産 地 (確率)	判 定	備考
76261		4	555	桑ノ木津留第2群 (93%)	桑ノ木津留	
76262		4	627	観音崎(98%)、両瀬第1群(89%)	姫島	
76263		4	643	桑ノ木津留第2群 (15%)	桑ノ木津留	
76264		4	644	両瀬第1群(43%)、観音崎(32%)	姫島	
76265		4	671	桑ノ木津留第2群(15%)、UT1遺物群 (0.3%)	桑ノ木津留	
76266		4	703	桑ノ木津留第1群 (25%)	桑ノ木津留	
76267		4	828	五ヶ瀬川 (56%) 、大柿 (40%) 、御船 (32%) 、長谷峠 (17%)	五ヶ瀬川	
76268		4	833	竜ヶ水 (51%)	竜ヶ水	
76269		4	936	桑ノ木津留第1群 (50%)	桑ノ木津留	
76270		4	944	腰岳 (85%) 、古里第1群 (72%) 、松浦第1群 (44%)	腰岳	角礫
76271		4	976	桑ノ木津留第1群 (51%)	桑ノ木津留	
76272		4	1011	桑ノ木津留第2群 (62%)	桑ノ木津留	
76273		4	1099	HB1遺物群 (1%)	2K2 1111 III	フリント・碧
76274		4	1174	桑ノ木津留第1群(2%)	桑ノ木津留	7 7 1 21
76275		4	1192	上牛鼻(79%)、五ヶ瀬川(0.1%)	上牛鼻	
76276		4	1233	HB2遺物群 (21%)	2.19	フリント・碧雪
76277		4	1306	桑/木津留第1群 (6%)	桑ノ木津留	771 41-
76278		4	1345		淀姫	-
76279		4	1386	桑/木津留第2群 (45%)	桑ノ木津留	
76280	89	5	37	腰岳 (84%) 、古里第1群 (60%) 、松浦第 1 群 (33%)	腰岳	異形部分磨製石
76281	0.0	5	49	桑/木津留第1群(3%)、滝川第1群(0.4%)	桑ノ木津留	石鏃
76282	80	5	164	桑ノ木津留第2群(43%)	桑ノ木津留	石鏃
76283	- 00	5	221	桑ノ木津留第1群(5%)、滝川第1群(0.2%)	桑ノ木津留	石鏃
$\frac{76283}{76284}$		5	479	腰岳 (80%) 、古里第 1 群 (79%) 、松浦第 1 群 (54%)	無人 不佳留 腰岳	石鏃
76285		5	483	桑 / 木津留第 1 群 (2%)		
76286	77	5	747	大串 (15%)	桑ノ木津留 大串	石鏃
$\frac{76280}{76287}$	73	5		入中 (10%) 桑ノ木津留第1群 (14%) 、滝川第1群 (0.1%)		石鏃
76288	7.5	5	776	桑 / 木津留第 1 群 (98%) 桑 / 木津留第 1 群 (98%)	桑ノ木津留	石鏃
76289			970		桑ノ木津留	スクレイパー
		5	1018	腰岳(55%)、古里第1群(16%)、松浦第1群(18%)	腰岳	石匙
76290		5	1188	UT 1 遺物群(34%)	UT1遺物群	石鏃
76291		5	1335	松浦第1群 (96%)、古里第1群 (90%)、腰岳 (81%)	腰岳	石鏃
76292		5	1361	桑ノ木津留第1群 (25%)、滝川第1群 (0.2%)	桑ノ木津留	石鏃
76293		5	1407	桑ノ木津留第1群(12%)	桑ノ木津留	石鏃
76294		5	1509	UT1遺物群(88%)、二上山第1群(0.1%)	UT1遺物群	石鏃
76295		5	468	松浦第1群 (90%) 、古里第1群 (77%) 、腰岳 (73%)	腰岳	石鏃
76296		5	54	古里第1群(99%)、腰岳(88%)、松浦第1群(91%)	腰岳	角礫
76297		5	119	古里第1群(96%)、腰岳(92%)、松浦第1群(86%)	腰岳	円礫
76298		5	135	長谷峠(48%)、大柿(14%)、五ヶ瀬川(3%)	長谷峠	
76299		5	366	桑ノ木津留第2群(17%)	桑ノ木津留	
76300		5	476	桑ノ木津留第2群(70%)	桑ノ木津留	
76301		5	584	UT1遺物群(68%)、二上山第1群(1%)	UT1遺物群	
76302		5	668	UT 1 遺物群(87%)、二上山第 1 群(0.1%)	UT1遺物群	
76303		5	782	古里第1群(44%)、松浦第1群(26%)、腰岳(4%)	腰岳	角礫
76304		5	866	UT1遺物群 (63%) 、二上山第 1 群 (0.5%)	UT1遺物群	
76305		5	922	両瀬第1群(7%)、観音崎(3%)	姫島	
76306		5	1137	桑ノ木津留第1群(93%)	UT1遺物群	
76307		5	1209	腰岳 (81%) 、古里第1群 (75%) 、松浦第1群 (75%)	腰岳	角礫
76308		5	1257	桑ノ木津留第1群(3%)、滝川第1群(2%)	桑ノ木津留	
76309		5	1312	古里第3群(49%)、淀姫(22%)、中町第2群(45%)	淀姫	
76310		5		五女木(43%)、日東(32%)、白浜(3%)	日東	
76311		5	1419	UT 1 遺物群 (24%)	UT1遺物群	
76312			810	桑ノ木津留第1群 (10%)	桑ノ木津留	石鏃

注意: 近年産地分析を行う所が多くなりましたが、判定根拠が曖昧にも関わらず結果のみを報告される場合があます。本報告では日本における各遺跡の産地分析の判定基準を一定にして、産地分析を行っていますが、判定基準の異なる研究方法(土器様式の基準も研究方法で異なるように)にも関わらず、似た産地名のために同じ結果のように思われるが、全く関係(相互チェックなし)ありません。本研究結果に連続させるには本研究法で再分析が必要です。本報告の分析結果を考古学資料とする場合には常に同じ基準で判定されている結果で古代交流圏などを考察をする必要があります。
【桑ノ木津留第1群(5%)】:【 】で示された推定確率は風化層の影響を受けやすい軽元素(Ca/K、Ti/K)の軽元素比を抜いて判定を行った結果で、202個原石群の中で0.1%以上の確率で判定された原石産地を記した。

第4節 まとめ

この遺跡の遺構の中心は集石遺構であるが、土坑を伴うものは全くなかった。 1 号集石でみられる配石の意味は不明である。

出土した遺物は縄文土器が919点出土している。 I 群 1 類は知覧式、 I 群 2 類は吉田式、 I 群 4 類は下剥峰式、 I 群 5 類は辻タイプ¹)、 I 群 6 類は桑ノ丸式、 I 群 7 類は塞ノ神式、 II 群 1 類は鎌石橋式²)、 II 群 2 類は轟 1 式³)、 II 群 5 類は手向山式である。 II 群の押型文系土器は下菅生 B 式や田村式、 さらには 天ヶ城跡出土の② 1 a類⁴) が出土している。出土量は、山形文と楕円文の押型文系が多く、 貝殻文系では、下剥峰式や桑ノ丸式にかけてのものが多い。 これは、南九州の貝殻文系土器と押型文系土器の接触が認められる⁵) 時期であり、さらに、腰岳産黒耀石を使用した異形部分磨製石器が出土していることから、押型 文土器文化の流入がうかがえる。

黒耀石の原産地別の出土量を下記の表にまとめた。この表は、分析をしていない出土黒耀石を藁科氏の分析結果を基に肉眼観察から分類した結果である。桑ノ木津留産が6割以上を占めているが姫島産や西北部九州のものが少量ながらみられる。また、黒耀石分析の結果からはフリントの存在が指摘されたが、これが出土した場所はアカホヤ火山灰層が削平されており、4層で出土してはいるもののその上を耕作土が覆うことから、確実に早期のものとはいえない。

註

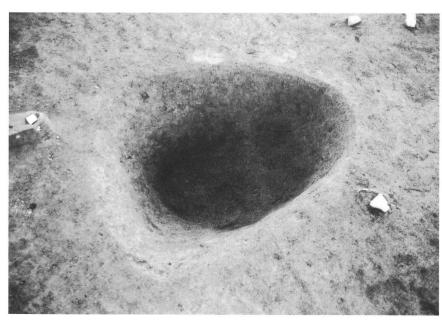
- 1)桑畑光博 1997「南九州貝殻文円筒土器の終焉 (予察)」『第9回人類史研究会研究発表資料』
- 2) 高橋信武 1989 [轟式土器再考] 『考古学雑誌』75-1 日本考古学会
- 3) 註1に同じ
- 4) 高岡町教育委員会 1998「天ヶ城跡 上巻」『高岡町埋蔵文化財調査報告書』第16集
- 5) 桑畑光博・上田耕・雨宮瑞生 1993「貝殻文円筒形土器と押型文土器の関係」『南九州縄文通信』№ 7 南九州縄 文研究会


表10 出土遺物集計表

貝殼文系	1類(知覧式)	16	198
	2類(吉田式)	4	
	3 類	17	
	4類(下剥峰式)	38	
	5類 (辻タイプ)	11	
	6類(桑ノ丸式)	108	
	7類 (塞ノ神式)	4	
条痕文系	1類(鎌石橋式)	2	15
	2類(轟1式)	13	
押型文系	1類(山形文)	146	246
	2類(楕円文)	81	
	3類(縄文)	1	
	4類(撚糸文)	13	
	5類(手向山式)	1	
	6類(その他)	1	
その他		17	17
無文		18	18
不 明		425	425
	計 (個数)		919

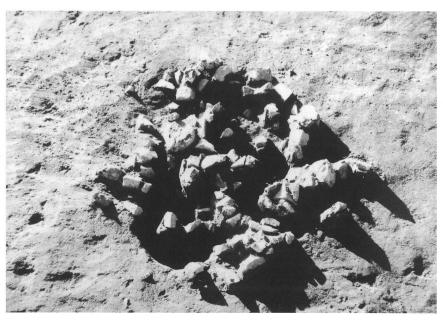
(出土黒耀石集計表)

地区名	原産地	出土量 (g)
宮崎えびの	桑ノ木津留	486.3
鹿児島北部	日 東	11.6
鹿児島	上牛鼻	6.1
	竜ヶ水	11.9
阿蘇周辺	五ヶ瀬川・長谷峠	4.7
大 分	姫 島	11.3
西北九州	腰岳	68.9
	大串	0.9
	その他	35.4
その他	UT1遺物群	109.9
不 明	不明	15.4
	計(重量)	762.4


図版 1


八久保第2遺跡近景

全景

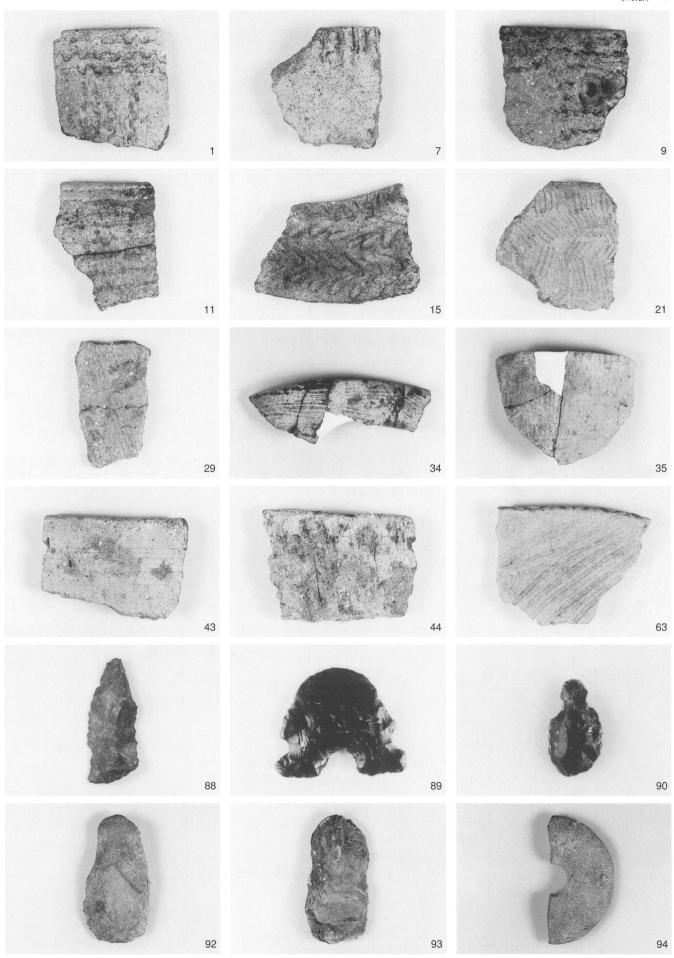


1 号土坑

1号集石

3号集石

図版 3


4号集石

5号集石

6号集石

八久保第2遺跡出土遺物

表11 報告書登録抄

フリガナ	タカオカチョウナイイセキ
書名	高岡町内遺跡
シ リ ー ズ 名	高岡町埋蔵文化財調査報告書
シリーズ番号	第24集
編集者名	島田正浩
発 行 機 関	高岡町教育委員会
所 在 地	宮崎県東諸県郡高岡町大字内山2887番地
発 行 年 月 日	2002年3月31日

Aller of the last		コー	コード			経	144	調	查	調	査	調	査
収蔵遺跡名	所 在 地	市町村	遺跡番号	緯	緯度		度	期	間	面	積	原	因
八久保第 2 以为保第 2 以 世章 遺跡	東諸県郡高岡町 #おあざかみくらなが 大字上倉永1255	45 – 381	334		31° 52′ 26″		1° 10″	1997. 11~12		843	$3\mathrm{m}^2$	反客	転土
種 別	主な時代	Ì	な遺構		主な遺物					特記事項			
散布地	散 布 地 縄文早期		土坑 集石遺構		貝殼文系土器 条痕文系土器 押型文系土器								

高岡町埋蔵文化財調査報告書第24集 高岡町内遺跡™

2002年 3 月

編集·発行 高岡町教育委員会

 $\mp 880 - 2292$

宮崎県東諸県郡高岡町大字内山2887

TEL. 0895-82-1111

印 刷 株式会社宮崎南印刷

₹880-0911

宮崎県宮崎市大字田吉350-1

TEL. 0985-51-2745