VI 自然科学分析

1	放射性炭素年代 (AMS測定) 平成26年度実施 (株)加速器分析研究所
2	放射性炭素年代 (AMS測定) 平成27年度実施 (株) 加速器分析研究所
3	火山灰分析 株式会社 火山灰考古学研究所
4	黒曜石 産地 同定分析 株式会社 第四紀地質研究所
5	琥珀の科学分析
6	石器使用痕分析

1 放射性炭素年代(AMS測定)平成26年度実施

(株)加速器分析研究所

1 測定対象試料

力持遺跡は、岩手県下閉伊郡普代村第16地割天拝坂地内(北緯40°1′15″、東経141°52′52″)に所在する。測定対象試料は、竪穴住居跡、土坑、遺物包含層から出土した炭化物、木炭の合計8点である(表1)。炭化物1は炭化したクルミとされる。

試料はすべて縄文時代の遺構、遺物包含層から出土した。竪穴住居跡の時期は、6号住が後期初頭~前葉、15号住が中期前葉~中葉、12号住が前期初頭~前葉、14号住が中期前葉で、55号住については前期初頭の可能性がある。7号土坑からは円筒上層c式の完形土器が出土している。また、この遺跡では十和田中掫テフラ(To-Cu)が検出され、前期初頭~中期初頭の遺物包含層 V 層中に堆積している。試料3、5はTo-Cuの下位で出土した。遺構では、12号住、55号住がTo-Cuより下位で検出されている。To-Cuの降下年代については、複数の測定例があり、若干年代差が見られるが、おおよそ6000年前とされている(町田・新井2011)。

2 測定の意義

試料が出土した遺構と、その遺構出土土器の型式の年代を明らかにする。また、To-Cuの年代を検討する。

3 化学処理工程

- (1)メス・ピンセットを使い、根・土等の付着物を取り除く。
- (2)酸-アルカリ-酸(AAA: Acid Alkali Acid)処理により不純物を化学的に取り除く。その後、超純水で中性になるまで希釈し、乾燥させる。AAA処理における酸処理では、通常 $1 \text{mol}/\ell$ (1M)の塩酸(HCI)を用いる。アルカリ処理では水酸化ナトリウム(NaOH)水溶液を用い、0.001 Mから1 Mまで徐々に濃度を上げながら処理を行う。アルカリ濃度が1 Mに達した時には1 AAA、1 M未満の場合は1 AaAと表1 Caabと表1 Caabに記載する。
- (3)試料を燃焼させ、二酸化炭素(CO₂)を発生させる。
- (4) 真空ラインで二酸化炭素を精製する。
- (5)精製した二酸化炭素を、鉄を触媒として水素で還元し、グラファイト(C)を生成させる。
- (6)グラファイトを内径1mmのカソードにハンドプレス機で詰め、それをホイールにはめ込み、測定装置に装着する。

4 測 定 方 法

加速器をベースとした¹⁴C-AMS専用装置 (NEC社製) を使用し、¹⁴Cの計数、¹³C濃度 (¹³C/¹²C)、¹⁴C濃度 (¹⁴C/¹²C)の測定を行う。測定では、米国国立標準局 (NIST) から提供されたシュウ酸 (HOx II) を標準試料とする。この標準試料とバックグラウンド試料の測定も同時に実施する。

5 算 出 方 法

- (1) δ^{13} Cは、試料炭素の 13 C濃度(13 C/ 12 C) を測定し、基準試料からのずれを千分偏差(‰)で表した値である(表1)。AMS装置による測定値を用い、表中に「AMS」と注記する。
- (2) 14 C年代(Libby Age: yrBP)は、過去の大気中 14 C濃度が一定であったと仮定して測定され、 1950年を基準年(0yrBP)として遡る年代である。年代値の算出には、Libbyの半減期(5568年)を使用する(Stuiver and Polach 1977)。 14 C年代は δ 13 Cによって同位体効果を補正する必要がある。補正した値を表1に、補正していない値を参考値として表2に示した。 14 C年代と誤差は、下1桁を丸めて10年単位で表示される。また、 14 C年代の誤差(\pm 1 σ)は、試料の 14 C年代がその誤差範囲に入る確率が68.2%であることを意味する。
- (3) pMC (percent Modern Carbon)は、標準現代炭素に対する試料炭素の 14 C濃度の割合である。 pMCが小さい(14 Cが少ない)ほど古い年代を示し、pMCが 10 O以上(14 Cの量が標準現代炭素と同等以上)の場合Modernとする。この値も δ 13 Cによって補正する必要があるため、補正した値を表1に、補正していない値を参考値として表2に示した。
- (4)暦年較正年代とは、年代が既知の試料の 14 C濃度をもとに描かれた較正曲線と照らし合わせ、過去の 14 C濃度変化などを補正し、実年代に近づけた値である。暦年較正年代は、 14 C年代に対応する較正曲線上の暦年代範囲であり、 14 標準偏差 $(1\,\sigma=68.2\%)$ あるいは 14 2標準偏差 $(2\,\sigma=95.4\%)$ で表示される。グラフの縦軸が 14 2年代、横軸が暦年較正年代を表す。暦年較正プログラムに入力される値は、 δ 13 2で補正を行い、下 1 1桁を丸めない 14 2年代値である。なお、較正曲線および較正プログラムは、データの蓄積によって更新される。また、プログラムの種類によっても結果が異なるため、年代の活用にあたってはその種類とバージョンを確認する必要がある。ここでは、暦年較正年代の計算に、 14 1にないては、暦年較正年代については、特定のデータベース、プログラムに依存する点を考慮し、プログラムに入力する値とともに参考値として表 14 2に示した。暦年較正年代は、 14 2年代に基づいて較正(calibrate)された年代値であることを明示するために 14 1には 14 2には 14 2には 14 3になる目的に 14 3になることを明示するために 14 4によいてもないてもないてもないでで表される。

6 測 定 結 果

測定結果を表1、2に示す。

試料8点の 14 C年代は、5960±30yrBP(試料3)から3680±30yrBP(試料1)の間にある。暦年較正年代(1σ)は、古い方から順に3が縄文時代前期初頭頃、6が前期初頭から前葉頃、2、8が前期中葉から後葉頃、5が前期後葉頃、4が中期前葉から中葉頃、7が中期中葉頃、1が後期前葉頃に相当する(小林編2008)。出土土器の時期に対して、1、4、6は整合するが、2は古く、7は若干新しい。

また、To-Cuの下位で出土した試料の年代値は、3、6がTo-Cuに対して整合的で、8は整合的もしくは若干新しく、5はやや新しいと見られる。

試料の炭素含有率はすべて60%を超える十分な値で、化学処理、測定上の問題は認められない。

表 1 放射性炭素年代測定結果 (δ ¹³C 補正値)

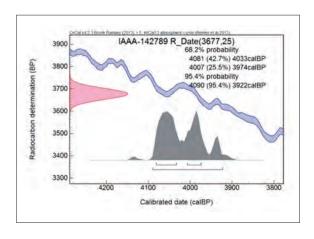
測定番号	5-1-40 Az 40 Tri-40 Tri	採取場所	試料形態	処理方法	δ ¹³ C (‰) (AMS)	δ ¹³ C 補正あり				
測定留写	試料名	1木以场所	武 <i>料形思</i>		0 C (‰) (AMS)	Libby Age (yrBP)	pMC (%)			
IAAA-142789	1	6 号住 埋土中	炭化物(炭化クルミ)	AaA	-19.77 ± 0.27	3,680 ± 30	63.27 ± 0.20			
IAAA-142790	2	15 号住 埋土中	木炭	AAA	-23.41 ± 0.29	5,080 ± 30	53.13 ± 0.19			
IAAA-142791	3	P12 グリッド V層下位	炭化物	AaA	-24.91 ± 0.28	5,960 ± 30	47.62 ± 0.18			
IAAA-142792	4	7 号土坑 埋土中	木炭	AaA	-23.43 ± 0.28	4,500 ± 30	57.14 ± 0.18			
IAAA-142793	5	nll グリッド V層	炭化物	AaA	-21.66 ± 0.28	4,950 ± 20	54.01 ± 0.17			
IAAA-142794	6	12 号住 床面	木炭	AAA	-27.12 ± 0.27	5,910 ± 30	47.91 ± 0.17			
IAAA-142795	7	14 号住 焼土直上層	木炭	AAA	-23.08 ± 0.27	4,370 ± 30	58.07 ± 0.19			
IAAA-142796	8	55 号住 埋土下位	木炭	AAA	-23.15 ± 0.27	5,040 ± 30	53.39 ± 0.20			

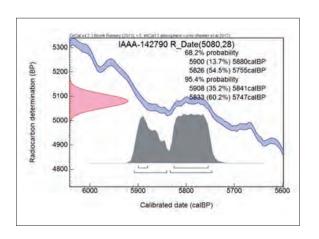
[#7100]

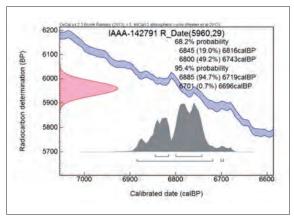
表 2 放射性炭素年代測定結果(δ^{13} C 未補正値、暦年較正用 14 C 年代、較正年代)

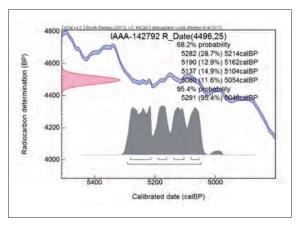
測定番号	δ ¹³ C	補正なし	暦年較正用 (yrBP)	1 σ暦年代範囲	2 σ暦年代範囲	
例是由力	Age (yrBP)	pMC (%)	省平秋正角(yībī)	10個中代轮回		
IAAA-142789	3,590 ± 30	63.95 ± 0.20	3,677 ± 25	4081calBP - 4033calBP (42.7%) 4007calBP - 3974calBP (25.5%)	4090calBP - 3922calBP (95.4%)	
IAAA-142790	5,050 ± 30	53.30 ± 0.19	5,080 ± 28	5900calBP - 5880calBP (13.7%) 5826calBP - 5755calBP (54.5%)	5908calBP - 5841calBP (35.2%) 5833calBP - 5747calBP (60.2%)	
IAAA-142791	5,960 ± 30	47.63 ± 0.18	5,960 ± 29	6845calBP - 6816calBP (19.0%) 6800calBP - 6743calBP (49.2%)	6885calBP - 6719calBP (94.7%) 6701calBP - 6696calBP (0.7%)	
IAAA-142792	4,470 ± 30	57.32 ± 0.18	4,496 ± 25	5282calBP - 5214calBP (28.7%) 5190calBP - 5162calBP (12.9%) 5137calBP - 5104calBP (14.9%) 5080calBP - 5054calBP (11.6%)	5291calBP - 5046calBP (95.4%)	
IAAA-142793	4,890 ± 20	54.38 ± 0.16	4,948 ± 24	5714calBP - 5672calBP (39.5%) 5665calBP - 5644calBP (24.1%) 5626calBP - 5620calBP (4.5%)	5725calBP - 5608calBP (95.4%)	
IAAA-142794	5,950 ± 30	47.70 ± 0.16	5,910 ± 28	6772calBP - 6769calBP (2.3%) 6749calBP - 6677calBP (65.9%)	6790calBP - 6667calBP (95.4%)	
IAAA-142795	4,330 ± 30	58.30 ± 0.19	4,366 ± 26	4960calBP - 4926calBP (29.3%) 4920calBP - 4870calBP (38.9%)	5032calBP - 5016calBP (4.8%) 4976calBP - 4858calBP (90.6%)	
IAAA-142796	5,010 ± 30	53.59 ± 0.20	5,041 ± 29	5886calBP - 5810calBP (53.2%) 5761calBP - 5739calBP (15.0%)	5900calBP - 5715calBP (95.4%)	

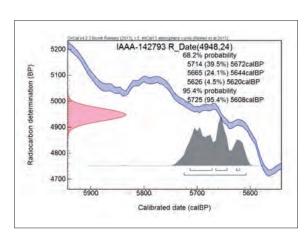
[参考值]

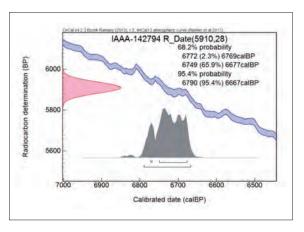

文献

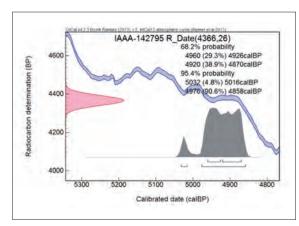

Bronk Ramsey, C.2009Bayesian analysis of radiocarbon dates, Radiocarbon 51(1), 337-360小林達雄編2008総覧縄文土器, 総覧縄文土器刊行委員会, アム・プロモーション町田洋, 新井房夫2011新編火山灰アトラス [日本列島とその周辺] (第2刷), 東京大学出版会

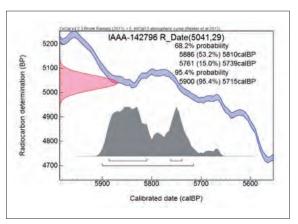

Reimer, P.J. et al. 2013 IntCall3 and Marine13 radiocarbon age calibration curves, 0-50,000 years cal BP, Radiocarbon


55 (4) , 1869-1887


Stuiver, M. and Polach, H.A. 1977 Discussion: Reporting of ¹⁴C data, *Radiocarbon* 19(3), 355-363







2 放射性炭素年代(AMS測定)平成27年度実施

(株)加速器分析研究所

1 測定対象試料

力持遺跡は、岩手県下閉伊郡普代村第16地割字天拝坂地内(北緯40°1′15″、東経141°52′52″)に 所在する。測定対象試料は、住居跡や遺物包含層等から出土した土器付着炭化物20点である(表1)。 炭化物は土器の外面、内面から採取され、その状態によってススまたはおこげとされている。試料 が採取された土器はすべて前期から中期の縄文土器で、各々の特徴から表1に記載した時期・型式に 認定されている。

2 測定の意義

試料が採取された土器が属する時期・型式の年代を検討する。

3 化学処理工程

- (1)メス・ピンセットを使い、土等の付着物を取り除く。
- (2)酸-アルカリ-酸(AAA: Acid Alkali Acid)処理により不純物を化学的に取り除く。その後、超純水で中性になるまで希釈し、乾燥させる。AAA処理における酸処理では、通常 $1 \text{mol}/\ell$ (1M)の塩酸(HCI)を用いる。アルカリ処理では水酸化ナトリウム(NaOH)水溶液を用い、0.001 Mから1 Mまで徐々に濃度を上げながら処理を行う。アルカリ濃度が1 Mに達した時には1 AAA、1 M未満の場合は1 AaAと表1 Close に記載する。
- (3)試料を燃焼させ、二酸化炭素(CO2)を発生させる。
- (4)真空ラインで二酸化炭素を精製する。
- (5)精製した二酸化炭素を、鉄を触媒として水素で還元し、グラファイト(C)を生成させる。
- (6)グラファイトを内径1mmのカソードにハンドプレス機で詰め、それをホイールにはめ込み、測定装置に装着する。

4 測 定 方 法

加速器をベースとした 14 C-AMS 専用装置(NEC 社製)を使用し、 14 C の計数、 13 C 濃度(13 C/ 12 C)、 14C 濃度(14 C/ 12 C)の測定を行う。測定では、米国国立標準局(NIST)から提供されたシュウ酸(HOx II)を標準試料とする。この標準試料とバックグラウンド試料の測定も同時に実施する。

5 算 出 方 法

加速器をベースとした 14 C-AMS 専用装置(NEC 社製)を使用し、 14 C の計数、 13 C 濃度(13 C/ 12 C)、 14 C 濃度(14 C/ 12 C)の測定を行う。測定では、米国国立標準局(NIST)から提供されたシュウ酸(HOx II)を標準試料とする。この標準試料とバックグラウンド試料の測定も同時に実施する。

- (1) δ^{13} Cは、試料炭素の 13 C濃度(13 C/ 12 C)を測定し、基準試料からのずれを千分偏差(‰)で表した値である(表1)。AMS装置による測定値を用い、表中に「AMS」と注記する。
- (2) ¹⁴C年代(Libby Age: yrBP)は、過去の大気中¹⁴C濃度が一定であったと仮定して測定され、

1950年を基準年(0yrBP)として遡る年代である。年代値の算出には、Libbyの半減期(5568年)を使用する(Stuiver and Polach 1977)。 14 C年代は δ^{13} Cによって同位体効果を補正する必要がある。補正した値を表1に、補正していない値を参考値として表2に示した。 14 C年代と誤差は、下1桁を丸めて10年単位で表示される。また、 14 C年代の誤差($\pm 1\sigma$)は、試料の 14 C年代がその誤差範囲に入る確率が68.2%であることを意味する。

- (3) pMC (percent Modern Carbon)は、標準現代炭素に対する試料炭素の 14 C濃度の割合である。 pMCが小さい(14 Cが少ない)ほど古い年代を示し、pMCが 10 O以上(14 Cの量が標準現代炭素と同等以上)の場合Modernとする。この値も δ 13 Cによって補正する必要があるため、補正した値を表1に、補正していない値を参考値として表2に示した。
- (4)暦年較正年代とは、年代が既知の試料の 14 C濃度をもとに描かれた較正曲線と照らし合わせ、過去の 14 C濃度変化などを補正し、実年代に近づけた値である。暦年較正年代は、 14 C年代に対応する較正曲線上の暦年代範囲であり、 14 標準偏差 $(1\,\sigma=68.2\%)$ あるいは 14 2標準偏差 $(2\,\sigma=95.4\%)$ で表示される。グラフの縦軸が 14 2年代、横軸が暦年較正年代を表す。暦年較正プログラムに入力される値は、 δ 13 2で補正を行い、下 1 行を丸めない 14 2年代値である。なお、較正曲線および較正プログラムは、データの蓄積によって更新される。また、プログラムの種類によっても結果が異なるため、年代の活用にあたってはその種類とバージョンを確認する必要がある。ここでは、暦年較正年代の計算に、 14 1にないては、暦年較正年代については、特定のデータベース、プログラムに依存する点を考慮し、プログラムに入力する値とともに参考値として表 14 2に示した。暦年較正年代は、 14 2年代に基づいて較正(calibrate)された年代値であることを明示するために 14 1には 14 2には 14 1には 14 2には 14 2には 14 3になる自身に表される。

6 測 定 結 果

測定結果を表1、2に示す。

試料 20 点の 14 C 年代は、6000 ± 30yrBP(試料 21)から 4180 ± 30yrBP(試料 20)の間にある。暦年較正年代(1σ)は、最も古い 21 が 6883 \sim 6797cal BP の範囲、最も新しい 20 が 4826 \sim 4647cal BP の間に 3つの範囲で示され、全体として縄文時代前期初頭から中期後葉頃に相当する(小林編 2008)。試料が採取された土器の時期・型式は、前期前葉の早稲田 6 類 c から中期末葉の大木 10 式まであり、全体的な年代幅としてはおおむね一致する。ただし、個別に検討すると、土器の型式から考えられる年代より古い年代値が示された試料が見られる。

20点の土器付着炭化物は、土器の外面、内面に付着し、スス、おこげと観察されている。内面の付着物や、おこげと観察されたものなどについては、調理に伴って残存した食物に由来する可能性が高い。食物はその種類によって含まれる炭素の由来が異なり、それが年代値に影響する場合があるため、次に試料となった炭化物の特徴を炭素の安定同位体比に基づいて検討する。なお、ここで扱う AMS による δ ¹³C 値は、質量分析計の測定値に比べて正確でない点に注意を要する。

今回測定された試料の炭素安定同位体比 δ ¹³C は、-26.68 ± 0.26% (試料 16) から -19.70 ± 0.24% (試料 26) で、C3 植物やそれを食べる草食動物の範囲に重なりながら、より高い海生生物の範囲まで若干かかるように広がっている(赤澤ほか 1993)。試料に海生生物由来の炭素が含まれている場合、海洋リザーバー効果によって実際の年代より古い年代値が示される可能性がある。

土器付着炭化物の由来は単一とは限らず、複数の種類の食物等の残滓が含まれる可能性がある。

このため、一つの数値で示される各試料の内容も、複数の食物の混合物である可能性を考慮して検討する必要がある。個別に指摘することは難しいが、特に δ^{13} C が -20%前後の高い値(海生生物の範囲もしくはそれに近い値)を示した試料 13、17、19、26、27 等については、海生生物由来の炭素を含む可能性が高い。

20点のうちで、土器型式から考えられる年代に整合的と見られる試料として 11、20等を挙げることができ、いずれも δ ¹³C が -25%前後の低い値(C3 植物の範囲)を示す。反対に、 δ ¹³C が -20%前後だった上述の試料は、土器型式に対して古い年代値となっている。その他の試料については、土器型式におおむね整合的か、やや古い値となっている。このように、今回測定された試料には、海洋リザーバー効果の影響で実際より古い年代値が示されたと見られるものが含まれる。

試料の炭素含有率はすべて 45% を超えるおおむね適正な値で、化学処理、測定上の問題は認められない。

対対

赤澤威, 米田穣, 吉田邦夫 1993 北村縄文人骨の同位体食性分析, 中央自動車道長野線埋蔵文化財発掘調査報告書11 一明科町

内一 北村遺跡 本文編((財)長野県埋蔵文化財センター発掘調査報告書14),長野県教育委員会,(財)

長野県埋蔵文化財センター,445-468

小林達雄編 2008 総覧縄文土器, 総覧縄文土器刊行委員会, アム・プロモーション

Bronk Ramsey, C. 2009 Bayesian analysis of radiocarbon dates, Radiocarbon 51(1), 337-360

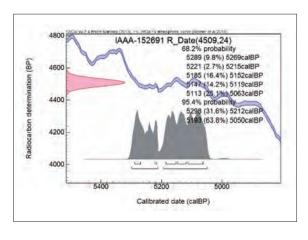
Reimer, P.J. et al. 2013 IntCal13 and Marine13 radiocarbon age calibration curves, 0-50,000 years cal BP, Radiocarbon

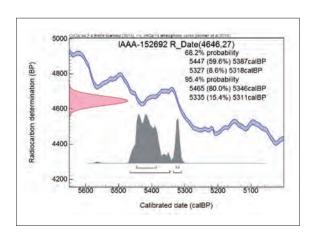
55(4), 1869-1887

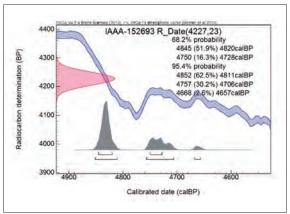
Stuiver, M. and Polach, H.A. 1977 Discussion: Reporting of ¹⁴C data, Radiocarbon 19(3), 355-363

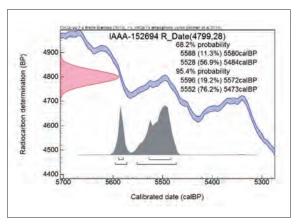
表 1 放射性炭素年代測定結果(δ ¹³C 補正値)

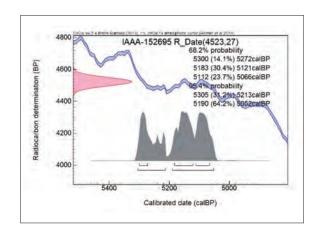
加卢季口	A Intelact	4の mr 4日 立て	試料形態	Au THI A-	s 13C (0/) (AMC)	δ ¹³ C	補正あり
測定番号	試料名	採取場所		処理方法	δ ¹³ C (‰) (AMS)	Libby Age (yrBP)	pMC (%)
IAAA-152691	9	2号住 埋土下位 (大木8a式)	土器内面付着スス	AaA	-25.09 ± 0.33	4,510 ± 20	57.04 ± 0.18
IAAA-152692	10	25 号住 床面 (大木 8 b -1 式)	土器外面付着スス	AaA	-23.33 ± 0.24	4,650 ± 30	56.08 ± 0.20
IAAA-152693	11	26 号住 埋土上位 (大木 8 b -2 式)	土器外面付着スス	AaA	-24.93 ± 0.33	4,230 ± 20	59.08 ± 0.17
IAAA-152694	12	37 号住 埋土上位 (大木 8 a 式 ?)	土器内面付着おこげ	AaA	-22.20 ± 0.23	4,800 ± 30	55.02 ± 0.19
IAAA-152695	13	51 号住 埋土中 (大木 8 b -2・3 式)	土器内面付着おこげ	AaA	-20.04 ± 0.24	4,520 ± 30	56.94 ± 0.19
IAAA-152696	14	63 号住 埋土中 (大木 2 b 式)	土器内面付着おこげ	AaA	-23.95 ± 0.25	5,440 ± 30	50.81 ± 0.18
IAAA-152697	15	7号土坑 埋土中 (円筒上層 b 式)	土器外面付着スス	AaA	-23.63 ± 0.34	4,800 ± 20	55.00 ± 0.17
IAAA-152698	16	10 号土坑 埋土中 (中期前葉?)	土器内面付着スス	AAA	-26.68 ± 0.26	4,440 ± 30	57.53 ± 0.20
IAAA-152699	17	d5 グリッド IV~V層 (大木 10 式)	土器内面付着スス	AaA	-20.90 ± 0.31	4,400 ± 30	57.85 ± 0.20
IAAA-152700	18	e7 グリッド IV層 (円筒上層 c 式)	土器外面付着スス	AaA	-23.54 ± 0.29	4,430 ± 30	57.62 ± 0.20
IAAA-152701	19	m12 グリッド V層 (大木 9 式)	土器内面付着おこげ	AaA	-20.16 ± 0.27	4,600 ± 30	56.44 ± 0.19
IAAA-152702	20	42 号住ほか 埋土中~ 下位ほか (数地点間で 接合) (大木 9 式)	土器外面付着スス	AaA	-25.45 ± 0.26	4,180 ± 30	59.46 ± 0.20
IAAA-152703	21	n9・n10 グリッド V 層下位(To-Cu 下位) (早稲田 6 類 c)	土器内面付着おこげ	AaA	-23.85 ± 0.24	6,000 ± 30	47.35 ± 0.17
IAAA-152704	22	oll グリッド V層(To- Cu 上位) (前期中葉)	土器外面付着スス	AaA	-21.16 ± 0.24	5,440 ± 30	50.79 ± 0.18
IAAA-152705	23	oll グリッド I 層下位 (白座式)	土器内面付着スス	AaA	-21.32 ± 0.23	5,410 ± 30	51.02 ± 0.18
IAAA-152706	24	p13 グリッド V層 (大木 2 a 式)	土器内面付着スス	AaA	-22.71 ± 0.24	5,170 ± 30	52.55 ± 0.19
IAAA-152707	25	p13 グリッド V層 (前期中葉)	土器外面付着スス	AaA	-22.49 ± 0.27	5,270 ± 30	51.88 ± 0.19
IAAA-152708	26	7 号土坑 埋土中	土器内面付着おこげ	AaA	-19.70 ± 0.24	4,680 ± 30	55.83 ± 0.19
IAAA-152709	27	nll グリッド V層	土器内面付着おこげ	AaA	-20.83 ± 0.24	5,300 ± 30	51.69 ± 0.18
IAAA-152710	28	12 号住 床面	土器内面付着おこげ	AaA	-22.21 ± 0.24	5,100 ± 30	52.99 ± 0.19

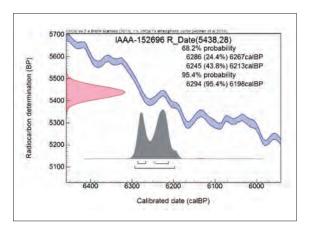

表 2 放射性炭素年代測定結果(δ ¹³C 未補正値、暦年較正用 ¹⁴C 年代、較正年代)(1)

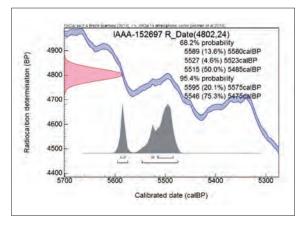

測定番号	δ ¹³ C	補正なし	暦年較正用 (yrBP)	1 σ暦年代範囲	2 σ暦年代範囲	
例是領分	Age (yrBP)	pMC (%)	省平权正用 (yIBF)	10倍平代靶四		
IAAA-152691	4,510 ± 20	57.03 ± 0.17	4,509 ± 24	5289calBP - 5269calBP (9.8%) 5221calBP - 5215calBP (2.7%) 5185calBP - 5152calBP (16.4%) 5147calBP - 5119calBP (14.2%) 5113calBP - 5063calBP (25.1%)	5298calBP - 5212calBP (31.6%) 5193calBP - 5050calBP (63.8%)	
IAAA-152692	4,620 ± 30	56.27 ± 0.19	4,646 ± 27	5447calBP - 5387calBP (59.6%) 5327calBP - 5318calBP (8.6%)	5465calBP - 5346calBP (80.0%) 5335calBP - 5311calBP (15.4%)	
IAAA-152693	4,230 ± 20	59.08 ± 0.16	4,227 ± 23	4845calBP - 4820calBP (51.9%)	5448calBP - 5386calBP (36.1%) 5328calBP - 5284calBP (53.5%) 5159calBP - 5141calBP (3.4%) 5101calBP - 5086calBP (2.4%)	
IAAA-152694	4,750 ± 30	55.33 ± 0.19	4,799 ± 28	5588calBP - 5580calBP (11.3%) 5528calBP - 5484calBP (56.9%)	5596calBP - 5572calBP (19.2%) 5552calBP - 5473calBP (76.2%)	
IAAA-152695	4,440 ± 30	57.52 ± 0.19	4,523 ± 27	5300calBP - 5272calBP (14.1%) 5183calBP - 5121calBP (30.4%) 5112calBP - 5066calBP (23.7%)	5305calBP - 5213calBP (31.2%) 5190calBP - 5052calBP (64.2%)	
IAAA-152696	5,420 ± 30	50.92 ± 0.18	5,438 ± 28	6286calBP - 6267calBP (24.4%) 6245calBP - 6213calBP (43.8%)	6294calBP - 6198calBP (95.4%)	
IAAA-152697	4,780 ± 20	55.15 ± 0.16	4,802 ± 24	5589calBP - 5580calBP (13.6%) 5527calBP - 5523calBP (4.6%) 5515calBP - 5485calBP (50.0%)	5595calBP - 5575calBP (20.1%) 5546calBP - 5475calBP (75.3%)	

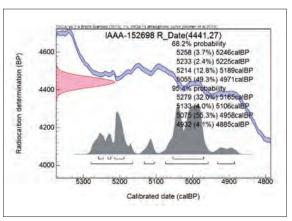

表 2 放射性炭素年代測定結果(δ ¹³C 未補正値、暦年較正用 ¹⁴C 年代、較正年代)(2)

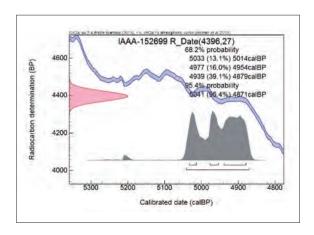

測定番号	δ ¹³ C	補正なし	暦年較正用 (yrBP)	1 σ 暦年代範囲	2 σ暦年代範囲
侧足笛 5	Age (yrBP)	pMC (%)	音平蚁正角 (yfbr)	10倍升代靶四	20倍平代靶四
IAAA-152698	4,470 ± 30	57.33 ± 0.20	4,441 ± 27	5258calBP - 5246calBP (3.7%) 5233calBP - 5225calBP (2.4%) 5214calBP - 5189calBP (12.8%) 5055calBP - 4971calBP (49.3%)	5279calBP - 5165calBP (32.0%) 5133calBP - 5106calBP (4.0%) 5075calBP - 4958calBP (55.3%) 4932calBP - 4885calBP (4.1%)
IAAA-152699	4,330 ± 30	58.34 ± 0.19	4,396 ± 27	5033calBP - 5014calBP (13.1%) 4977calBP - 4954calBP (16.0%) 4939calBP - 4879calBP (39.1%)	5041calBP - 4871calBP (95.4%)
IAAA-152700	4,400 ± 30	57.79 ± 0.20	4,428 ± 28	5213calBP - 5193calBP (8.1%) 5052calBP - 4961calBP (60.1%)	5272calBP - 5183calBP (17.3%) 5121calBP - 5111calBP (1.1%) 5066calBP - 4875calBP (77.0%)
IAAA-152701	4,520 ± 30	57.00 ± 0.19	4,595 ± 27	5437calBP - 5421calBP (22.6%) 5321calBP - 5300calBP (45.6%)	5448calBP - 5386calBP (36.1%) 5328calBP - 5284calBP (53.5%) 5159calBP - 5141calBP (3.4%) 5101calBP - 5086calBP (2.4%)
IAAA-152702	4,180 ± 30	59.41 ± 0.20	4,175 ± 27	4826calBP - 4806calBP (12.5%) 4760calBP - 4697calBP (40.3%) 4673calBP - 4647calBP (15.4%)	4832calBP - 4784calBP (20.5%) 4766calBP - 4615calBP (74.9%)
IAAA-152703	5,990 ± 30	47.46 ± 0.17	6,004 ± 29	6883calBP - 6797calBP (68.2%)	6936calBP - 6776calBP (92.9%) 6765calBP - 6752calBP (2.5%)
IAAA-152704	5,380 ± 30	51.19 ± 0.18	5,442 ± 28	6287calBP - 6269calBP (26.0%) 6242calBP - 6214calBP (42.2%)	6296calBP - 6201calBP (95.4%)
IAAA-152705	5,350 ± 30	51.40 ± 0.18	5,406 ± 28	6276calBP - 6232calBP (49.1%) 6221calBP - 6203calBP (19.1%)	6286calBP - 6181calBP (94.5%) 6137calBP - 6131calBP (0.9%)
IAAA-152706	5,130 ± 30	52.79 ± 0.19	5,169 ± 29	5982calBP - 5976calBP (6.4%) 5941calBP - 5908calBP (61.8%)	5991calBP - 5897calBP (95.4%)
IAAA-152707	5,230 ± 30	52.14 ± 0.19	5,271 ± 29	6174calBP - 6154calBP (12.3%) 6113calBP - 6079calBP (22.1%) 6061calBP - 6050calBP (5.0%) 6022calBP - 5989calBP (21.9%) 5964calBP - 5950calBP (6.9%)	6180calBP - 6143calBP (16.4%) 6125calBP - 5982calBP (66.5%) 5976calBP - 5940calBP (12.6%)
IAAA-152708	4,600 ± 30	56.44 ± 0.19	4,681 ± 27	5465calBP - 5444calBP (15.4%) 5412calBP - 5347calBP (46.5%) 5334calBP - 5325calBP (6.3%)	5572calBP - 5555calBP (4.0%) 5472calBP - 5432calBP (22.8%) 5425calBP - 5320calBP (68.6%)
IAAA-152709	5,230 ± 30	52.13 ± 0.18	5,300 ± 27	6176calBP - 6150calBP (144%) 6118calBP - 6076calBP (228%) 6070calBP - 6041calBP (15.9%) 6029calBP - 6001calBP (15.1%)	6182calBP - 5994calBP (95.4%)
IAAA-152710	5,060 ± 30	53.30 ± 0.19	5,100 ± 29	5909calBP - 5886calBP (20.0%) 5821calBP - 5760calBP (48.2%)	5917calBP - 5855calBP (36.2%) 5830calBP - 5749calBP (59.2%)

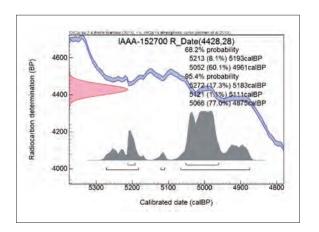

[参考值]

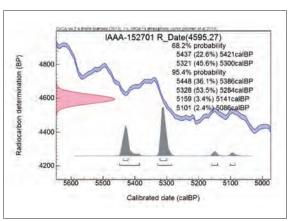


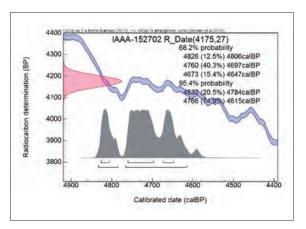


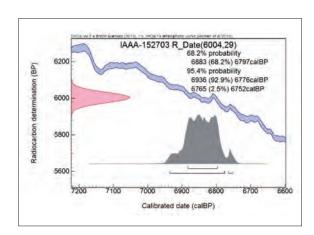


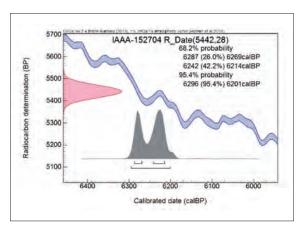


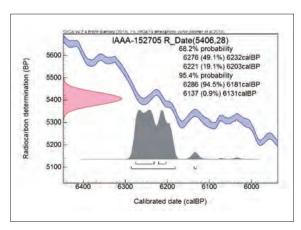


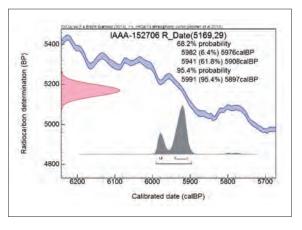


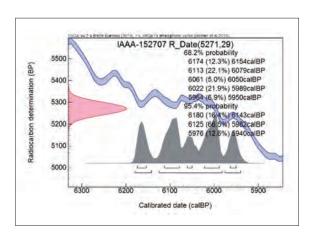


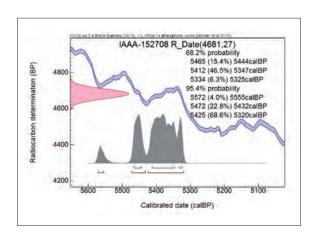


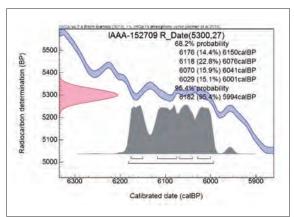


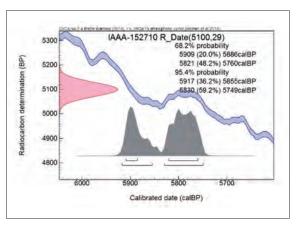












[図版]暦年軸正年代グラフ(参考)

3 火山灰分析

株式会社 火山灰考古学研究所

1. はじめに

東北地方太平洋沿岸の三陸地方中~北部の地層や土壌の中には、岩手、秋田駒ヶ岳、焼石、十和田、鳴子など東北地方の火山のほか、洞爺、浅間、御岳、三瓶、阿蘇、姶良、鬼界など遠方の火山に由来するテフラ(火山砕屑物,いわゆる火山灰)が数多く認められる。とくに、後期更新世以降に降灰したそれらの多くについては、層相や年代さらに岩石記載的な特徴がテフラ・カタログ(町田・新井,1992,2003,2011など)に収録されており、考古遺跡などで調査分析を行い年代や層位が明らかな指標テフラを検出することで、地形や地層の形成年代さらには考古遺物や遺構の年代などに関する研究を実施できるようになっている。

下閉伊郡普代村力持遺跡の発掘調査でも、テフラ層が認められたことから、発掘調査担当者により採取された試料3点を対象に、テフラ分析(テフラ検出分析、テフラ組成分析、重鉱物組成分析、火山ガラスの屈折率測定)を実施して、すでに年代が明らかにされている指標テフラとの同定を行うことになった。

分析試料は、1号粘土採掘坑の埋土上位に認められたテフラ層中位の黄色部から採取された試料1とテフラ層上部から採取された試料2、そして12号住居址床面から採取された試料3の3点である。

2. テフラ検出分析

(1)分析試料と分析方法

試料 $1 \sim 3$ の3試料に含まれるテフラ粒子の特徴を定性的に明らかにするために、テフラ検出分析を実施した。分析の手順は次のとおりである。

- 1)試料10gを秤量。
- 2)超音波洗浄により泥分を除去。
- 3)80°Cで恒温乾燥。
- 4) 実体顕微鏡下でテフラ粒子の量や特徴を観察。

(2)分析結果

テフラ検出分析の結果を表1に示す。いずれの試料にも、比較的粗粒の軽石やスコリアは含まれていないものの、火山ガラスを検出することができた。そのうち、試料1にはとくに多くの火山ガラスが含まれている。火山ガラスは、スポンジ状軽石型、繊維束状軽石型、分厚い中間型で、前二者は白色あるいは無色透明、後者は無色透明である。不透明鉱物以外の重鉱物としては、斜方輝石や単斜輝石が認められる。試料2にも多くの火山ガラスが含まれている。火山ガラスは、スポンジ状軽石型が多く、ほかに繊維束状軽石型が含まれている。火山ガラスには白色を呈するものが多い。不透明鉱物以外の重鉱物としては、

試料3については、実体顕微鏡下では火山ガラスを認めることができなかった。不透明鉱物以外の重鉱物としては、黒雲母が目立ち、ほかに斜方輝石や単斜輝石がわずかに認められる。

3. テフラ組成分析

(1)分析試料と分析方法

火山灰試料に含まれる火山ガラスの形態色調別含有率、さらに軽鉱物や重鉱物の含有率を明らかにするために火山ガラス比分析を行った。さらに、そのうちの重鉱物の組成を求めて、合わせてテフラ組成分析とした。分析の手順は次のとおりである。

- 1)テフラ検出分析終了後の試料から、分析篩により $1/4 \sim 1/8$ mmと $1/8 \sim 1/16$ mmの粒子を篩別。
- 2) 偏光顕微鏡下で $1/4 \sim 1/8$ mm粒径の250粒子を観察し、火山ガラスの色調・形態別含有率ならびに軽鉱物や重鉱物の含有率を求める。重鉱物については、その内訳も明らかにする。

(2)分析結果

テフラ組成分析の結果を、ダイヤグラムにして図1(左)に、その内訳を表1に示す。試料1に含まれる火山ガラス、軽鉱物、重鉱物の含有率は、23.2%、56.4%、9.2%である。火山ガラスとしては、含有率が高い順に、繊維束状軽石型(14.4%)、スポンジ状軽石型(5.2%)、中間型(2.8%)、無色透明のバブル型(0.8%)が含まれている。また、重鉱物としては、斜方輝石(5.6%)、不透明鉱物(おもに磁鉄鉱、2.0%)、単斜輝石(1.6%)が認められる。

試料2に含まれる火山ガラス、軽鉱物、重鉱物の含有率は、16.4%、30.0%、14.4%である。火山ガラスとしては、含有率が高い順に、中間型ガラス(6.4%)、繊維東状軽石型(5.6%)、スポンジ状軽石型(4.4%)が含まれている。また、重鉱物としては、斜方輝石(8.4%)、不透明鉱物(おもに磁鉄鉱,4.8%)、単斜輝石(1.2%)が認められる。

試料3に含まれる火山ガラス、軽鉱物、重鉱物の含有率は、0.4%、62.8%、3.2%である。1粒子認められた火山ガラスは、スポンジ状軽石型である。重鉱物としては、不透明鉱物(おもに磁鉄鉱, 1.6%)のほか、斜方輝石および単斜輝石(各0.8%)が含まれている。

4. 重鉱物組成分析

(1)分析試料と分析方法

火山灰試料に含まれる重鉱物組成を明らかにするために、重鉱物組成分析を実施した。分析の手順は次のとおりである。

1)テフラ組成分析後の1/4~1/8mm粒径の重鉱物250粒子を観察し重鉱物組成を求める。

(2)分析結果

重鉱物組成分析の結果をテフラ組成分析の結果を、ダイヤグラムにして図1(右)に、その内訳を表2に示す。試料1に含まれる不透明鉱物以外の重鉱物は、含有率が高い順に、斜方輝石(50.8%)と単斜輝石(16.8%)である。 試料2に含まれる不透明鉱物以外の重鉱物は、含有率が高い順に、やはり斜方輝石(47.2%)と単斜輝石(11.2%)である。試料3に含まれる不透明鉱物以外の重鉱物は、含有率が高い順に、斜方輝石(24.8%)、角閃石(9.2%)、単斜輝石(8.4%)、そして黒雲母およびカンラン石(各0.4%)で、多様な鉱物からなる特徴が認められる。

5. 屈折率測定(火山ガラス)

(1)測定試料と測定方法

3試料に含まれる火山ガラスを対象に、指標テフラとの同定精度を向上させるために含まれる火山ガラス(n)の屈折率測定を行った。測定方法は温度変化型屈折率法(壇原, 1993)で、洗浄後の篩別で得られた $1/8 \sim 1/16$ mmの火山ガラスを測定対象とした。

(2)測定結果

屈折率の測定結果を表3に示す。この表には、三陸地方中~北部周辺の後期更新世後半以降の代表的な指標テフラの火山ガラスの屈折率特性も合わせて示した。

試料 1 に含まれる火山ガラス (32粒子) の屈折率 (n) は、1.509-1.514である。試料 2 に含まれる火山ガラス (31粒子) の屈折率 (n) は、1.509-1.513である。そして、試料 3 に含まれる火山ガラス (2粒子) の屈折率 (n) は、1.510-1.511である。

6. 考 察

試料1(中部)と試料2(上部)が採取されたテフラ層は、発掘調査の際の層相、火山ガラスの形態・色調組成や屈折率特性、さらに、斜方輝石および単斜輝石で特徴づけられるいわゆる両輝石型の重鉱物組成から、約6,000年前に十和田火山から噴出した十和田中掫テフラ(To-Cu, 大池ほか, 1966,早川1983,町田・新井, 1992, 2003, 2011)に同定される。このTo-Cuが埋土上位に認められたことから、1号粘土採掘坑の層位は、To-Cuより下位と判断される。

一方、試料3に含まれる火山ガラスに関しては、含有率も試料に関する情報も少ないことら、高確度のテフラ同定は難しいが、火山ガラスの屈折率特性をみると、To-Cuに由来する可能性が考えられる。また、約3.2万年前以前に十和田火山から噴出した十和田大不動テフラ(To-Of,中川ほか,1972,大池・中川,1979, Hayakawa,1985,松山・大池,1986,町田・新井,1992,2003,2011)に由来する可能性も考えられる。もし、To-Ofであれば、今後東北地方一帯から北海道にかけて広く検出される可能性があり、三陸地方の初期旧石器文化を探る上でも、非常に有効な指標になる可能性が高い。ただ、いずれにしても、今回の試料3については、多様な重鉱物組成からもテフラ以外の粒子の含有率が非常に高いと言わざるを得ない。

なお、本地域には、To-CuやTo-Ofのほか、十和田 a 火山灰(To-a, 大池, 1972, 町田ほか, 1981, 町田・新井, 1992, 2003, 2011)など冒頭に述べた火山から噴出した多くのテフラが降灰している可能性が高い。引き続き、テフラに関する現地での調査や今回行われたような室内分析を合わせての詳細な編年研究が期待される。

7. ま と め

普代村力持遺跡で採取・送付された3試料(試料 $1\sim3$)を対象に、テフラ分析(テフラ検出分析、テフラ組成分析、重鉱物組成分析、火山ガラスの屈折率測定)を実施した。その結果、1 号粘土採掘坑の埋土上位に挟在する、試料1 と試料2 が採取された成層したテフラ層は、十和田中掫テフラ (To-Cu、約6,000年前)に同定された。このことから、1 号粘土採掘坑の層位は、To-Cuより下位にあることが明らかになった。一方、12 号住居址床面から採取された試料3 におけるテフラ粒子の含有率は非常に低いものの、わずかに含まれる火山ガラスについては、やはりTo-Cuか、さらに古い十和

田大不動テフラ(To-Of. 約3.2万年前以前)に由来する可能性が指摘された。

文献

早川由紀夫 1983 十和田中掫テフラ層の分布, 粒度, 組成, 年代. 火山, 28, p.263-273.

Hayakawa, Y. 1985 Pyroclastic geology of Towada volcano. Bull. Earthq. Res. Inst. Univ. Tokyo, 60, p.507-592.

壇原 徹 1993 温度変化型屈折率測定法. 日本第四紀学会編「第四紀研究試料分析法 2 」, p.149-158.

町田 洋・新井房夫 1992 火山灰アトラス. 東京大学出版会, 276p.

町田 洋・新井房夫 2003 新編火山灰アトラス. 東京大学出版会, 336p.

町田 洋・新井房夫 2011 新編火山灰アトラス(第2刷). 東京大学出版会, 336p.

町田 洋・新井房夫・森脇 広 1981 日本海を渡ってきたテフラ. 科学, 51, p.562-569.

松山 力・大池昭二 1986 十和田火山噴出物と火山活動。十和田火山博物館, 4, p.1-62.

中川久夫・中馬教充・石田琢二・松山 力・七崎 修・生出慶司・大池昭二・高椅 一

1972 十和田火山発達史概要. 岩井淳一教授記念論文集, p.7-17.

大池昭二 1972 十和田火山東麓における完新世テフラの編年. 第四紀研究, 11, p.232-233.

大池昭二・中川久夫 1979 地形並びに表層地質調査. 「三戸地域広域農業開発基本調査報告書」,東北農政局, 103p.

大池昭二・中川久夫・七崎 修・松山 力・米倉伸之 1966 馬淵川中・下流沿岸の段丘と火山灰. 第四紀研究, 5, p.29-35.

表 1 テフラ検出分析結果

試料	地点	軽石・スコリア				火山ガラス	重鉱物	
武什		量	色調	最大径	量	形態	色調	(不透明鉱物以外)
	1 1号粘土採掘坑				****	pm (sp), pm (fb), md	白, 無色透明	орх, срх
	2 1号粘土採掘坑				***	pm (sp) > pm (fb)	白	opx, cpx, (bi)
3 12 号住居址床面								bi, (opx, cpx)

^{****:} とくに多い、***: 多い、**: 中程度、*: 少ない、bw: バブル型、md: 中間型、pm: 軽石型、sc: スコリア型、sp: スポンジ状、fb: 繊維束状、ol: カンラン石、opx: 斜方輝石、cpx: 単斜輝石、am: 角閃石、bi: 黒雲母、(): 量が少ないことを示す。

表2 テフラ組成分析結果

試料	Jah. J	H		火山ガラス			重鉱物 重鉱物				その他	合計			
訊料	地点	bw (cl)	bw (pb)	bw (br)	md	pm (sp)	pm (fb)	平土现在100	opx	cpx	am	opq	C ANIR E	百刊	
	1 15	号粘土採掘坑	2	0	0	7	13	36	141	14	4	0	5	28	250
	2 15	号粘土採掘坑	0	0	0	16	11	14	75	21	3	0	12	98	250
	3 12 -	号住居址床面	0	0	0	0	1	0	157	2	0	2	4	84	250

bw:パブル型, md:中間型, pm:軽石型, sc:スコリア型, cl:無色透明, pb:淡褐色, br:褐色, sp:スポンジ状, fb:繊維束状. 数字は粒子数.

表 3 重鉱物組成分析結果

試料	地点	ol	opx	срх	am	bi	opq	その他	合計
1	1 号粘土採掘坑	0	127	42	0	0	78	3	250
2	2 1 号粘土採掘坑	0	118	28	0	0	102	2	250
3	3 12 号住居址床面	1	62	21	23	1	136	6	250

ol:カンラン石, opx:斜方輝石, cpx:単斜輝石, am:角閃石, bi:黒雲母, o p q:不透明鉱物 (黒色で光沢をもつもの). 数字は粒子数

表 4 屈折率測定結果

地点・テフラ	試料	火山ガラス		文献
		屈折率 (n)	測定点数	
力持遺跡 1 号粘土採掘坑	試料1	1.509-1.514	32	本報告
力持遺跡 1 号粘土採掘坑	試料2	1.509-1.513	31	本報告
力持遺跡 12 号住居址床面	試料3	1.510-1.511	2	本報告
指標テフラ(後期更新世以降)				
十和田 a (To-a)	岩手周辺	1.500-1.508		町田·新井 (2011)
	宮城周辺	1.503-1.507		町田・新井(2011)
十和田中掫(To-Cu)		1.508-1.512		町田·新井 (2011)
秋田駒柳沢(Ak-Y)		?		町田·新井 (2011)
肘折尾花沢(Hj-O)		1.499-1.504		町田·新井 (2011)
秋田駒小岩井(Ak-K)		?		町田·新井 (2011)
十和田八戸(To-H)		1.505-1.509		町田·新井 (2011)
浅間板鼻黄色(As-YP)		1.501-1.505		町田·新井 (2011)
鳴子潟沼上原(Nk-U)		1.492-1.500		早田 (2001)
姶良 Tn(AT)		1.498-1.501		町田·新井 (2011)
十和田大不動(To-Of)		1.505-1.511		町田·新井 (2011)
西岩手雪浦·生出(Iw-Y,Od)		1.508-1.508		町田·新井 (2011)
鳴子柳沢(Nr-Y)		1.500-1.503		町田·新井 (2011)
燒石山形(Yk-Y)		1.501-1.503		町田·新井 (2011)
燒石村崎野(Yk-M)		1.503-1.508		町田·新井 (2011)
十和田川口(Kw)		?		町田·新井 (2011)
阿蘇 4 (Aso-4)		1.506-1.510		町田·新井 (2011)
鳴子荷坂(Nr-N)		1.500-1.502		町田·新井 (2011)
肘折北原(Hj-Kth)		1.499-1.502		町田·新井 (2011)
三瓶木次 (SK)		1.496-1.498		町田·新井 (2011)
洞爺(Toya)		1.494-1.498		町田·新井 (2011)

本報告における屈折率の測定は、温度変化型屈折率測定装置による.

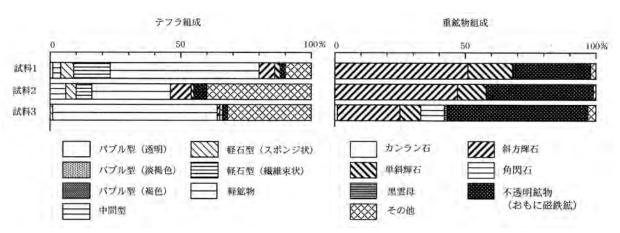
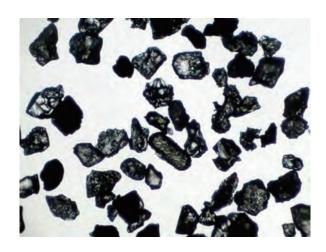
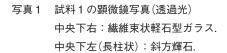
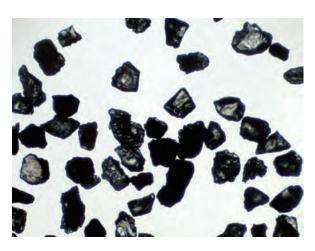
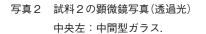
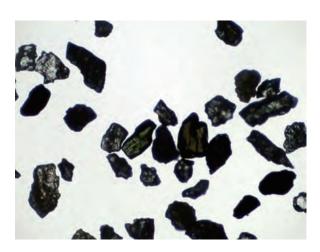





図1 力持遺跡のテフラ組成・重鉱物組成ダイヤグラム



0.2mm



0.2mm

中央(黒色):不透明鉱物(磁鉄鉱).

中央右上:斜方輝石. 中央右方(緑色):単斜輝石

0.2mm

写真3 試料3の顕微鏡写真(透過光)

中央上:斜方輝石. 中央右・中央左:角閃石

4 黒曜石産地同定分析

(株) 第四紀地質研究所

1 実験条件

分析はエネルギー分散型蛍光X線分析装置(日本電子製 J S X - 3 2 0 0)で行なった。

この分析装置は標準試料を必要としないファンダメンタルパラメータ法(FP法)による自動定量計算システムが採用されており、 $6C\sim92U$ までの元素分析ができ、ハイパワーX線源(最大30kV、4mA)の採用で微量試料~最大290mm $\phi \times 80mm$ Hまでの大型試料の測定が可能である。小形試料では16 試料自動交換機構により連続して分析できる。分析はバルクFP法でおこなった。FP法とは試料を構成する全元素の種類と濃度、X線源のスペクトル分布、装置の光学系、各元素の質量吸収係数など装置定数や物性値を用いて、試料から発生する各元素の理論強度を計算する方法である。

実験条件はバルクFP法(スタンダードレス方式)、分析雰囲気=真空、X線管ターゲット素材= Rh、加速電圧=30kV、管電流=自動制御、分析時間=200秒(有効分析時間)である。

分析対象元素はSi, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P, Rb, Sr, Y, Zrの14元素、分析値は黒曜石の含水量=0と仮定し、酸化物の重量%を100%にノーマライズし、表示した。

地質学的には分析値の重量%は小数点以下 2 桁で表示することになっているが、微量元素のRb, Sr, Y, Zrは重量%では小数点以下 $3\sim4$ 桁の微量となり、小数点以下 2 桁では 0 と表示される。ここでは分析装置のソフトにより計算された小数点以下 4 桁を用いて化学分析結果を表示した。

主要元素と微量元素の酸化物濃度(重量%)で SiO_2 - Al_2O_3 , Fe_2O_3 - TiO_2 , K_2O -CaOの各相関図、Rb-Srは積分強度の相関図の4組の組み合わせで図を作成した。

2 分析結果

第1表化学分析表には分析結果に基づいて原産地も記載してある。

第2表	原産地対比表
71 - 20	

試料名	原産地	器種				
TIK-1	出来島	石鏃				
TIK-2	小赤沢	フレーク				
TIK-3	出来島	スクレイパー				
TIK-4	小赤沢・弱被熱	フレーク				
TIK-5	出来島	フレーク				
TIK-6	出来島・被熱	スクレイパー				
TIK-7	出来島	Uフレ				

- 1) 力持遺跡の黒曜石器石器の原産地は第2表に示すようにTIK-2と4は小赤沢産であり、 $TIK-1,3,5\sim7$ の5個は青森県の出来島産である。
- 2)第2図~第4図を見ると神津島の領域で出来島は共存しており、判別が難しかったが第1図のSiO₂の量の差で出来島産と分別した。
- 3)神津島と出来島の領域に近いところに月山の領域があり、月山系として検討したが幾分月山とは組成が異なるようである。

4 黒曜石産地同定分析

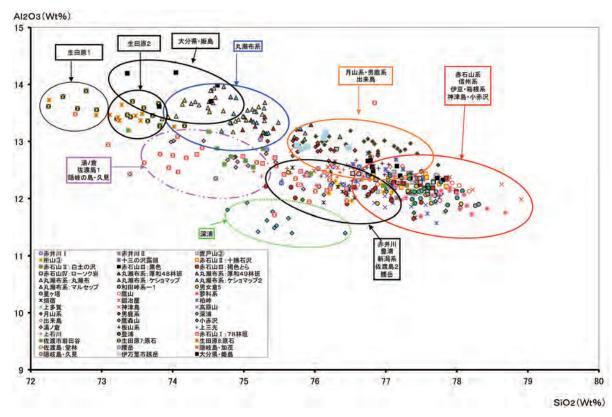
4) TIK-4の小赤沢のフレークは弱被熱しており、TIK-6の出来島は強く被熱している。

引用文献

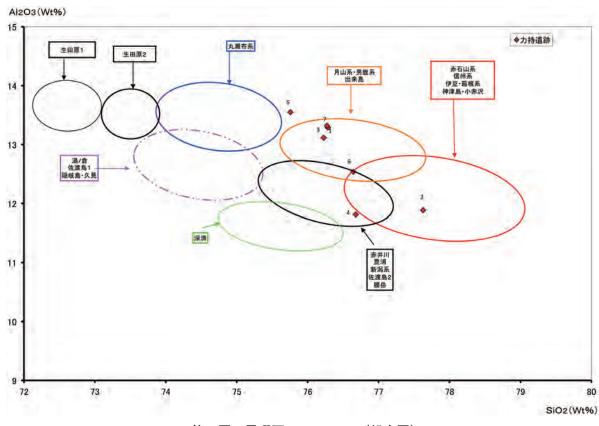
井上 巖 2000 東北・北陸北部における原産地黒曜石の蛍光X線分析(XRF)北越考古学、第11号、23-38/

井上 巌 2001 テフラ中の火山ガラスの同定に関する一提言、軽石学雑誌、第7号 23-51.

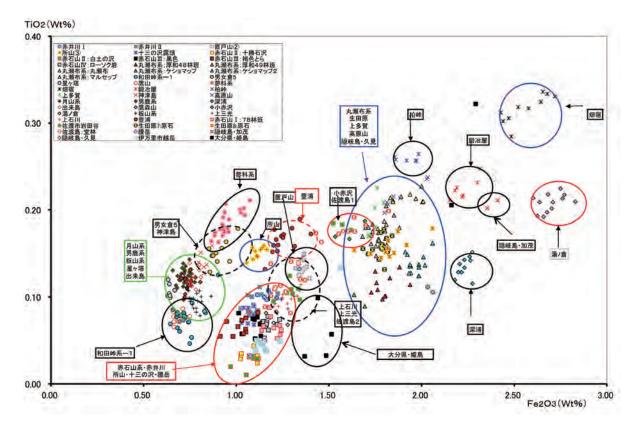
井上 巌 2008 東北日本の原産地黒曜石 関東・中部・東海編

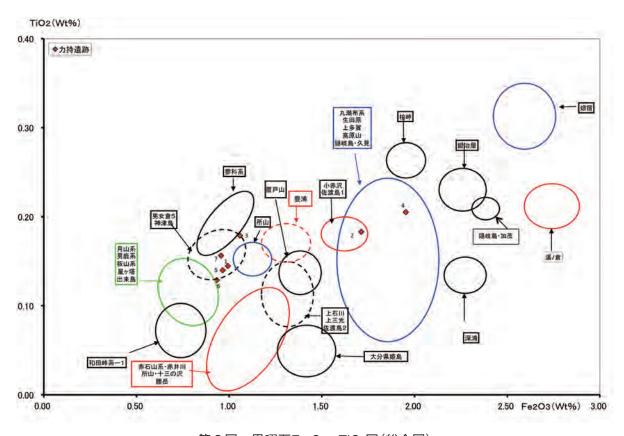

井上 巌 2008 東北日本の原産地黒曜石 東北・北陸編

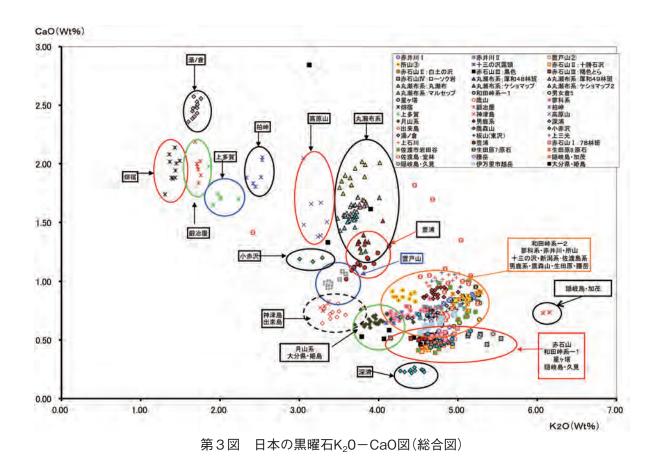
井上 巌 2008 東北日本の原産地黒曜石 北海道編


井上 巌 2008 東北日本の原産地黒曜石写真集

第1表 化学分析表


試料名	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P_2O_5	K ₂ O	CaO	TiO ₂	MnO	Fe ₂ O ₃	Rb ₂ O	SrO	Y_2O_3	ZrO ₂	Total	Rb(I)	Sr(I)	原産地	器種
TIK-1	4.3575	0.0000	13.2882	76.2867	0.4457	3.5074	0.7898	0.1446	0.1443	0.9929	0.0184	0.0143	0.0029	0.0073	100.0000	1060	805	出来島	石鏃
TIK-2	3.8155	0.0000	11.8853	77.6267	0.4706	2.9406	1.2104	0.1830	0.0902	1.7127	0.0060	0.0184	0.0124	0.0282	100.0000	351	1056	小赤沢	フレーク
TIK-3	4.3226	0.0000	13.1148	76.2255	0.3602	3.7518	0.7974	0.1790	0.1469	1.0579	0.0101	0.0170	0.0060	0.0109	100.0001	618	1011	出来島	スクレイパー
TIK-4	4.3608	0.0000	11.8124	76.6784	0.4858	3.0437	1.3033	0.2051	0.0943	1.9535	0.0169	0.0092	0.0110	0.0256	100.0000	920	488	小赤沢・弱被熱	フレーク
TIK-5	4.4880	0.0000	13.5489	75.7573	0.5062	3.6180	0.7920	0.1398	0.1430	0.9653	0.0114	0.0127	0.0060	0.0114	100.0000	718	787	出来島	フレーク
TIK-6	3.3240	0.0000	12.5389	76.6438	0.4382	4.8315	0.9234	0.1288	0.1578	0.9330	0.0324	0.0163	0.0108	0.0211	100.0000	1688	830	出来島・被熱	スクレイパー
TIK-7	4.1730	0.0000	13.3194	76.2724	0.4075	3.7044	0.8082	0.1563	0.1566	0.9557	0.0135	0.0170	0.0055	0.0105	100.0000	825	1019	出来島	Uフレ


第1図 日本の黒曜石 SiO_2 - AI_2O_3 (総合図)

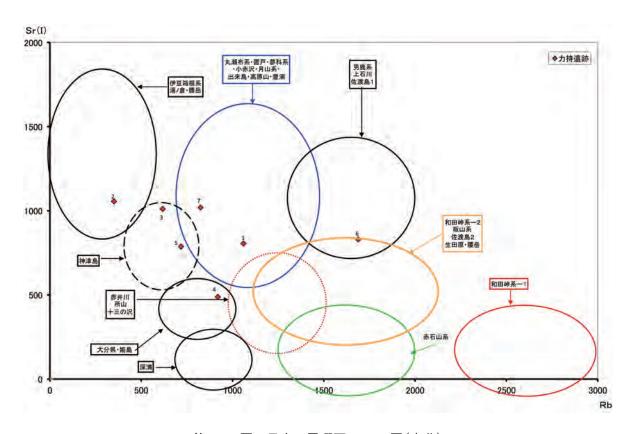

第 1 図 黒曜石 SiO_2 - AI_2O_3 (総合図)

第2図 日本の黒曜石Fe₂O₃-TiO₂図(総合図)

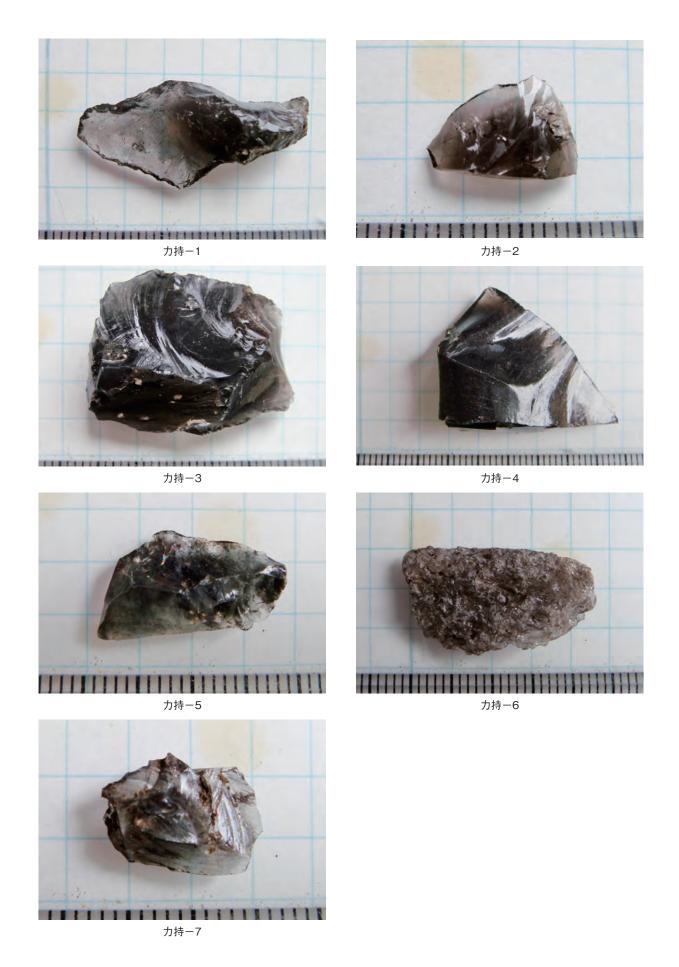
第2図 黒曜石Fe₂O₃-TiO₂図(総合図)

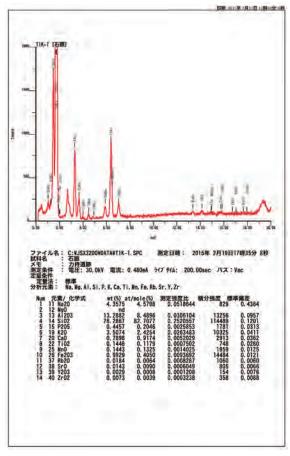


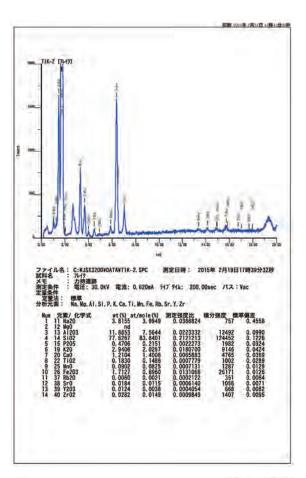
CaO(Wt%) 3.00 海/倉 ◆力持遺跡 2.50 丸雕布系 高原山 2.00 解宿 1.50 斃滴 鍛冶屋 和田崎系--2 撃科系・赤井川・所山 十三の沢・新潟系・佐渡島系 男産系・虚姦山・生田原・腹岳 小赤沢 進戸山 1:00 區岐馬+加茂 神津島 出来島 0.50 月山茶 量ヶ塔 陽岐島·久見 大分県姫島 0.00 1.00 2.00 3.00 4.00 5.00 7.00 0.00 6.00


日本の黒曜石K₂0-CaO図(総合図)

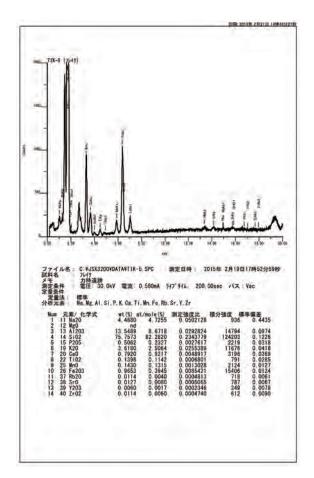
第3図

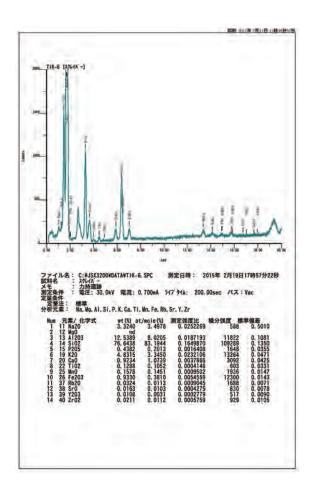

K20(Wt%)

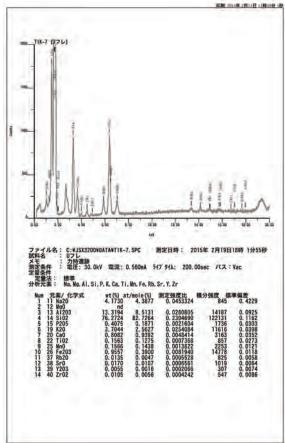

第4図 日本の黒曜石Rb-Sr図(標準図)



第4.2図 日本の黒曜石Rb-Sr図(東北)


力持遺跡出土黒曜石写真





5 琥珀の科学分析

(公財)元興寺文化財研究所

1. は じ め に

琥珀と思われる資料は縄文時代の遺構から出土し、形状から原石であったと思われる。今回分析した資料数は150点で、現状は写真1に示したようにそれぞれ多くの破片が確認された。資料は比較的状態の良いものからかなり劣化したものまで確認された。この遺物が琥珀かどうかの確認をフーリエ変換赤外分光により行った。琥珀であることがわかれば琥珀の主な産出地から採取した地質学的標準資料(以下、標準琥珀)の分析結果と比較することによって産地推定を行うことが可能となる。さらに、資料を加熱することにより得られる重量や熱量の変化を標準琥珀と比較することにより産地推定を行う熱分析も同時に実施した。今回、フーリエ変換赤外分光と熱分析によりこれらの資料の科学分析を行い、産地推定を試みたのでその結果を報告する。

2. 分析資料

今回の分析に使用した資料150点を写真1に示した。いずれの資料も破片の多いものはその中から 出来るだけ健全な部分を選び分析試料とした。また、資料数の少ないものは1つの破片から少量をメ スなどでサンプリングし分析に用いた。また、2003年に分析した琥珀からも6点選んで同様の条件で 分析を行い比較した。同時に標準資料として、久慈市、いわき市、銚子市から産出した資料を同様 の方法・条件で分析し比較した。

3. 分析方法および条件

分析装置は全反射フーリエ変換赤外分光(以下FT-IR)光度計 (SENSIR TECHNOLOGIES製 TravelIR))と熱分析装置(以下TG・DTA)(㈱島津製作所製 DTG-60)を使用した。

FT-IRでは、試料に赤外線を照射することにより得られる分子の構造に応じた固有の周波数の吸収を解析し、化合物の種類を同定することができる。主に有機物の構造を解析する手段として用いられることが多く、琥珀を形成する樹脂の種類すなわち植物の種類および生成年代に由来する高分子化の度合いによって分子構造が異なると考えられる。そのため、産地によってスペクトルに差が生じ、それを利用して産地推定に応用されてきた¹⁾²⁾³⁾。

熱分析は試料に熱を加え、得られる質量変化から気化温度、また熱分解などの化学変化を知ることができる熱重量測定(TG)と、試料の融解などの状態の変化や化学反応の温度を知ることができる示差熱分析(DTA)があり、これらから試料の熱に対する挙動を調べることができる。

測定はFT-IRは極微量(約0.1mg)の試料をそのまま測定部に置き検出器にDLATGS を用い、分解能4cm-1で測定した。また、TG・DTAは試料のごく一部 $(1\sim 2\,\mathrm{mg})$ をサンプリングしアルミニウムセルに入れ、200ml/分の流量の窒素ガスを流しながら 10° C/分で昇温させ、その時の重量変化と熱量変化を測定した。

4. 結果および考察

FT-IR とTG・DTAは有機化合物の分子構造を反映するため、劣化によりその構造が変化すると、本来のスペクトルや挙動とは異なる結果となる場合もある。特に劣化が激しいと、FT-IR では全体

的に吸収はブロードとなり特徴的な吸収が消失し、新たに異なった位置にピークが表れることがある。また、熱分析では低温度から重量減少が始まり吸熱反応のピークがブロードになることがある。そのため琥珀であるかどうかの判断および産地推定は、できるだけ健全な部分を選んで分析を行うことが必要であり、今回も破片の中からできるだけ健全な部分を採取して分析を実施した。

その結果、FT-IRでは資料150点全てにおいて、 $3500 \sim 2800 \text{ cm}^{-1}$ 、 $1500 \sim 800 \text{ cm}^{-1}$ 付近のピークの吸収位置や強度から琥珀であることが確認できた(図1-1 \sim 1-156)。次に指紋領域と呼ばれる有機化合物を同定する際の目安となる $1300 \sim 750 \text{cm}^{-1}$ 付近のスペクトルの吸収位置および強度と、産地の判明している標準琥珀から得られたスペクトルと比較し、産地推定を試みた(図1-1 \sim 1-156、図2-1 \sim 2-3)。国内の主産地である久慈市、いわき市、銚子市のスペクトルと比較した結果、今回の試料は $1250 \sim 850 \text{cm}^{-1}$ 付近の吸収位置と強度が久慈市といわき市に比較的近いスペクトルであることがわかった。

次に熱分析(TG・DTA)の結果ではTGは100℃付近から減少が始まり、250℃付近までは徐々に減少しその後急激に重量減少が見られる結果となった(図3-1-1~3-1-16)。これは標準資料で200℃付近から減少が始まり300℃付近以降で減少率が高くなったのに比べると、出土琥珀はより低温度側での減少が顕著であることがわかった。しかし、完全に分解・消失する温度は久慈市、いわき市、銚子市産(470~480℃)と近い結果となった(図4-1)。このことから出土資料はその一部に劣化の影響が見られ、それに伴って生成した低分子成分がより低温度側で分解が始まったと考えられた。一方、DTAは400℃~440℃付近の高温度領域で分解によると考えられる吸熱反応に伴う、一つから複数の負のピークを持つ曲線が観察された(図3-2-1~3-2-16)。そのピーク温度にはばらつきがあるが久慈市、いわき市産琥珀と比較的よく似た温度範囲に曲線を持つものが多かった(図4-2)。

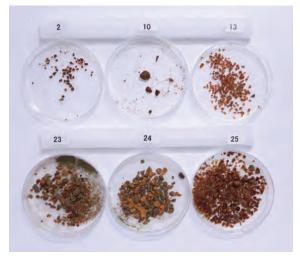
以上のことより、分析が実施されていない産地および現在では消滅し確認できない産地の可能性は否定できないが、現時点ではFT-IRおよびTG・DTAの結果において、それぞれの資料では劣化状態に多少の差があるため分析結果が完全には一致しなかったが、150点全てが久慈市およびいわき市と判断して良いと思われる結果が得られた。なお、久慈市といわき市産の琥珀はその生成年代および由来する植物が同じであるとされており、有機物を分析する方法では区別がつかない。しかし、自然科学的な分析では両者を区別することはできないが、考古学的な観点からの考察も加え、出土地の地理的および時代的な要素を考慮すると久慈市である可能性は高いと考える。

今回150点の資料について、FT-IRでは3500 cm⁻¹、1710 cm⁻¹付近の酸素と炭素(C-O))の結合に由来する吸収ピークの強度および1500 \sim 800 cm⁻¹付近の吸収ピークのブロード化、および熱分析では低温側での重量減少と高温側でのピークのブロード化から、資料によってはかなり劣化していると判断されるものも確認できた。例えばNo.183、No.192は肉眼観察(写真 1)、FT-IR(図1-183、図1-192)および熱分析(図3-1-8、図3-2-8)のいずれの結果も劣化の進行を示した。劣化の激しい資料は異なる破片から再度分析を実施した。その結果、比較的健全な部分と同様な結果が得られた資料もあったが、変化が見られず資料全体が劣化していると見られるものもあった。

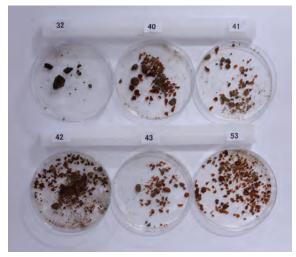
最後に、今回の資料を詳細に観察すると熱を受けたのではないかと思われる遺物が確認できた。可能性が高いと思われるNo.32、No.73、No.220についてさらに詳細に検討した結果、TG・DTAでは他の遺物と比較して顕著な差異が見られなかったが、FT-IRでは1000cm 付近のピーク強度が弱くなっていることがわかった(図1-7、図1-18、図1-102)。その中で外観から特に熱を受けた可能性が高いと見られるNo.32については破片の一部を外部から内部にかけてFT-IRを行った。その結果、内部は1100~1200cm に対する1000cm のピークの強度が弱く、この傾向は内部の2箇所ではほぼ同じ結

果となった。外部(表面)は劣化の影響を受けたためであると考えられるが、 1000cm^{-1} 付近のピーク強度が強いことがわかった(図5)。この内部の分析結果は図6に示した久慈市、いわき市から産出した標準試料を400 ℃に加熱した結果と比較すると同様に 1000cm^{-1} 付近のピーク強度が弱いことがわかる。そこで、今回の分析対象の出土琥珀について平均的な結果を示した3点(No.24、No.79、No.167)を選び、300 ℂ および400 ℂ に加熱した後FT-IRを実施した。その結果、加熱前に比べ300 ℂ では明らかに 1000cm^{-1} 付近のピーク強度が弱くなり(図7:左)、400 ℂ ではほとんど観察されないという結果となった(図7:右)。以上の結果より 1000cm^{-1} 付近の吸収強度の弱い遺物は熱を受けた可能性が高いと考えた。これがその当時、意図的に加熱されたのか、偶然熱を受けたのかは不明であり、どのような熱の受け方であったかも不明であるが興味深い結果である。

5. さいごに

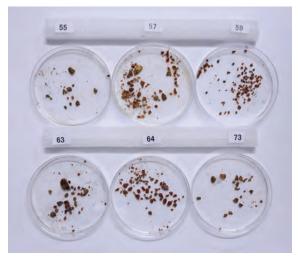

出土琥珀は劣化状態が様々でそれによってFT-IR およびTG・DTAの結果が変わることが多い。しかし今回の分析対象資料は、劣化は幾分進行しているものの、その影響をほとんど受けていないものが多くまた分析点数が150点と非常に多かったため、ばらつきを精査することが出来、久慈市およびいわき市であることが、かなり信頼性の高い結果として導くことができた。また、今回の分析で一部の遺物に熱を受けたとみられる可能性が高い結果が得られた。

琥珀の産地は国内でも、少量の産出地も含めると10ヶ所以上もある。また国外でも各地で産出する。 その中で、主産地の標準琥珀については様々な分析方法による多くの基礎データが揃っており、比 較検討できる環境は整ってきている。一方、少量産地は科学分析がほとんど行なわれていないこと も多く、今回の資料もそういった地域やまだ発見されていない琥珀産地、あるいはすでに消滅した 産地である可能性は否定できない。今後、分析が実施されていない産地の琥珀についても今回のよ うに分析を行い、基礎データを収集することでより精度の高い産地推定が可能になると考える。

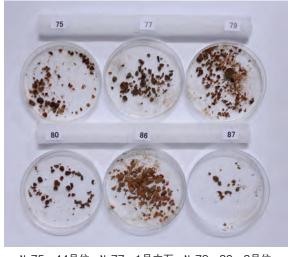

参考文献

- 1)室賀照子、赤外吸収スペクトルによる琥珀の産地分析、考古学と自然科学、第9号、59、(1976)
- 2) 植田直見、銚子産琥珀の赤外分光分析、こはく、第4号、15 (2002)
- 3) 植田直見、いわき地方産琥珀の科学分析、こはく、第5号、13(2004)

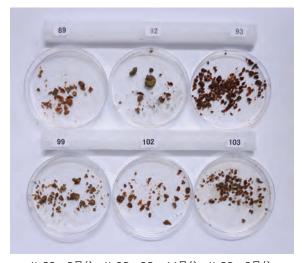
(文責:植田直見)

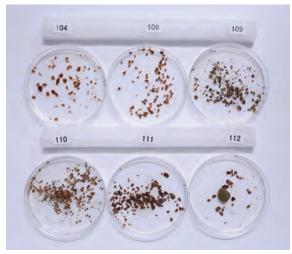


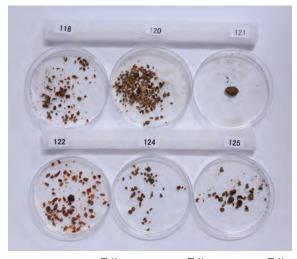
No.2…6号住 No.10…5号住 No.13…3号住 No.23…3号住 No.24…7号住 No.25…2号住

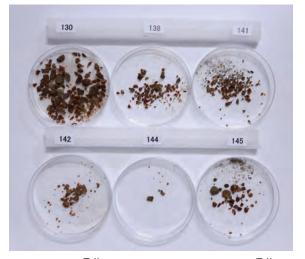


No.32…3号住 No.40…6号住 No.41…1号住 No.42…5号住 No.43…22号住 No.53…3号住

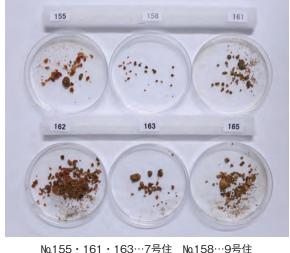

写真1-1 力持遺跡出土琥珀


No.55…3号住 No.57…5号住 No.59…6号住 No.63·64···44号住 No.73···7号住


No.75…44号住 No.77…1号立石 No.79・80…8号住 No.86…44号住 No.87…6号住


No.89…2号住 No.92・93…44号住 No.99…3号住 No.102…2号住 No.103···17号住

No.104…10号住 No.106・110…44号住 No.109…2号住 No.111…7号住 No.112…22号住


No.118・125…10号住 No.120…44号住 No.121…5号住 No.130…44号住 No.138・142・144・145…7号住 No.122…1号住 No.124…37号住

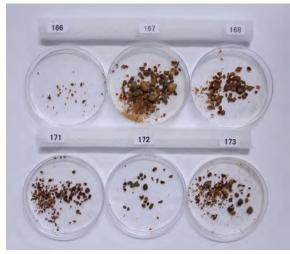
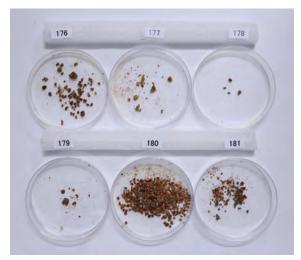
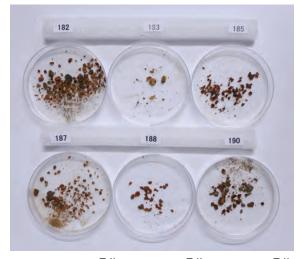
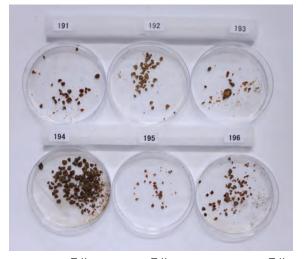

No.141…9号住

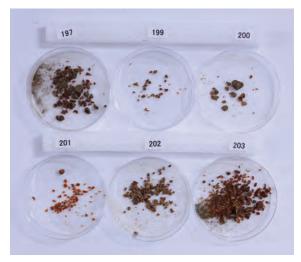
写真1-2 力持遺跡出土琥珀


No.148・152…7号住 No.149…1号焼土 No.150・154…16号住 No.151…9号住

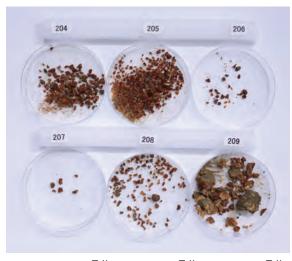

No.155・161・163…7号住 No.158…9号住 No.162…2号住 No.165…5号住


No.166…2号土坑 No.167…1号住 No.168…22号住 No.171…44号住 No.172…o13グリッド No.173…18号住

No.176・178…17号住 No.177…44号住 No.179・180…16号住 No.181…10号住

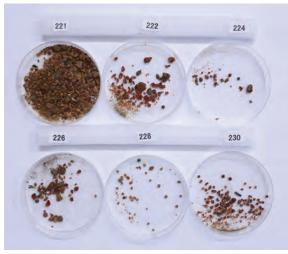


No.182・190…19号住 No.183…16号住 No.185…17号住 No.191…18号住 No.192…7号住 No.193・196…22号住 No.187…21号住 No.188…7号住

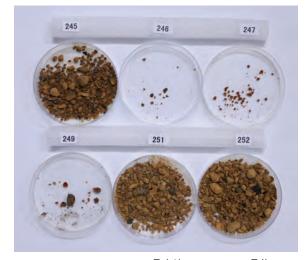


No.194…13・14号住 No.195…26号住

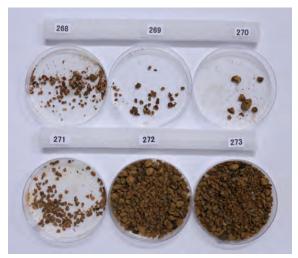

写真1-3 力持遺跡出土琥珀


No.197…16号住 No.199・201・202…17号住 No.200…d7グリッド No.203…26号住

No.204…13・14号住 No.205…17号住 No.206…14号住 No.207・209…18号住 No.208…23号住


No.211…26号住 No.212・218…22号住 No.215・217…25号住 No.220…28号住

No.221…6号土坑 No.222…25号住 No.224・226・230…22号住 No.228…38号住


No.231…28号住 No.234・244…22号住 No.237…18号住 No.240…16号住 No.242…1号住

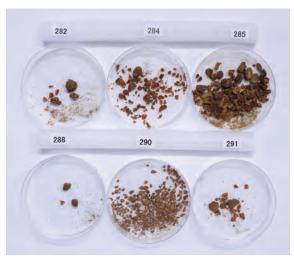
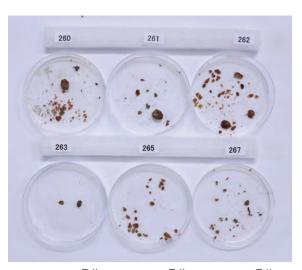

No.245・251・252…7号土坑 No.246…28号住 No.247…51号住 No.249…29号住

写真1-4 力持遺跡出土琥珀


No.254…47号住 No.255・257・258…22号住 No.256…46号住 No.259…37号住

No.268…14号住 No.269…n17グリッド No.270・271…37号住 No.272・273…10号土坑

No.282…50号住 No.284…10号土坑 No.285…9号住 No.288…n9グリッド No.290…6号住 No.291…22号住

No.260…31号住 No.261…36号住 No.262…44号住 No.263…28号住 No.265…24号住 No.267…19号住

No.274・275・276…10号土坑 No.277…37号住 No.279…42号住 No.281…46号住

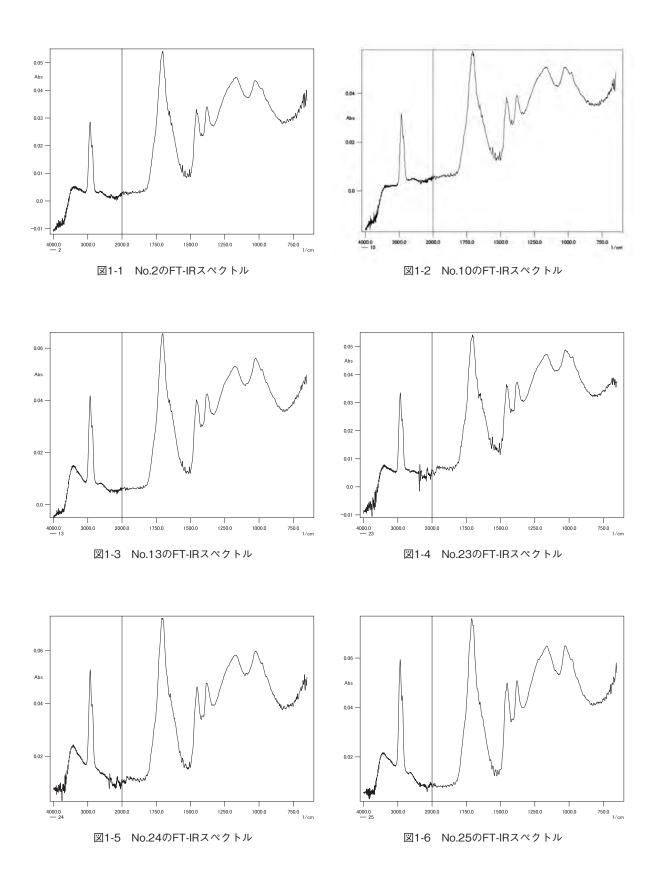


図1-1 ~図1-6 FT-IRスペクトル

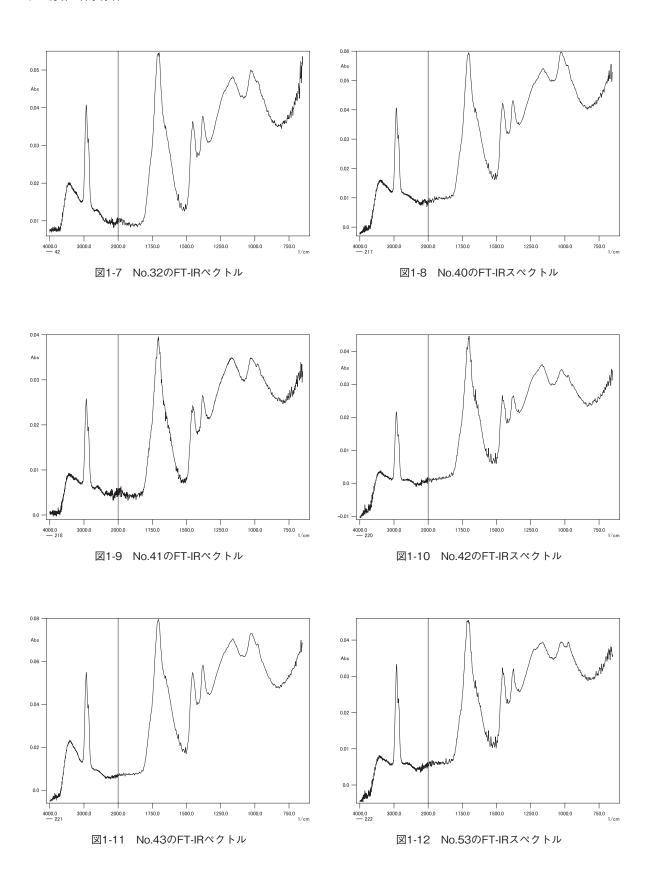


図1-7~図1-12 FT-IRスペクトル

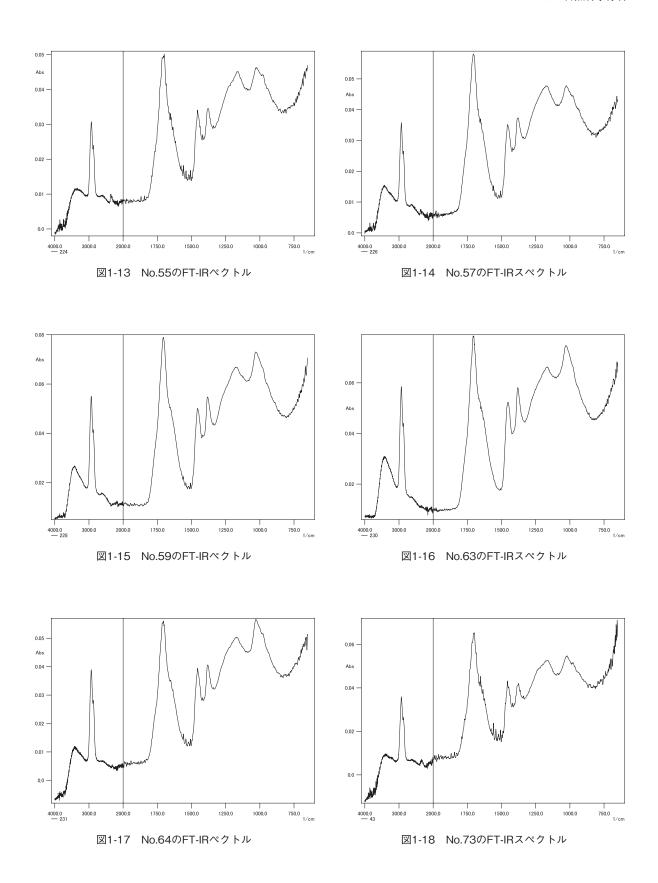


図1-13~図1-18 FT-IRスペクトル

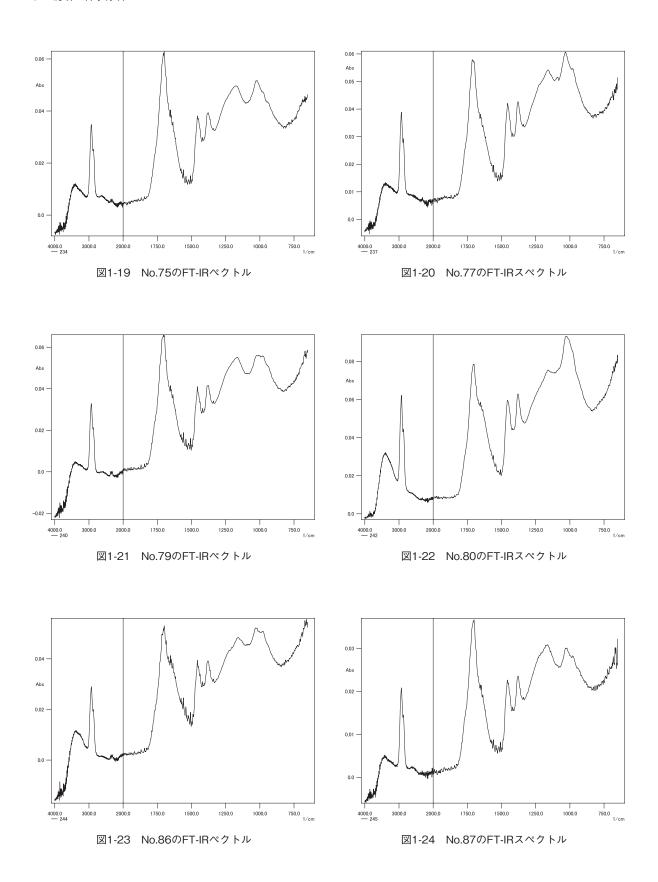


図1-19~図1-24 FT-IRスペクトル

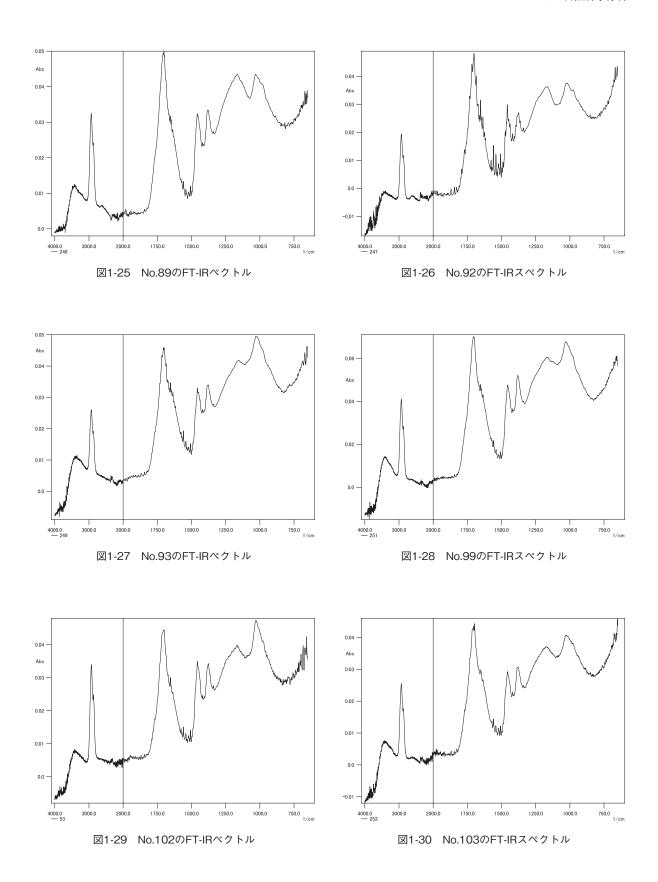


図1-25 ~図1-30 FT-IRスペクトル

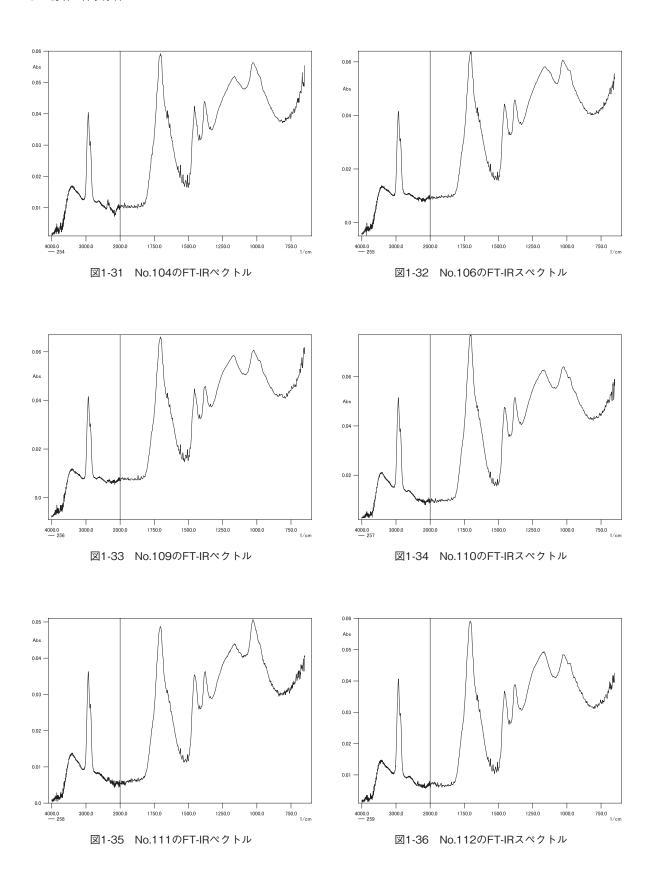


図1-31 ~図1-36 FT-IRスペクトル

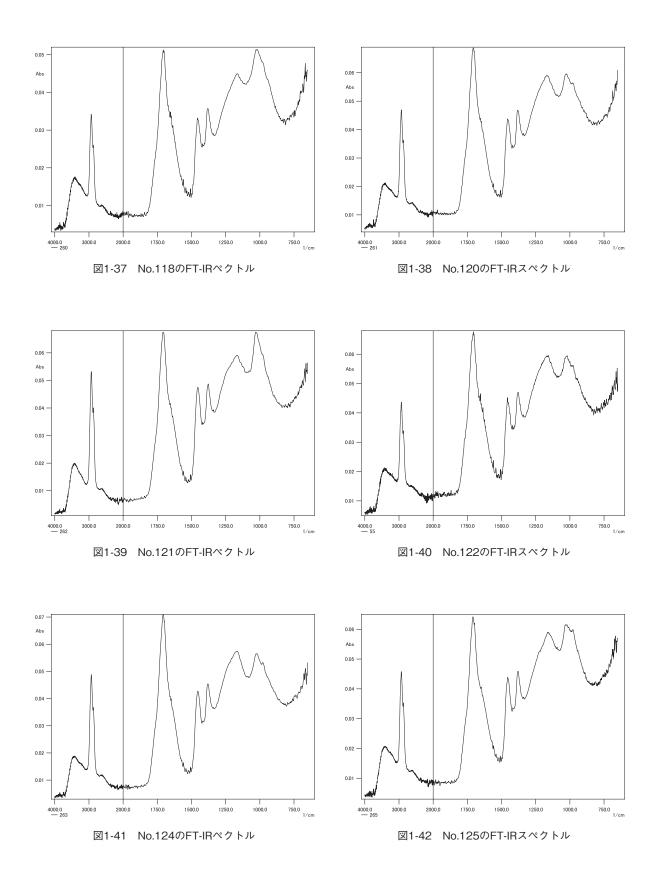


図1-37 ~図1-42 FT-IRスペクトル

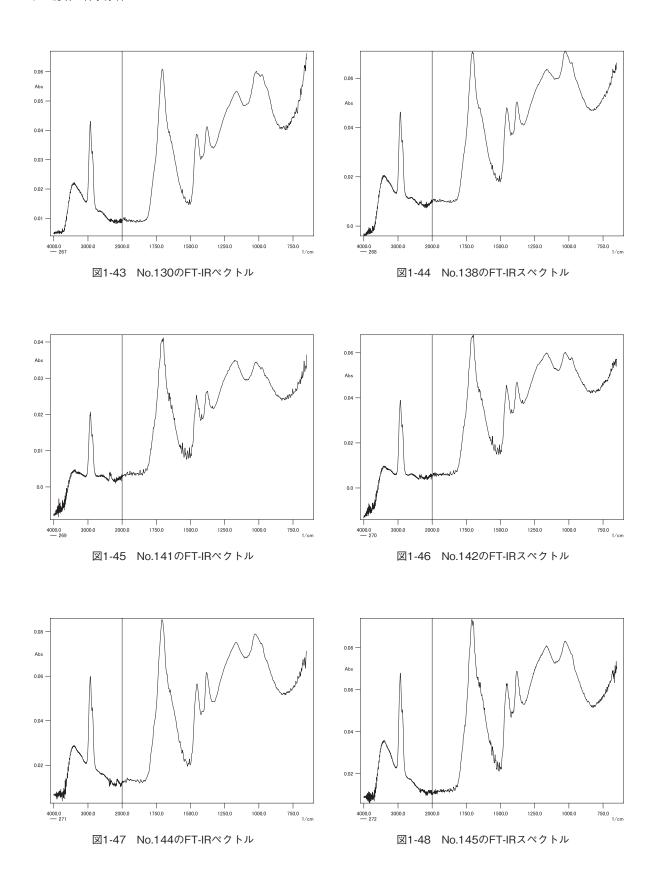


図1-43~図1-48 FT-IRスペクトル

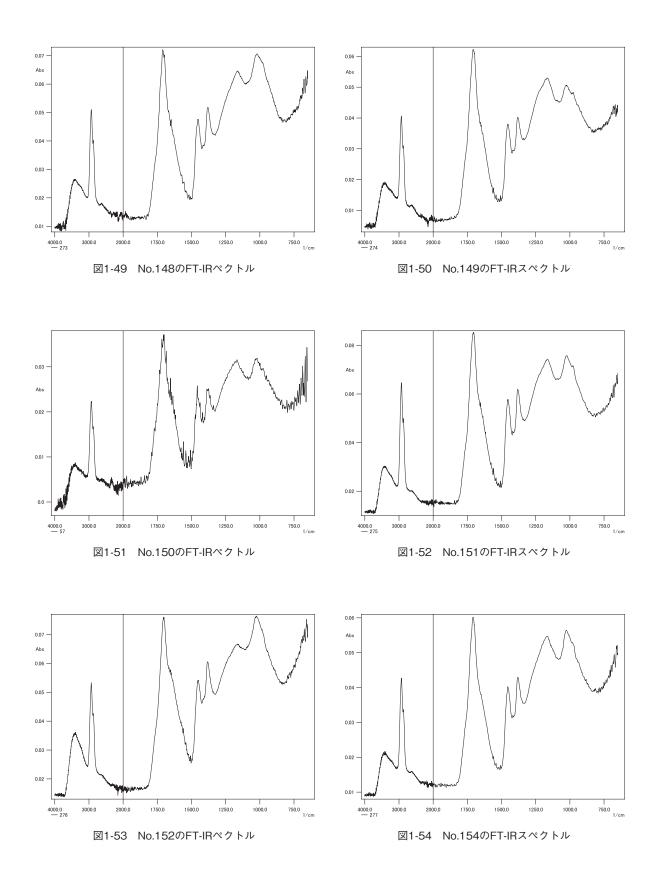


図1-49 ~図1-54 FT-IRスペクトル

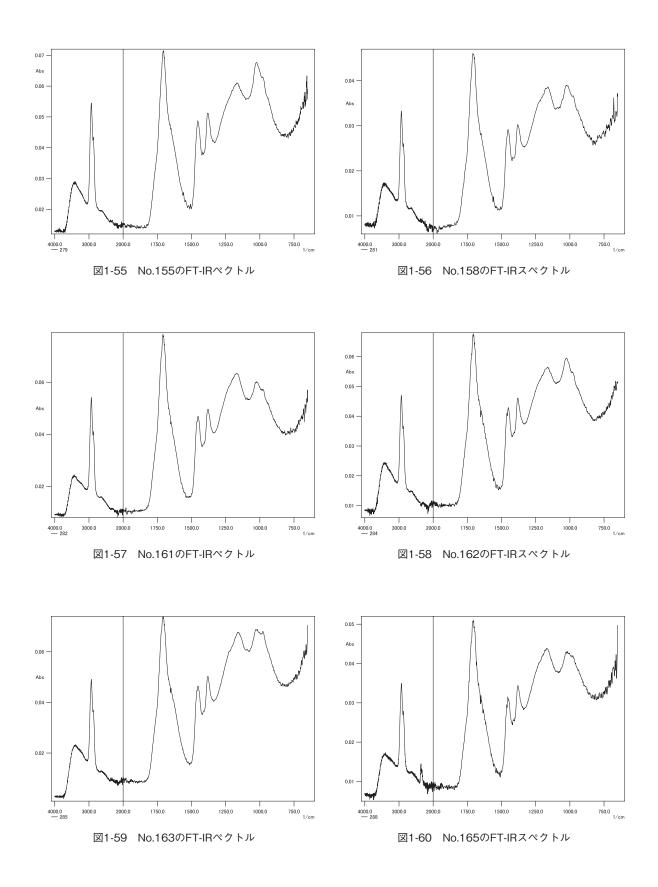


図1-55 ~図1-60 FT-IRスペクトル

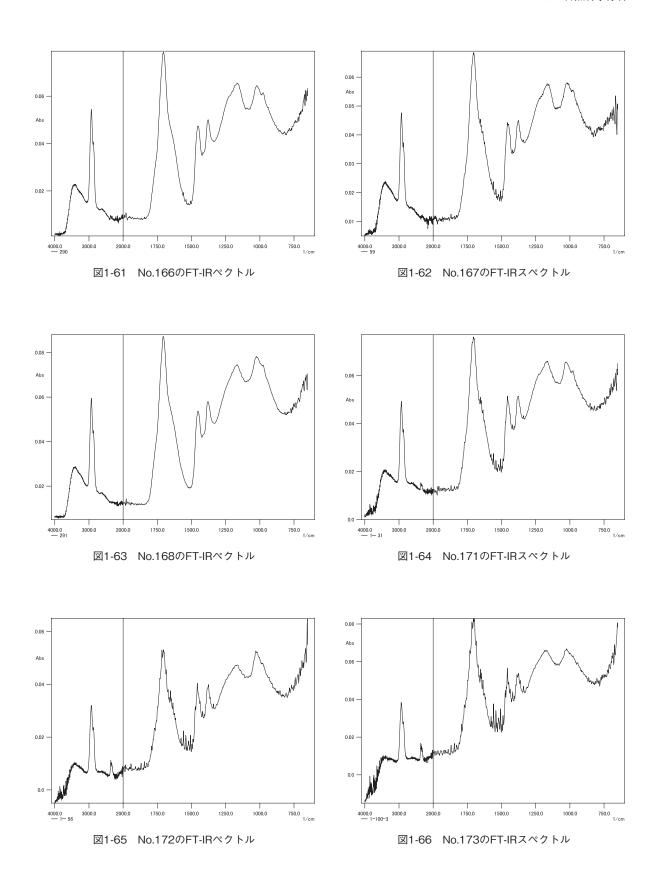


図1-61 ~図1-66 FT-IRスペクトル

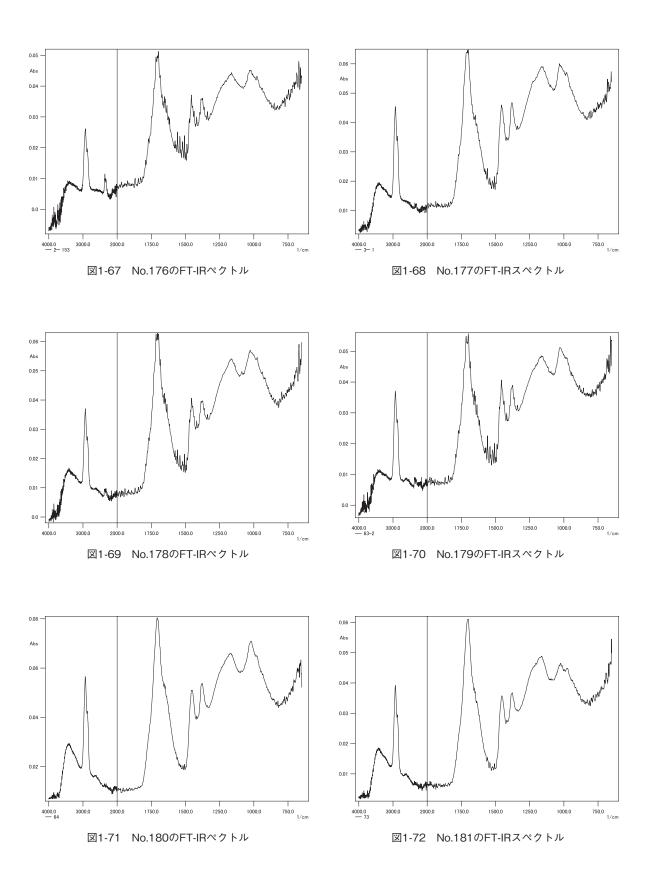


図1-67~図1-72 FT-IRスペクトル

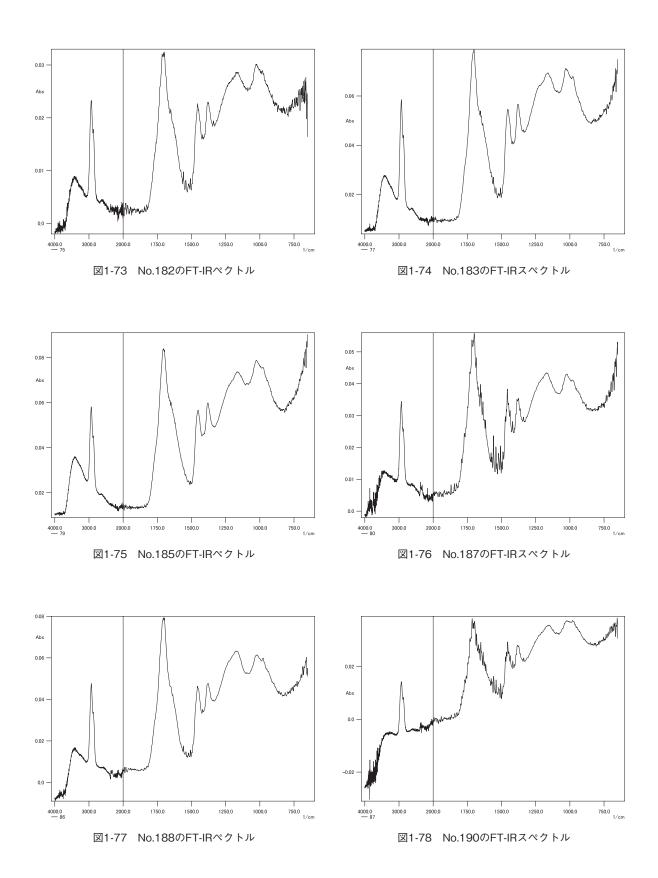


図1-73~図1-78 FT-IRスペクトル

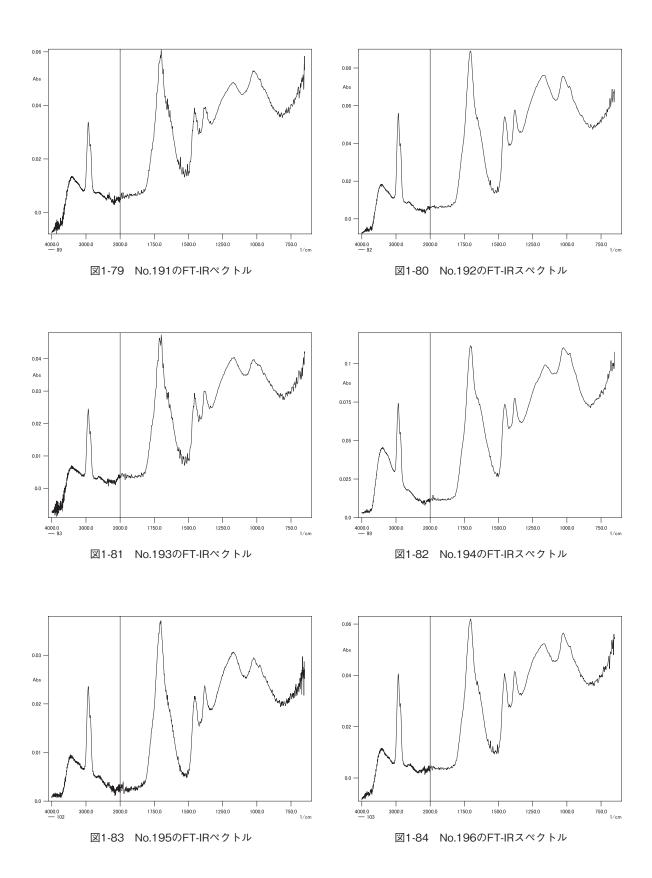


図1-79 ~図1-84 FT-IRスペクトル

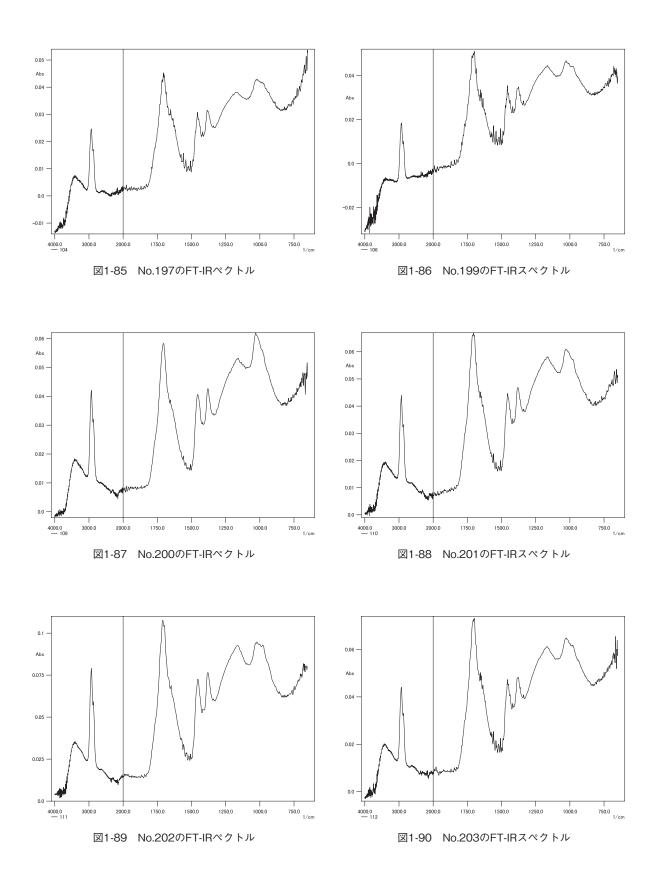


図1-85 ~図1-90 FT-IRスペクトル

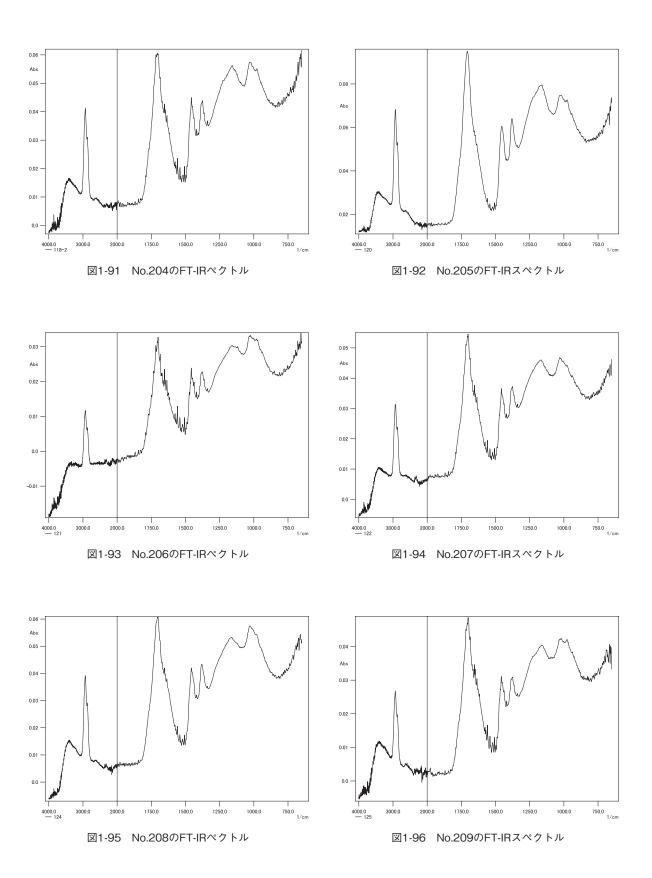


図1-91 ~図1-96 FT-IRスペクトル

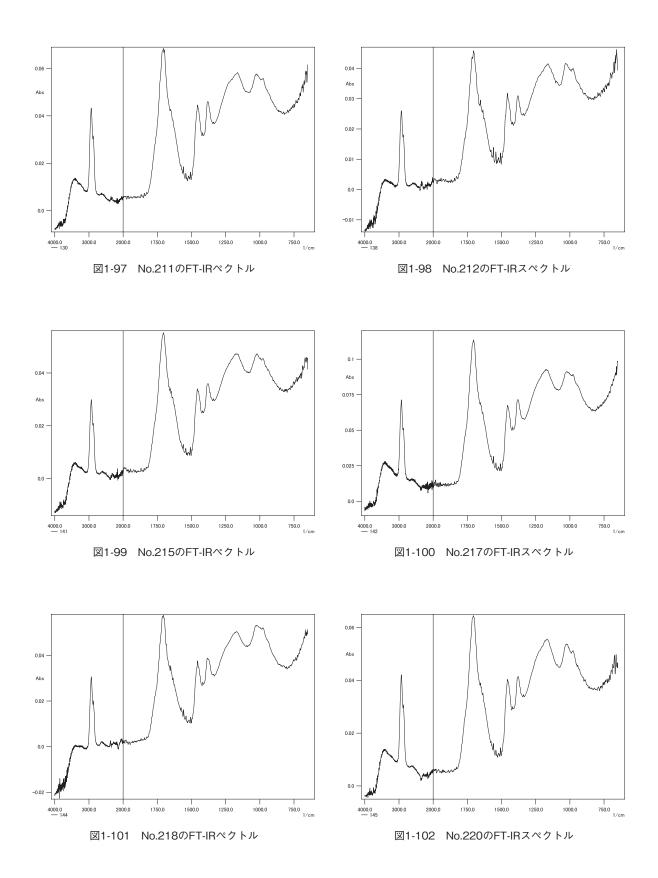


図1-97 ~図1-102 FT-IRスペクトル

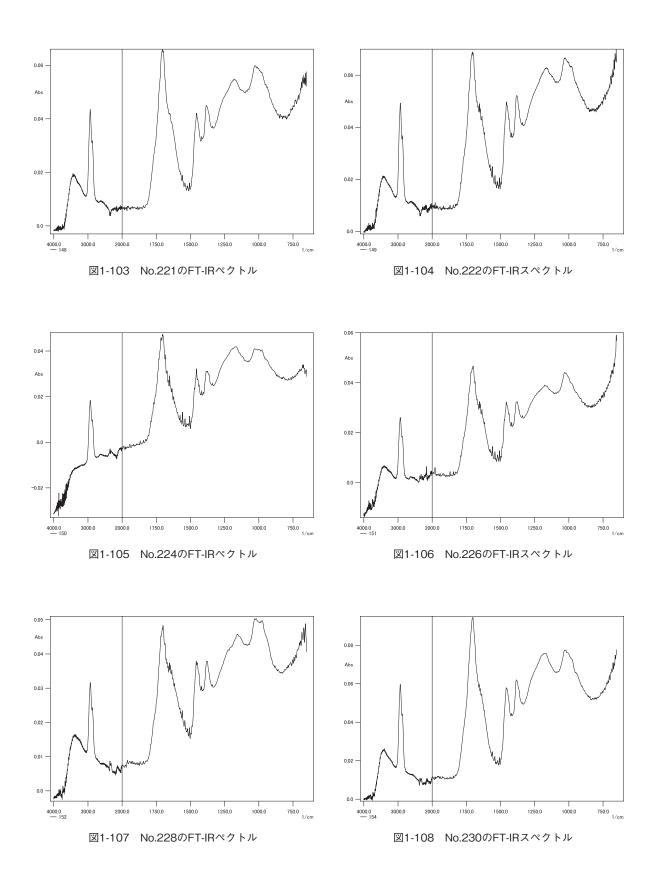


図1-103~図1-108 FT-IRスペクトル

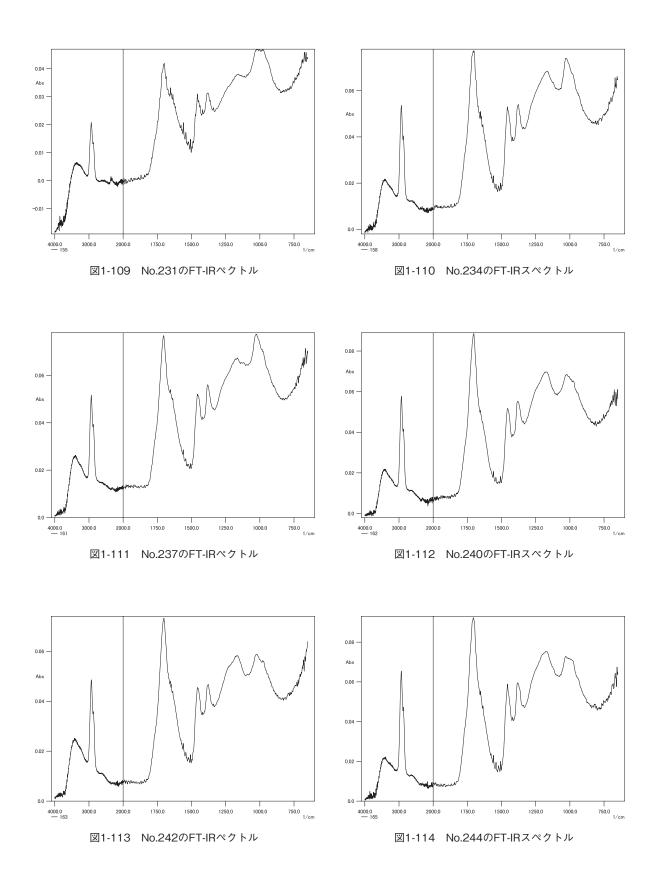


図1-109~図1-114 FT-IRスペクトル

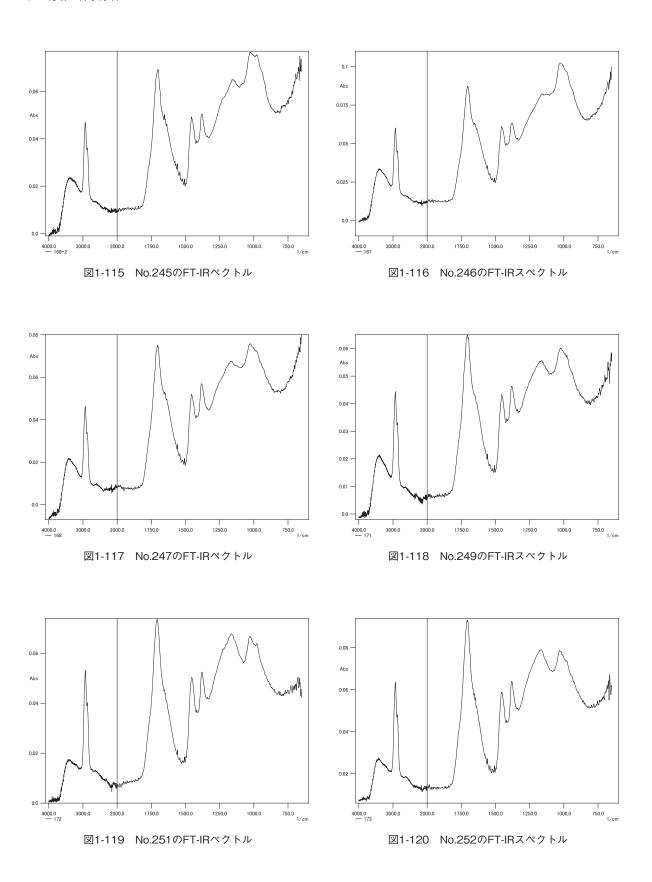


図1-115~図1-120 FT-IRスペクトル

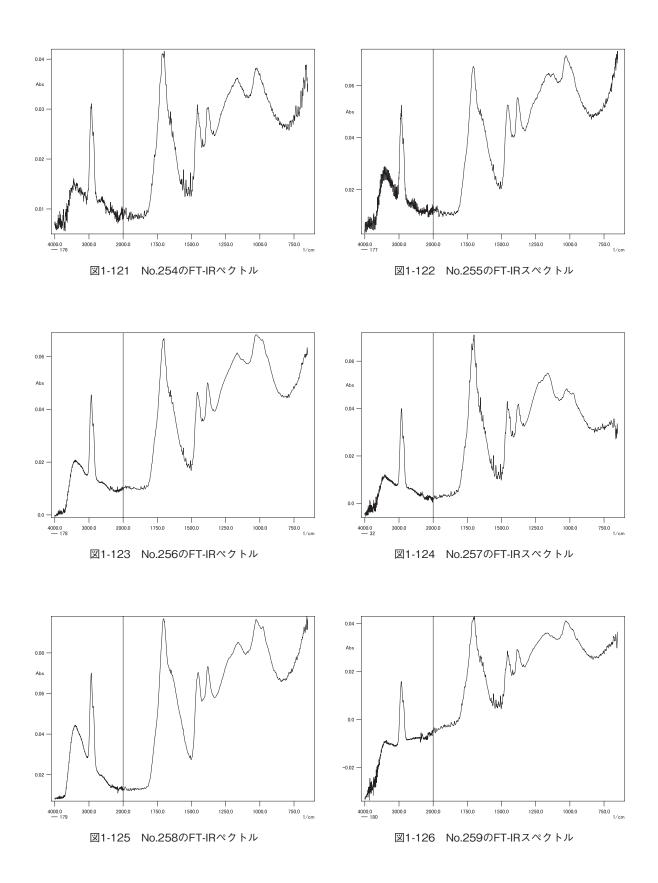


図1-121 ~図1-126 FT-IRスペクトル

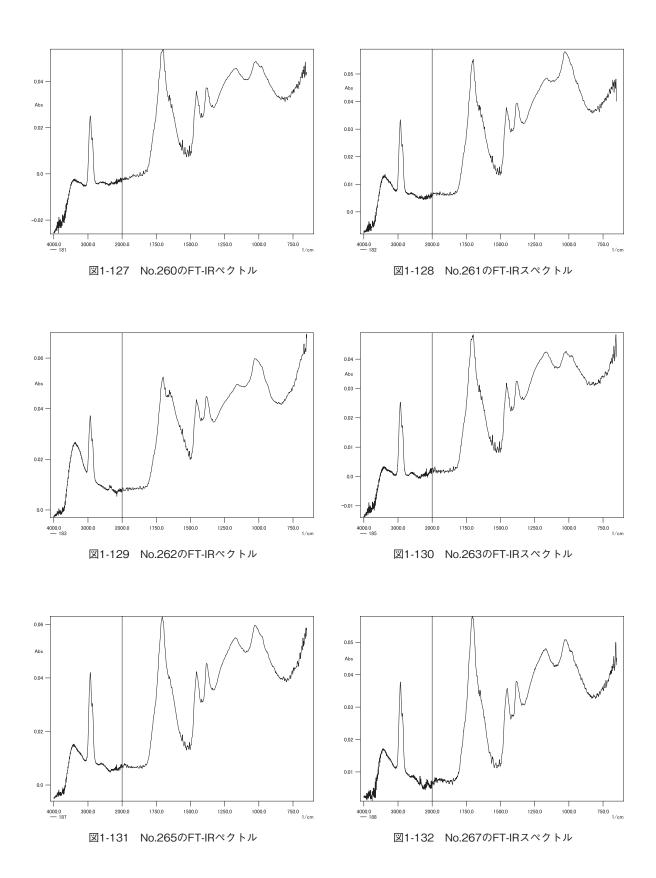


図1-127~図1-132 FT-IRスペクトル

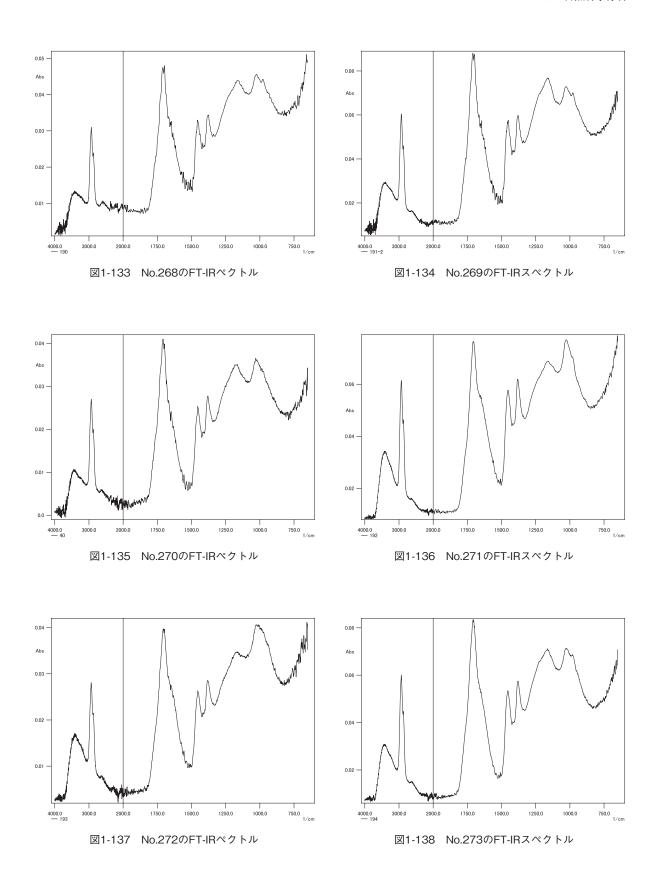


図1-133~図1-138 FT-IRスペクトル

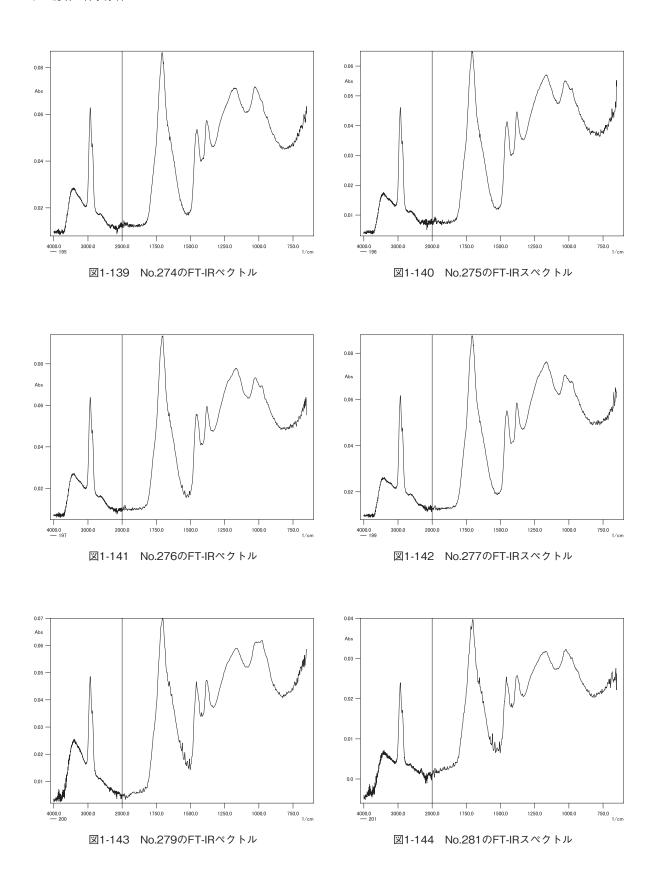


図1-139~図1-144 FT-IRスペクトル

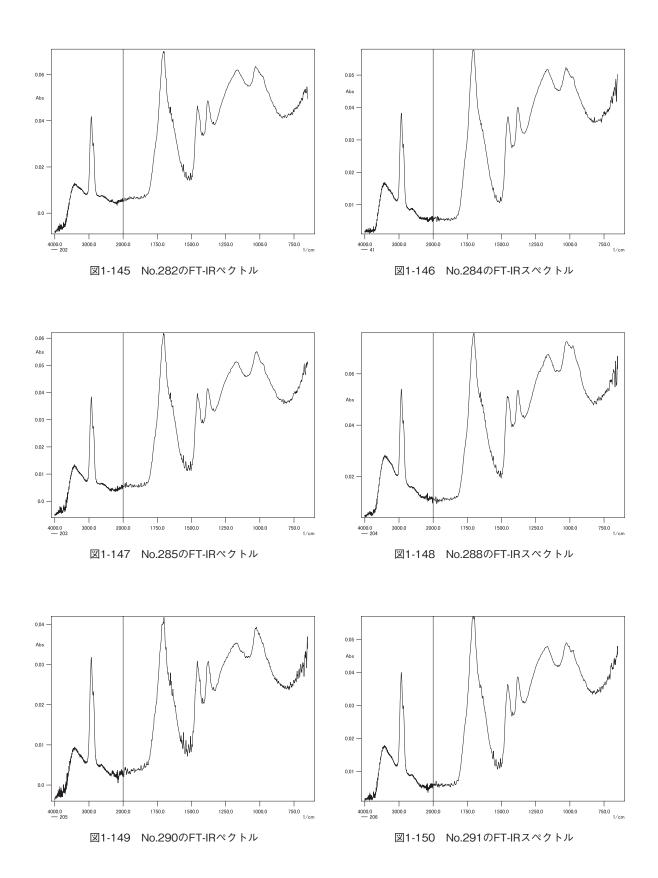


図1-145~図1-150 FT-IRスペクトル

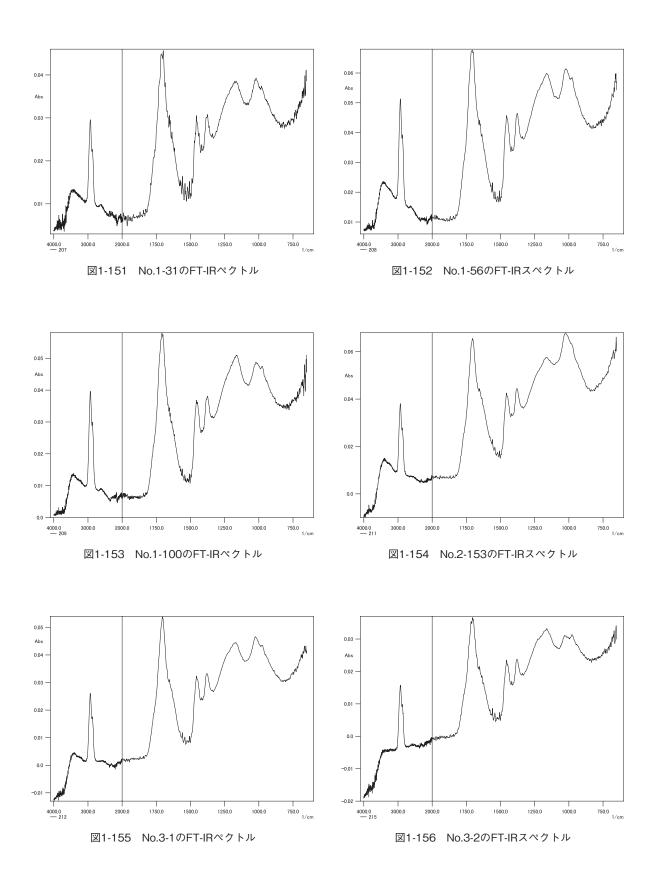


図1-151 ~図1-156 FT-IRスペクトル

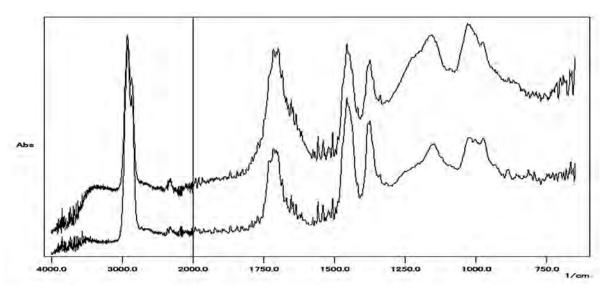


図2-1 久慈市産琥珀の赤外吸収スペクトル

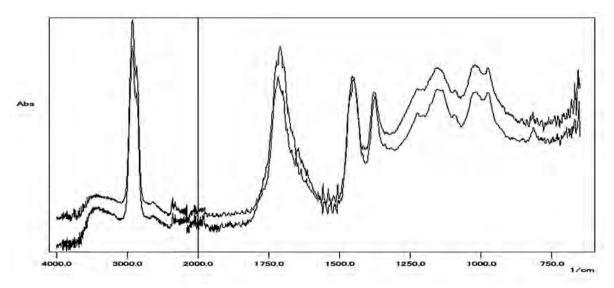


図2-2 いわき市産琥珀の赤外吸収スペクトル

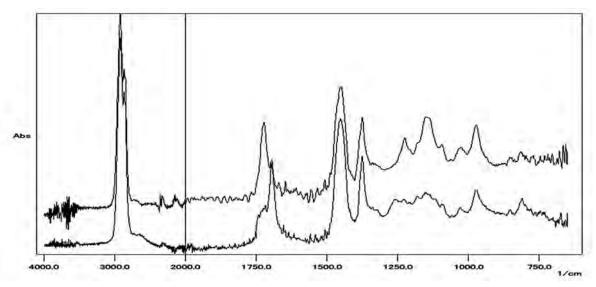
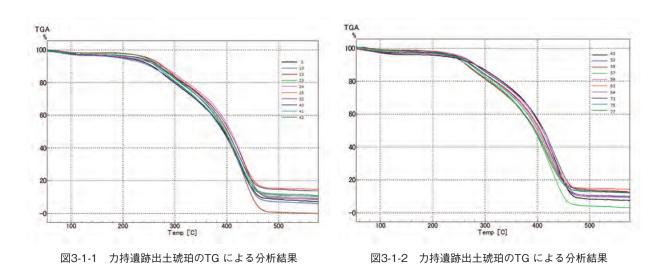



図2-3 銚子市産琥珀の赤外吸収スペクトル

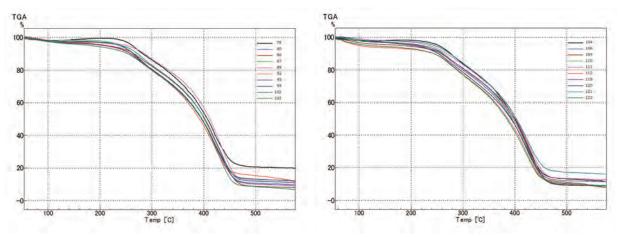
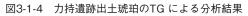



図3-1-3 力持遺跡出土琥珀のTG による分析結果

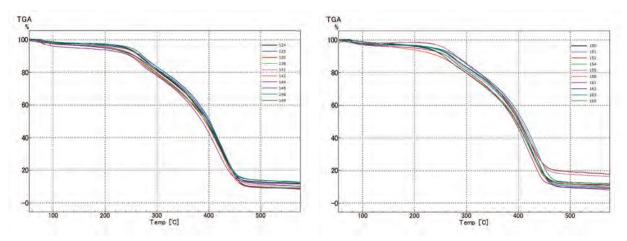
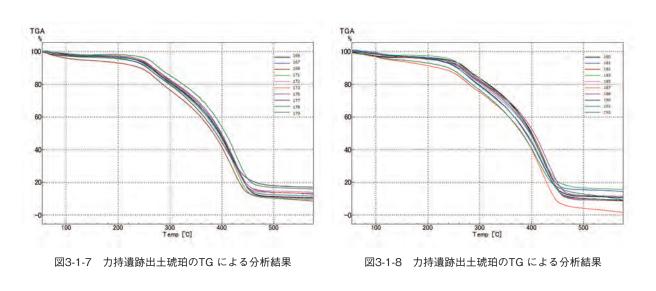



図3-1-5 力持遺跡出土琥珀のTG による分析結果

図3-1-6 力持遺跡出土琥珀のTG による分析結果

図3-1-1 ~図3-1-6 力持遺跡出土琥珀のTG による分析結果

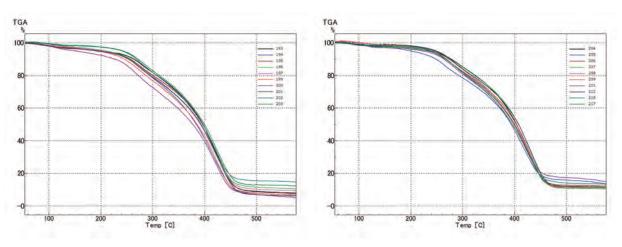


図3-1-9 力持遺跡出土琥珀のTG による分析結果

図3-1-10 力持遺跡出土琥珀のTG による分析結果

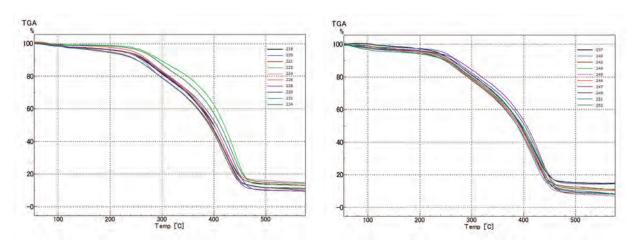


図3-1-11 力持遺跡出土琥珀のTG による分析結果

図3-1-12 力持遺跡出土琥珀のTG による分析結果

図3-1-7 ~図3-1-12 力持遺跡出土琥珀のTG による分析結果

5 琥珀の科学分析

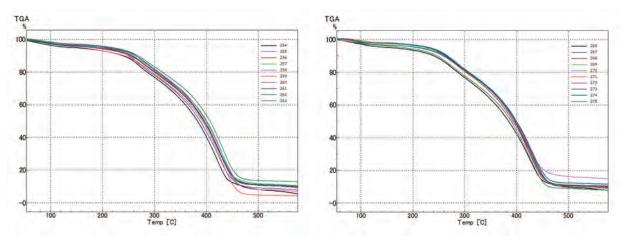


図3-1-13 力持遺跡出土琥珀のTG による分析結果

図3-1-14 力持遺跡出土琥珀のTG による分析結果

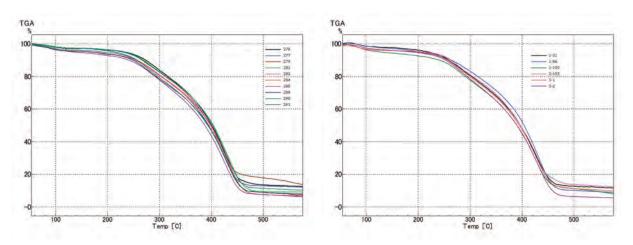


図3-1-15 力持遺跡出土琥珀のTG による分析結果

図3-1-16 力持遺跡出土琥珀のTG による分析結果

図3-1-13 ~図3-1-16 力持遺跡出土琥珀のTG による分析結果

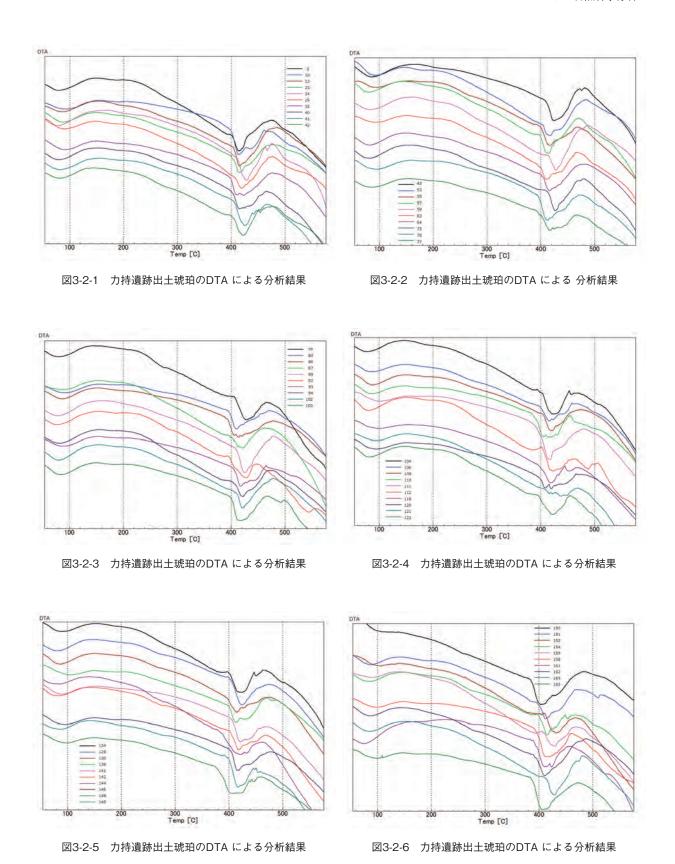


図3-2-1 ~ 図3-2-6 力持遺跡出土琥珀のDTAによる分析結果

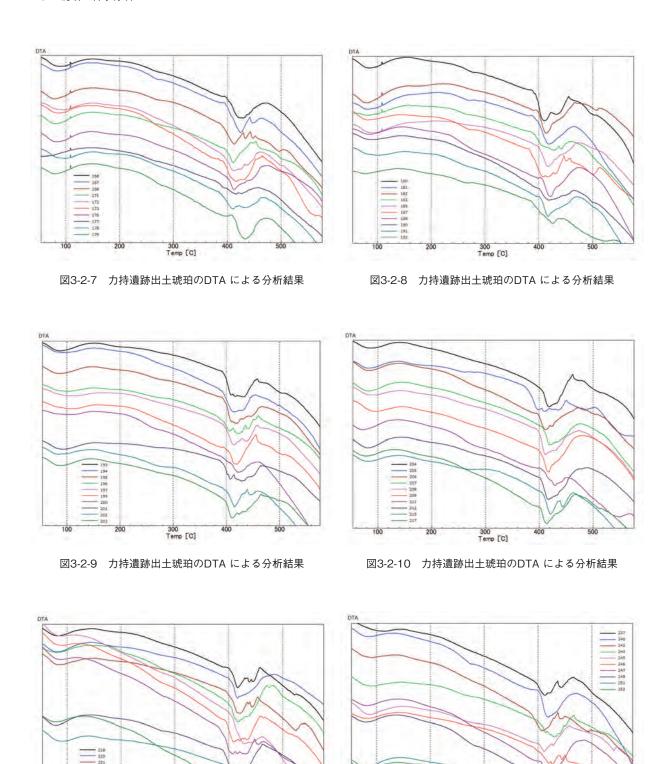


図3-2-7 〜図3-2-12 力持遺跡出土琥珀のDTAによる分析結果

図3-2-12 力持遺跡出土琥珀のDTA による分析結果

300 Temp ['C]

図3-2-11 力持遺跡出土琥珀のDTA による分析結果

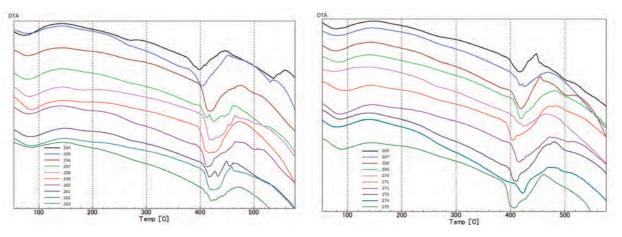


図3-2-13 力持遺跡出土琥珀のDTA による分析結果

図3-2-14 力持遺跡出土琥珀のDTA による分析結果

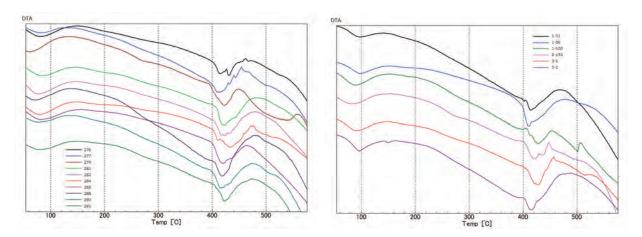


図3-2-15 力持遺跡出土琥珀のDTA による分析結果

図3-2-16 力持遺跡出土琥珀のDTA による分析結果

図3-2-13 ~図3-2-16 力持遺跡出土琥珀のDTAによる分析結果

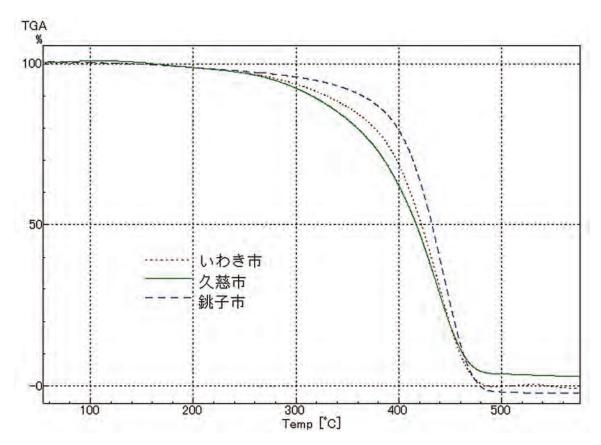


図4-1 標準琥珀のTG による分析結果

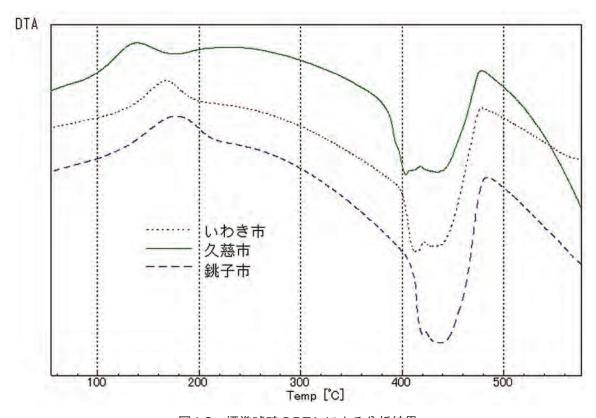


図4-2 標準琥珀のDTA による分析結果

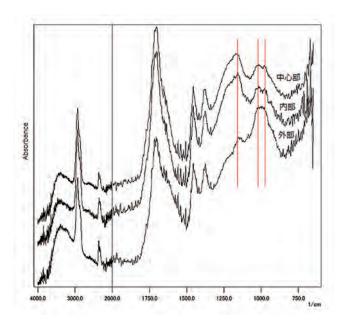


図5 No.32 の表面から内部にかけての FT-IR スペクトル

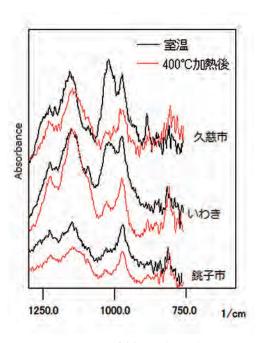
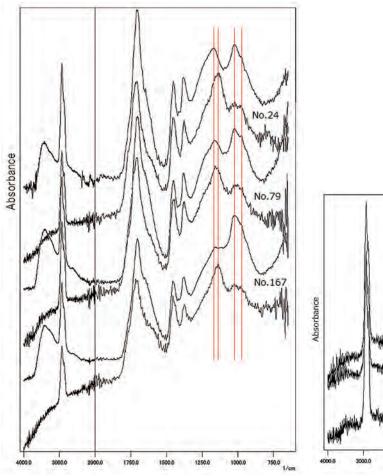



図6 標準試料の加熱前後の FT-IR スペクトル

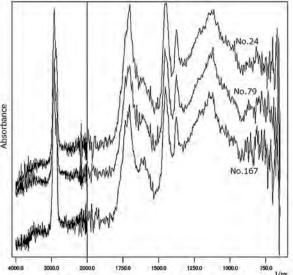


図7 出土琥珀 (No.24 No.79 No.167) の加熱前後のFT-IR スペクトル (左図:加熱前(上)と300℃加熱後(下) 右図:400℃加熱後)

6 力持型スクレイパーの使用痕

弘前大学 上條信彦

1. はじめに

力持遺跡からは、この地域に特徴的な形態のスクレイパーが多く検出された。時期は縄文時代前期中葉から中期末葉である。本稿ではこのスクレイパーについて使用痕観察によってその機能と用途を検討したい。

2. 使用痕観察の方法

力持型スクレイパー 20 点を観察した。石材は砂岩、デイサイト、細粒花崗閃緑岩、ヒン岩、蛇紋岩、頁岩、細粒ハンレイ岩である。資料は発掘後、全て洗浄され、ビニル袋に1点ごと入れられた後、コンテナ箱を用いて室内で保管されていた。観察法は倍率 200 倍以上の高倍率法を採用した。観察の際は適宜アルコールを含ませた脱脂綿で資料を軽く拭き手の脂分などの汚れを取り除いた。観察はデジタルマイクロスコープ(キーエンス社 VHX-2000)に高倍率ズームレンズ(VH-Z100R)を装着して総合倍率 400 倍で実施した。観察は石器表面全体を詳細に観察し、鉱物上の磨耗、損耗、光沢、微小剥離、線状痕の有無とその状態を確認した。使用痕光沢の分類は阿子島 1989 に拠った。

3. 使用痕観察の結果(図1~10)(表1)

掲載No. 3398 カ持型スクレイパー(図1上段)

隅丸長方形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面側を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかで、背面中央を中心に、硬質な結晶鉱物の高所を中心に径 100μmを超える微弱な光沢が広がる(1)(トーン範囲)。径100μmを超える磨耗痕は背面中央を中心に約 3cmの範囲に観察できる。光沢の輝度は明るいがパッチ状に拡大せず、低所には拡大しない。背面の刃部は、刃縁に沿って刃縁から奥行100μmの狭い範囲が磨耗し、光沢は見えない。それより奥に微弱な光沢がみられる。光沢は高所だけでなく丸みを帯びた低所に拡大する(2)。これは使用痕光沢分類のEタイプに類似する。また半月形の微小剥離も確認でき、その剥離面も磨耗する。斜光でみると磨耗した刃縁には、刃部に直交する微細な線状痕が観察できる(3)。

正面の中央には、光沢が観察された背面とほぼ反対側に当たる箇所に光沢がみられる(4)。光沢の内容も同じである。正面側の刃縁には微小剥離がみられるが、磨耗により剥離面が不明瞭である。磨耗した箇所には刃縁から奥行200ょmの範囲に鈍い光沢が広がる。光沢は凹凸が激しいが低所まで拡大する。これは使用痕光沢分類のEタイプに類似する。

掲載No. 3056 力持型スクレイパー(図1下段)

隅丸撥形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかで、背面中央を中心に、硬質な結晶鉱物の高所を中心に径 100μmを超える微弱な光沢が広がる(1)。光沢の輝度は明るいがパッチ状に拡大せず、低所には拡大しない。背面の刃部は、刃縁に沿って刃縁から奥行200μmほどの狭い範囲が磨耗し、光沢は見えない(2・

3)。半月形の微小剥離が確認でき、その剥離面も磨耗し、剥離面が不明瞭となる(2)。

正面の中央は、磨耗が弱く、明瞭な光沢は観察されない(4)。正面側の刃縁には微小剥離がみられるが、磨耗により剥離面が不明瞭である。光沢は弱く観察できない。

掲載No. 3414 力持型スクレイパー(図2上段)

隅丸長方形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかで、背面中央を中心に、滑らかである(1)。ただし光沢は輝点程度でほとんどない。背面の刃部は、刃縁に沿って刃縁から奥行100μmの狭い範囲が磨耗し、光沢は見えない(2)。それより奥に微弱な光沢がみられる。

正面の使用痕は未発達である。刃部には半月形の微小剥離がみられるが、磨耗は弱い。

以上より、他の資料に比べ、各箇所の使用痕が顕著でないことから、本資料は製作後間もない使 用初期段階と推定される。

掲載No. 3148 カ持型スクレイパー(図2下段)

隅丸撥形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかで、背面中央を中心に、硬質な結晶鉱物の高所を中心に輝点程度の光沢が散布する(1)。光沢の輝度は明るいがパッチ状に拡大せず、低所には拡大しない。背面の刃部は、刃縁に沿って刃縁から奥行100ょmの狭い範囲が顕著に磨耗し、光沢は見えない(2)。半月形の微小剥離が確認でき、その剥離面も磨耗する。磨耗した刃縁には、刃部に直交する微細な線状痕が観察できる。

正面の中央には、中央に微弱な光沢がみられる(3)。光沢の輝度は明るいが、拡大しない。正面側の刃縁には微小剥離がみられるが、磨耗により剥離面が不明瞭である(4)。

掲載No. 3149 カ持型スクレイパー(図3上段)

隅丸撥形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかで、背面中央を中心に、硬質な結晶鉱物の高所を中心に径 100μmを超える微弱な光沢が広がる(1·2)。光沢の輝度は明るいがパッチ状に拡大せず、低所には拡大しない。背面の刃部は、半月形の微小剥離も確認でき、その剥離面も磨耗する(3)。刃縁からやや奥の硬質な鉱物上に微弱な光沢がみられる。光沢は高所だけでなく丸みを帯びた低所に拡大する。これは使用痕光沢分類のEタイプに類似する。

正面の中央には、光沢が観察された背面とほぼ反対側に当たる箇所に光沢が広がる(4)。光沢の内容も同じである。正面側の刃縁には微小剥離がみられるが、磨耗により剥離面が不明瞭である。磨耗した箇所には鈍い光沢が広がる(5)。光沢は丸みを帯びた凹凸の低所まで拡大する。これは使用痕光沢分類のEタイプに類似する。

掲載No. 3147 力持型スクレイパー(図3下段)

隅丸撥形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50

~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかであるが磨耗光沢は微弱である(1)。刃縁の先端は磨耗しており、微小剥離が不明瞭である。磨耗は高所だけでなく低所に拡大し、凹凸が丸みを帯びる(2)。

正面の中央は、やや磨耗するが光沢は広がらない(3)。正面側の刃縁は磨耗し、丸みを帯びる。磨耗は低所にも及び波状になる。光沢は微弱である。

掲載No. 3405 力持型スクレイパー(図4上段)

隅丸撥形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。基部表裏に黒色の変色部がある(トーン範囲)。

観察の結果、礫面が残る背面は滑らかで、背面中央を中心に、硬質な結晶鉱物の高所を中心に微弱な光沢が広がる(1)。光沢の輝度は明るいがパッチ状に拡大せず、低所には拡大しない。黒色の変色部には光沢はなく、石英などの無色鉱物も変色する。よって黒色の変色範囲は被熱によりススが吸着した範囲を示すとみられ、変色のない箇所には、本来何かに覆われていた可能性がある。背面の刃部は、刃縁が磨耗し、微小剥離が不明瞭である。磨耗は高所だけでなく低所にも拡大し、凹凸が丸みを帯びる(2)。磨耗した刃縁には、刃部に直交する微細な線状痕が観察できる。

正面の中央には、光沢が観察された背面とほぼ反対側に当たる箇所に微弱な光沢がみられる(3)。 正面側の刃縁には微小剥離がみられるが、磨耗により剥離面が不明瞭である(4)。磨耗した箇所には 鈍い光沢が広がる。光沢は凹凸が激しいが低所まで拡大する。これは使用痕光沢分類のEタイプに類 似する。また刃部に直交する微細な線状痕が観察できる。

掲載No. 3262 力持型スクレイパー(図4下段)

正方形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかで、背面中央を中心に、硬質な結晶鉱物の高所を中心に微弱な光沢が広がる(1)。光沢の輝度は明るいがパッチ状に拡大せず、低所には拡大しない。刃縁から5mmの箇所に光沢とともに線状痕がみえる。光沢は微弱だが、磨耗により丸みを帯びた高所から低所にかけて拡大する(2)。磨耗した刃縁には、刃部に直交する細く鋭い線状痕が多数観察できる(2)。

正面の中央の光沢は微弱である(3)。正面側の刃縁には微小剥離がみられるが、石質の影響と磨耗により剥離面が不明瞭である(4)。光沢は硬質鉱物の高所に分布する。また刃部に直交する微細な線状痕が観察できる。

掲載No. 3083 力持型スクレイパー(図5上段)

隅丸撥形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかであるが、基部側には光沢はほとんど見られない(1)。背面中央にいたると光沢が広がる(2)。光沢の輝度は明るいがパッチ状に拡大せず、低所には拡大しない。背面の刃部は、刃縁に沿って刃縁から奥行100ょmの狭い範囲が磨耗する。それより奥に微弱な光沢がみられる。光沢面には刃部に直交する微細な線状痕が観察できる(3)。

正面側の刃縁は微小剥離がみられるが、磨耗により剥離面が不明瞭である。刃縁から1cm離れた 箇所に光沢とともに刃部に直交する細く鋭い線状痕が多数観察される(4)。

掲載No. 3082 力持型スクレイパー(図5下段)

隅丸撥形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかで、背面中央を中心に、硬質な結晶鉱物の高所を中心に径 100μmを超える微弱な光沢が広がる(1)。光沢の輝度は明るいがパッチ状に拡大せず、低所には拡大しない。光沢は基部側ほど微弱になる(2)。背面の刃部では、凹凸面に磨耗が及ぶ(3)。光沢は微弱である。

正面の中央は磨耗が弱く、光沢もほとんどない。正面側の刃縁には微小剥離がみられるが、磨耗により剥離面が不明瞭である。磨耗した刃縁には、刃部に直交する微細な線状痕が観察できる(4)。

掲載No. 3266 力持型スクレイパー(図6上段)

隅丸撥形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかで磨耗する。光沢は輝点程度で微弱である(1·2)。背面の刃部は、刃縁が磨耗する(3)。磨耗した刃縁には、刃部に直交する微細な線状痕が観察できる。

正面の中央には顕著な使用痕は観察できなかった。正面側の刃縁には微小剥離がみられるが、磨耗により剥離面が不明瞭である(4·5)。光沢はほとんど観察できない。5の硬質鉱物上に刃部に直交する微細な線状痕が観察できる。

掲載No. 3408 力持型スクレイパー(図6下段)

隅丸撥形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかで、背面中央を中心に、硬質な結晶鉱物の高所を中心に径 100μmほどの微弱な光沢が広がる(1)。光沢の輝度は明るいがパッチ状に拡大せず、低所には拡大しない。背面の刃部は、刃縁に沿って刃縁から奥行100μmの狭い範囲が磨耗し、光沢は見えない。それより奥に微弱な光沢がみられる。光沢は高所だけでなく丸みを帯びた低所に拡大する(2)。これは使用痕光沢分類のEタイプに類似する。また半月形の微小剥離も確認でき、その剥離面も磨耗する。光沢面には刃部に直交する微細な線状痕が観察できる(3)。

正面の中央には、顕著な使用痕は観察できない。正面側の刃縁には微小剥離がみられるが、磨耗により剥離面が不明瞭である $(4\sim6)$ 。磨耗した高所には鈍い光沢が広がる $(5\cdot6)$ 。光沢は凹凸が激しいが低所まで拡大する。これは使用痕光沢分類のEタイプに類似する。光沢面には刃部に直交する微細な線状痕が観察できる。

掲載No. 3196 力持型スクレイパー(図7上段)

隅丸撥形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面・正面ともに、顕著な使用痕は観察できない。背面・正面双方の刃縁には半月形の微小剥離がみられるが、周辺を含めてほとんど磨耗しない(1·2)。光沢・線状痕も確認できない。したがって、本資料は完成直後あるいは使用初期段階と判断される。

掲載No. 3399 カ持型スクレイパー(図7下段)

隅丸長方形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が 50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかで、背面中央を中心に、硬質な結晶鉱物の高所を中心に径 100μmほどの微弱な光沢が広がる(2)。光沢の輝度は明るいがパッチ状に拡大せず、低所には拡大しない。光沢は中央が強く、基部側ほど弱くなる(1)。背面の刃部は、刃縁に沿って刃縁から奥行100μmの狭い範囲が磨耗し、光沢が弱い(3·4)。それより奥に微弱な光沢がみられる。また半月形の微小剥離も確認でき、その剥離面も磨耗する。磨耗や光沢は高所だけでなく丸みを帯びた低所に拡大する。これは使用痕光沢分類のEタイプに類似する。

正面の中央には、顕著な使用痕は観察できない。正面側の刃縁には微小剥離がみられるが、磨耗により剥離面が不明瞭である $(5 \sim 7)$ 。磨耗した高所には鈍い光沢が広がる。光沢は凹凸が激しいが低所まで拡大する。これは使用痕光沢分類のE夕イプに類似する。5には硬質鉱物上に刃部に直交する方向にのびる引っ掻き傷状の線状痕が観察できる。

掲載No. 3265 力持型スクレイパー(図8上段)

隅丸撥形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかで、背面中央を中心に、硬質な結晶鉱物の高所を中心に微弱な光沢が散布する(1·2)。微弱な光沢は背面中央を中心に3cmの幅に広がり、基部や刃部側ではほとんど見られなくなる。背面の刃部は、刃縁に沿って刃縁から奥行100ょmの狭い範囲が磨耗し、光沢は見えない(2)。また半月形の微小剥離も確認でき、その剥離面も磨耗する。光沢面には刃部に直交する微細な線状痕が観察できる(3)。

正面の中央には、顕著な使用痕は観察できない。正面側の刃縁には微小剥離がみられるが、磨耗により剥離面が不明瞭である(4)。明瞭な光沢は観察できない。

掲載No. 3213 カ持型スクレイパー(図8下段)

隅丸長方形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかで、背面中央を中心に、硬質な結晶鉱物の高所を中心に微弱な光沢が散布する(2·3)。側縁の一部で、径100㎞以上の範囲に広がる光沢が観察できる(1)。ただし、これらの光沢の輝度は明るいがパッチ状に拡大せず、低所には拡大しない。背面の刃部は磨耗しており、刃縁の半月形の微小剥離面も磨耗する。磨耗は低所にも拡大し波状の磨耗面になる(4)。

正面の中央には、顕著な使用痕は観察できない。正面側の刃縁には微小剥離がみられるが、磨耗により剥離面が不明瞭である(5・6)。磨耗した高所には鈍い光沢が広がる。光沢は波状となった磨耗面の低所まで拡大する。これは使用痕光沢分類のEタイプに類似する。

掲載No. 3065 力持型スクレイパー (図 9 上段)

隅丸撥形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかであるが、光沢面は見られない(1)。また、正面中央にも顕

著な使用痕は観察できなかった。背面の刃部は、刃縁から奥行70μmの狭い範囲が磨耗する。光沢はない(3)。正面側の刃縁には顕著な使用痕は確認できなかった。したがって、本資料は製作後の使用初期段階のものと判断される。

掲載No. 3068 力持型スクレイパー(図9下段)

隅丸長方形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかで、背面中央を中心に、硬質な結晶鉱物の高所を中心に輝点~50/m程度の微弱な光沢が広がる $(1 \sim 3)$ (トーン範囲)。刃部側ほど弱く(3)、基部に近い場所ではこれらの輝点はほとんど見られない。光沢の輝度は明るいがパッチ状に拡大せず、低所には拡大しない。背面の刃部は、刃縁に沿って刃縁から奥行100/mの狭い範囲が磨耗し、光沢は見えない(4)。また半月形の微小剥離も確認でき、その剥離面も磨耗する。磨耗面は高所だけでなく丸みを帯びた低所に拡大する。

正面の中央には、顕著な使用痕は観察できない(5)。正面側の刃縁から2mmほどのところに微弱な磨耗面に伴う光沢がある(6)。光沢は鈍いものの、磨耗による丸みを帯びた低所にもおよぶ。これは使用痕光沢分類のEタイプに類似する。同じ使用痕は、正面側の刃縁にも認められる(7·8)。特に刃縁から100μmの範囲の磨耗は他の箇所に比べて顕著である。

掲載No. 3231 力持型スクレイパー(図 10 上段)

撥形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかで、背面中央を中心に、硬質な結晶鉱物の高所を中心に輝点程度の微弱な光沢が広がる(1·2)(トーン範囲)。基部に近い場所ではこれらの輝点はほとんど見られない。背面の刃部は、刃縁に沿って刃縁から奥行100μmの狭い範囲が磨耗し、光沢は見えない(3)。また半月形の微小剥離も確認でき、その剥離面も磨耗する。磨耗面は高所だけでなく丸みを帯びた低所に拡大する。

正面の中央には、顕著な使用痕は観察できない。正面側の刃縁には微小剥離がみられるが、磨耗により剥離面が不明瞭である(4)。刃縁の硬質鉱物上には鈍い光沢が広がる。光沢は凹凸が激しいが低所までおよぶ。これは使用痕光沢分類のEタイプに類似する。

掲載No. 3224 カ持型スクレイパー(図 10 下段)

隅丸撥形で、背面側に礫面を残す。刃部は背面側からの直接打撃により正面を剥離し、刃角が50~55度ほどになる片面刃が作り出される。

観察の結果、礫面が残る背面は滑らかで、背面中央を中心に、硬質な結晶鉱物の高所を中心に輝点程度の微弱な光沢が多数散布する(1·2)。これらの光沢は連結して拡大しない。中央に近い場所ではこれらの輝点の密度が基部側より高くなる。背面の刃部は、刃縁に沿って刃縁から奥行100ょmの狭い範囲が磨耗する(3·4)。また半月形の微小剥離も確認でき、その剥離面も磨耗する。磨耗面には鈍い光沢が広がる。光沢は細かな凹凸が激しいが低所までおよぶ。これは使用痕光沢分類のEタイプに類似する。

正面の中央は、輝点程度の微弱な光沢がある(5)。正面側の刃縁には微小剥離がみられるが、磨耗

により剥離面が不明瞭である $(6\cdot7)$ 。刃縁から奥行 100μ の範囲の磨耗痕が顕著である。光沢は微弱である。

4. 力持型スクレイパーの機能・用途の推定

使用痕の観察の結果、磨耗、光沢、微小剥離、線状痕が観察された。各資料の使用痕には以下の共通点が 認められた。

- 1. 礫面の残る背面には磨耗と光沢がある。光沢は滑らかで輝点〜微弱である。光沢は連結し径100 μmほどまで拡大する。輝度は明るいが網状でパッチ状にならず、低所には及ばない。その範囲は背面中央から3cmほどである。
- 2. 背面刃部には磨耗、光沢、微小剥離、線状痕がある。磨耗は刃縁から100μmの範囲が顕著である。ここには磨耗した半月形の微小剥離が伴う。磨耗は低所まで及び、凹凸面が滑らかになり波状面になる場合もある。100μmより奥に鈍く微弱な光沢がある。使用痕光沢分類Eタイプに類似する。刃部に直交する微細な線状痕がある。
- 3. 正面は磨耗痕や光沢はほとんど観察されず、微弱な光沢までにとどまる。
- 4. 正面の刃部には磨耗、光沢、微小剥離、線状痕がある。刃縁に磨耗した微小剥離がある。磨耗した箇所には刃縁から奥行100μmの範囲に鈍い光沢が広がる。磨耗や光沢は凹凸の低所まで拡大する。使用痕光沢分類Eタイプに類似する。刃部に直交する微細な線状痕が観察できる。

以上をまとめると、力持型スクレイパーの刃部からEタイプ光沢などが確認できた点、半月形の微小剥離が多数確認できた点から、被加工物は皮革類などの軟物質と考えられる。なかでもスクレイパーの分布的特徴や遺跡の立地をふまえると、魚類や大型海獣類が被加工物に含まれるとみられる。

磨耗や光沢は刃縁で発達し、正面側よりも背面側のほうが刃部の奥まで光沢が広がる。線状痕は 刃部に対して直交方向であり、光沢や磨耗が背面側で顕著に広がるので、石器の操作方法はスクレイピングあるいはホイットリング操作が考えられる。この二者のうち、刃角が50度を超え急角度で ある点、背面側に広がる磨耗も箆状石器に比べると、あくまで刃縁の狭い範囲に限定される点をふ まえると、スクレイピングに用いられた可能性が高い。

また、背面中央を中心に約3cmの範囲に微弱な光沢が観察された点、No.3405の基部に黒色の変色部分があった点をふまえると、石器には柄が付けられ、背面中央に負荷がかかるような向きで道具を動かしたと推定される。

なお高瀬2005によると、カムチャッカ半島の皮革加工では対象や工程によって複数の掻器を用いる。例えば、大きく厚い皮に対しては大形、小さく薄い皮に対しては小形品が用いられる。

力持型スクレイパーの形態は正方形、隅丸長方形、隅丸撥形、撥形に区分されている。これらの重さは15.3~303.5gと幅広い。形態別の内訳をみると、平均重さ正方形33.0g、隅丸長方形111.3g(29.5~303.5g)、隅丸撥形55.9g(15.3~150.8g)、撥形91.5gと、隅丸長方形、撥形、隅丸撥形、正方形の順で軽くなる。隅丸長方形で最も大きいNo.3414と隅丸撥形のNo.3065は製作後間もない使用初期段階のものと判断された。また使用痕光沢分類Eタイプが観察されたのは隅丸長方形が5点中4点と多い一方、隅丸撥形は13点中4点と少ない。そのほか正方形1点中0点、撥形1点中1点である。また、全資料を検討すべきであるが隅丸長方形は遺構外、隅丸撥形が住居址・土坑内出土が多いという場所的な違いもうかがえる。使用痕の分布範囲には差がないことから、少なくとも大型隅丸長方形と小型隅丸撥形の2種類があり、スクレイピング機能は同じでも加工対象によって使い分けられていたと考

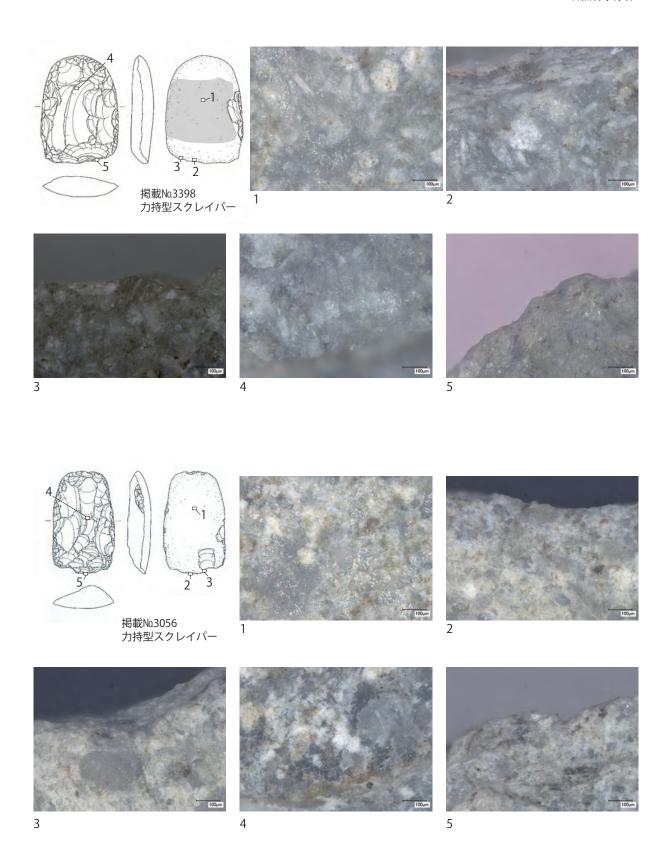
えられる。ただし、石材をみると隅丸長方形は細粒花崗閃緑岩、細粒はんれい岩が多いのに対し、隅丸撥形は砂岩や頁岩など多岐にわたる。したがって、石材差が使用痕の見え方に影響している可能性もあるため、今後検証していく必要がある。

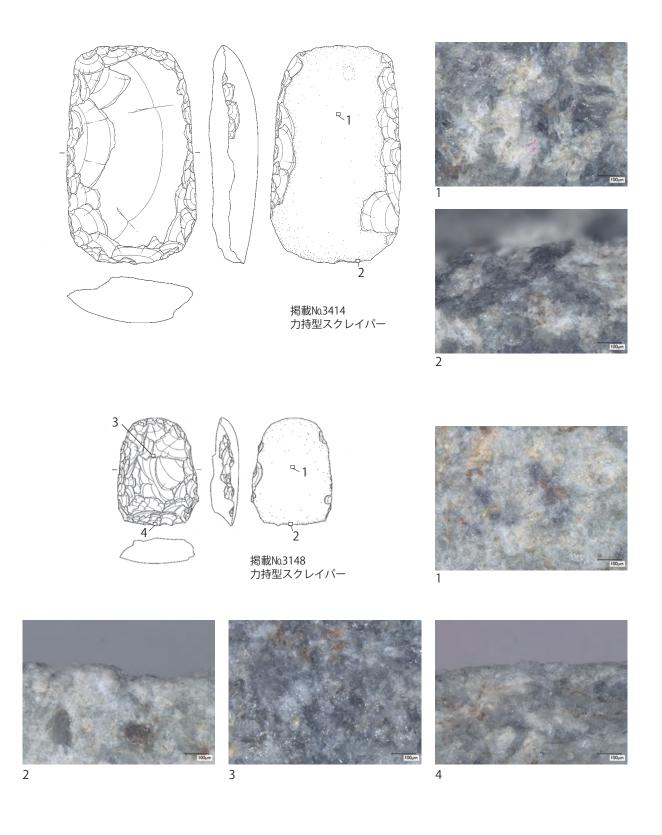
参考文献

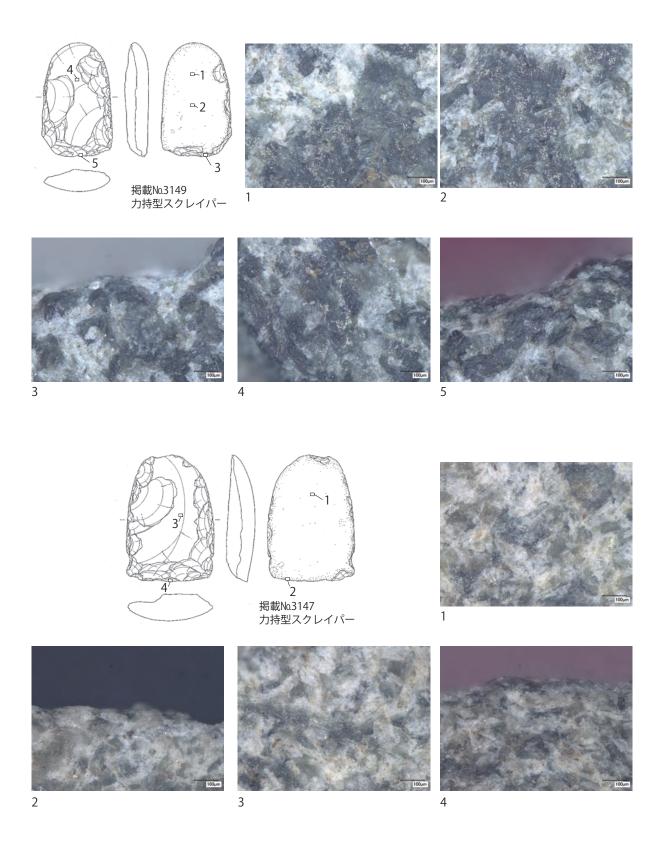
阿子島香 1989 『石器の使用痕』ニュー・サイエンス社

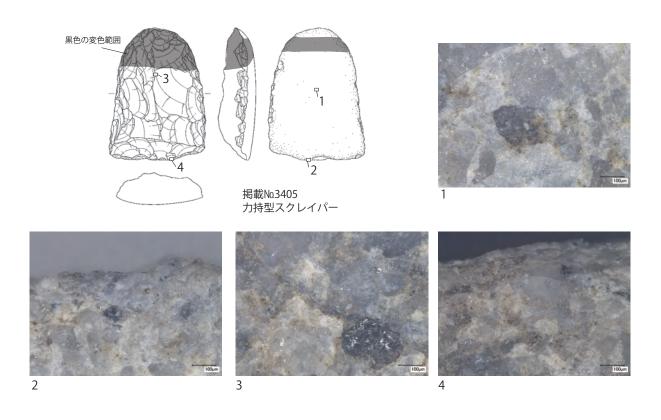
池谷勝典 2008 「力持遺跡出土石器の使用痕分析」『力持遺跡発掘調査報告書』(岩手県文化振興事業団埋蔵文化財調査報

告書 第510集) 479-499頁


上條信彦 2015 『縄文時代における脱殻・粉砕技術の研究』六一書房


高瀬克範 2005 「カムチャッカ半島の皮革加工」『石器使用痕研究会会報』第5号.IX-X頁


高橋 哲 2007 「箆状石器の機能について」『日本考古学』第24号. 41-50頁


使用痕観察石器の所見

	和非Niv	野苗	五季十壬	7 四 四	(~)青里	まま	明	施压服器	HE I	1. 图 1. 图
866	# 6	3398 力持型スクレイパー	<u>出土之</u> n11グリッド	ディサイト	4	隅丸長方形		刀線に沿って刀線から奥行100kmの狭い範囲 が磨耗。それより奥に微弱な光沢。使用痕光 沢分類をダイプ。半月形の微小剥離。刃部に直 交する微細な線状痕。		磨耗した微小剥離。刃縁から奥行200μmの範 囲に鈍い光沢。光沢は低所まで拡大。使用痕 光沢分類Eタイプ。
1069	3056	力持型スクレイパー	7号住	多品	26.8	隅丸撥形	微弱な光沢。	奥行200/m/ほどの狭い範囲が磨耗。半月形の 微小剥離。	使用痕未発達。	磨耗した微小剥離。
1094		3414 力持型スクレイパー	q13グリッド	細粒花崗閃綠岩	303.5	隅丸長方形	輝点程度の光沢	奥行100μmの狭い範囲が磨耗。それより奥に 微弱な光沢。	使用痕未発達。	半月形の微小剥離がみられるが、磨耗は弱い。
1148	3148	力持型スクレイパー	26号住	デイサイト	48.8	隅丸撥形	輝点程度の光沢。	奥行100/mの狭い範囲が顕著に磨耗。半月形の微小剥離。刃部に直交する微細な線状痕。	微弱な光沢。	磨耗した微小剥離。
1177	3149	3149 力持型スクレイパー	26号住	閃綠岩	40.7	隅丸撥形	微弱な光沢。	半月形の微小剥離。刃縁からやや奥の硬質な鉱物上に微弱な光沢。使用痕光沢分類Eタイプ。	微弱な光沢。	磨耗した微小剥離。鈍い光沢。光沢は低所まで拡大。使用痕光沢分類Eタイプ。
1208	3147	力持型スクレイパー	26号住	細粒花崗閃綠岩	63.2	隅丸撥形	微弱な光沢。	刃縁の先端は磨耗。 磨耗は高所だけでなく低 所に拡大。	やや磨耗。	磨耗は低所にも及び波状になる。光沢は微弱。
1331	3405	3405 力持型スクレイパー	011グリッド	砂岩	84.2	隅丸撥形	微弱な光沢。	背面の刃部は、刃縁が磨耗。磨耗は低所にも 拡大。刃部に直交する微細な線状痕。	微弱な光沢。	磨耗した微小剥離。 鈍い光沢。 光沢は低所まで拡大。 使用痕光沢分類 Eタイプ。 刃部に直交する微細な線状痕。
1401	3262	3262 力持型スクレイパー	6号土坑	砂岩	33.0	正方形	を 後弱な光沢。 し り	微弱な光沢。磨耗は低所にかけて拡大。磨耗 した刃縁には、刃部に直交する細く鋭い線状 痕。	微弱な光沢。	磨耗した微小剥離。光沢。刃部に直交する微 細な線状痕。
1548		3083 力持型スクレイパー	15号住	蛇紋岩	107.3	隅丸撥形	微弱な光沢。	刃縁から奥行100/mの狭い範囲が磨耗。微弱な光沢。刃部に直交する微細な線状痕。	使用痕未発達。	磨耗した微小剥離。刃部に直交細く鋭い線状 痕。
1563		3082 力持型スクレイパー	15号住	トン岩	150.8	隅丸撥形	径100/umを超える微弱な 光沢。 	背面の刃部では、凹凸面が磨耗。光沢は微弱 である。	使用痕未発達。	磨耗した微小剥離。刃部に直交微細な線状 痕。
1639	3266	力持型スクレイパー	8号土坑	頁岩	15.3	隅丸撥形	輝点程度の光沢。	刃縁が磨耗。刃部に直交する微細な線状痕。	使用痕未発達。	磨耗した微小剥離。光沢なし。刃部に直交微 細な線状痕。
1750		3408 力持型スクレイパー p12グリッド	p12グリッド	砂岩	39.7	隅丸撥形	3 怪100µmほどの微弱な 光沢。 	刃緣に沿って刃緣から奥行100」mの狭い範囲 が磨耗。微弱な光沢。使用痕光沢分類Eタイ ブ。半月形の微小剥離。刃部に直交する微細 な線状痕。	使用痕未発達。	磨耗した微小剥離。鈍い光沢。光沢は低所まで拡大。 使用痕光沢分類Eタイプ。 刃部に直交する微細な線状痕。
1764	3196	力持型スクレイパー	45号住	細粒花崗閃緑岩	52.1	隅丸撥形	使用痕未発達。	半月形の微小剥離。	使用痕未発達。	半月形の微小剥離。
1828		3399 カ持型スクレイパー	09グリッド	細粒はんれい岩	78.2	隅丸長方形	径100μmほどの微弱な 光沢。	奥行100μmの狭い範囲が磨耗。微弱な光沢。 半月形の微小剥離。使用痕光沢分類Eタイプ。	使用痕未発達。	磨耗した微小剥離。鈍い光況。光沢は低所まで拡大。使用痕光沢分類Eタイプ。直交方向にのびる引っ掻き傷状の線状痕。
1829		3265 力持型スクレイパー	7号土坑	頁岩	39.5	隅丸撥形	微弱な光沢。	奥行100μmの狭い範囲が磨耗。半月形の微小 剥離。刃部に直交する微細な線状痕。	使用痕未発達。	磨耗した微小剥離。明瞭な光沢は観察できな い。
1832	3213	3213 力持型スクレイパー	50号住	細粒はんれい岩	101.0	隅丸長方形	微弱な光沢。	磨耗。半月形の微小剥離。磨耗は低所にも拡 大。	使用痕未発達。	磨耗した微小剥離。鈍い光沢。光沢は低所まで拡大。使用痕光沢分類Eタイプ。
1840	3065	力持型スクレイパー	9号住	細粒花崗閃緑岩	44.0	隅丸撥形	使用痕未発達。	刃縁から奥行70㎞の狭い範囲が磨耗。	使用痕未発達。	使用痕未発達。
1954	3068	3068 力持型スクレイパー	12号住	細粒花崗閃綠岩	29.5	隅丸長方形	UEP VEDI	奥行100μmの狭い範囲が磨耗し。半月形の微 小剥離。磨耗面は低所に拡大。	使用痕未発達。	刃縁から2mmほどのところに徴弱な磨耗面に伴う光沢がある。鈍い光沢は低所まで拡大。使用痕光沢分類Eタイプ。
1995	3231	力持型スクレイパー	55号住	細粒はんれい岩	91.5	撥形	輝点程度の微弱な光 沢。	奥行100μmの狭い範囲が磨耗。半月形の微小 剥離。磨耗面は低所に拡大。	使用痕未発達。	磨耗した微小剥離。鈍い光沢。光沢は低所まで拡大。使用痕光沢分類Eタイプ。
2146		3224 カ持型スクレイパー 53号住p7	53号住p7	頁岩	15.3	隅丸撥形	舞点程度の微弱な光 況。	奥行100μmの狭い範囲が磨耗。半月形の微小 剥離。磨耗面には鈍い光沢。使用痕光沢分類 Eタイプ。	輝点程度の微弱な光沢。	磨耗した微小剥離。刃縁から奥行100/mの範 囲が磨耗。微弱な光沢。

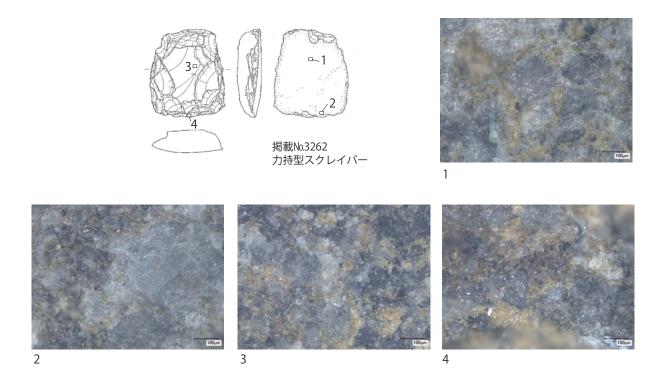


図4 力持型スクレイパーの使用痕4

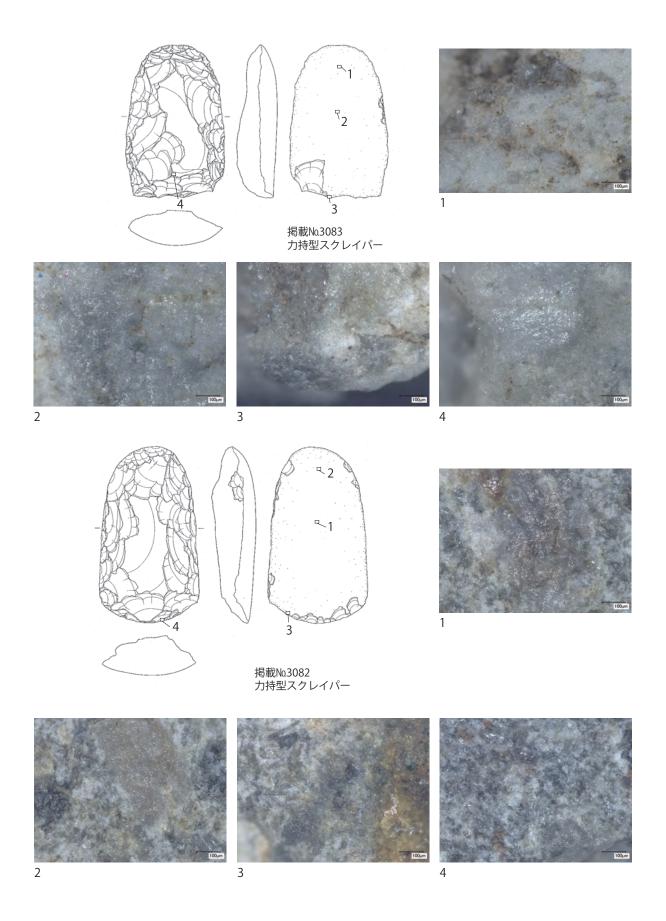


図5 力持型スクレイパーの使用痕5

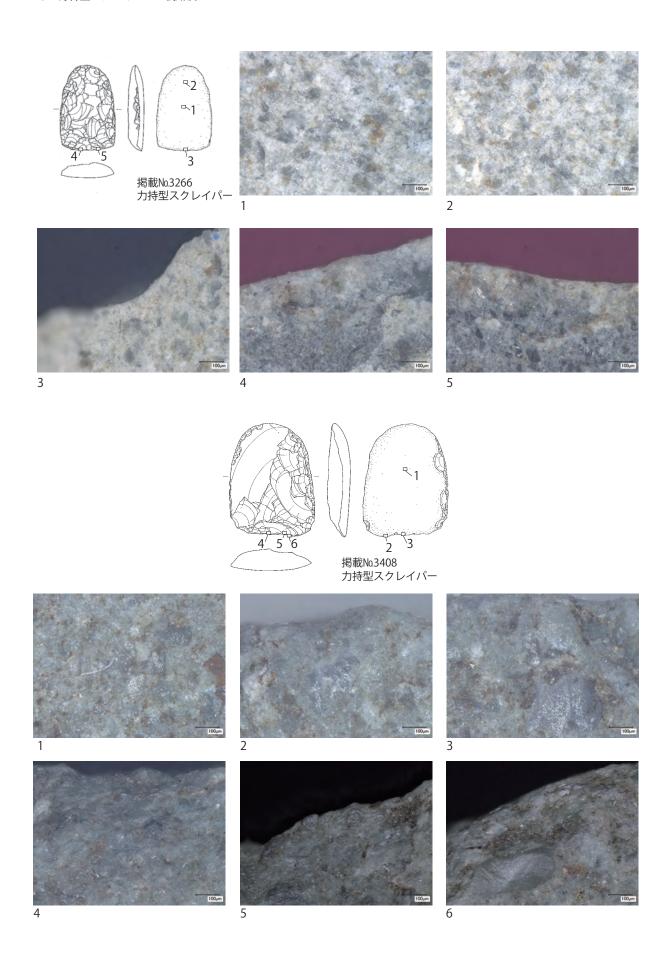


図6 力持型スクレイパーの使用痕6

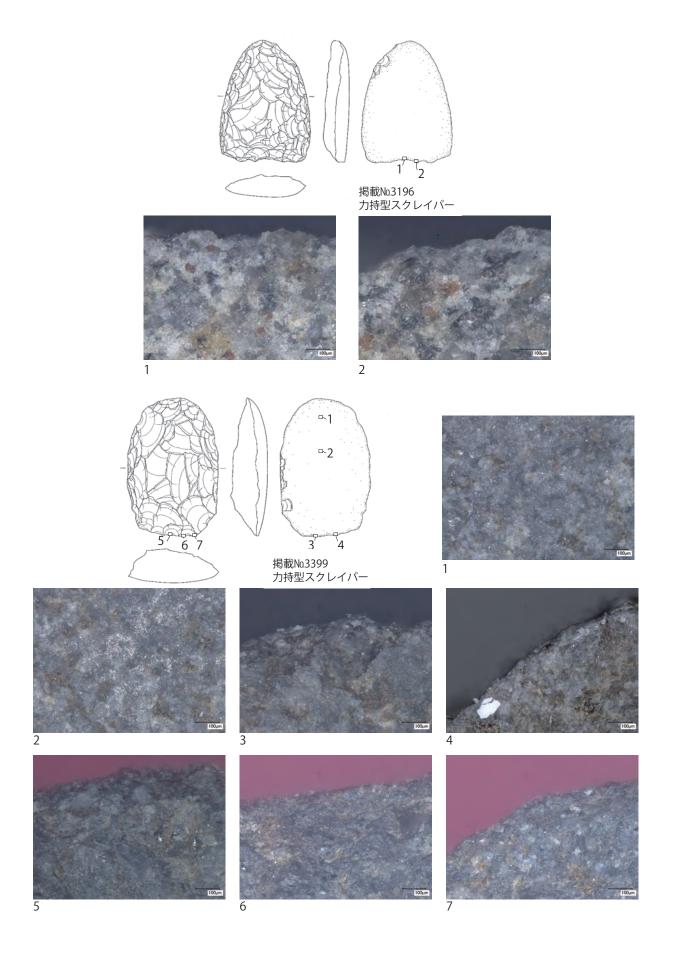


図7 力持型スクレイパーの使用痕7

図8 力持型スクレイパーの使用痕8

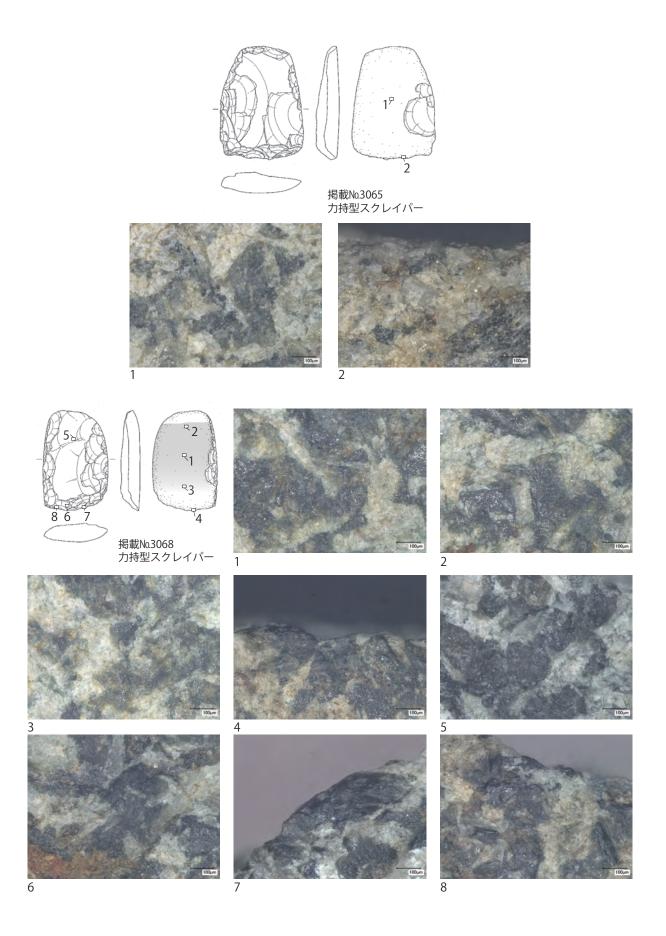


図9 力持型スクレイパーの使用痕9

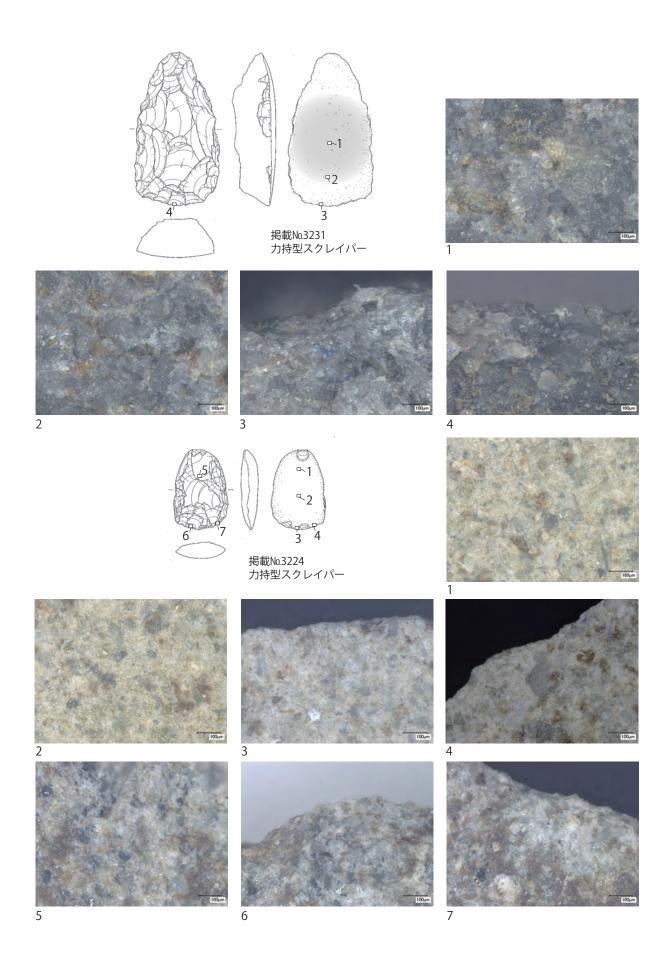


図10 力持型スクレイパーの使用痕10

VII 総 括

今回の力持遺跡の調査は、三陸沿岸道路建設に伴い平成26年度に768㎡、平成28年度に130㎡の、合わせて898㎡を調査した。その結果、遺構は竪穴住居跡69棟、土坑14基、粘土採掘坑3基、焼土遺構3基、柱穴状土坑75個、捨て場1箇所を検出した。遺物は土器大コンテナ180箱分(2369.58kg)、土製品小コンテナ1箱分(194点)、石器大コンテナ35箱分(4,260点)、石製品大コンテナ3.5箱分(155点)、チップ・フレーク大コンテナ4箱分(60,928.2g)、琥珀小コンテナ3箱(427.4g)が出土した。弥生土器2点以外は、遺構、遺物ともに縄文時代である。

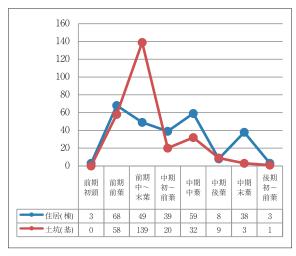
調査成果としては、縄文時代早期~後期、及び弥生時代の遺跡であることが分かり、平成13~15年度の調査(※本稿では「過去の調査」と呼んでいる)成果を含めると、縄文前期初頭~後期前葉に亘る大規模な集落跡であることが判明した。

1 遺 構

以下には時期毎に概観してみる。

						平成 26・28 年詞	間査竪穴住居の分	析				
時期	前期初頭	前期前葉	前期中葉	前期末葉	中期初頭	中期前葉	中期中葉	中期後葉	中期末葉	中期その他	後期前葉	合計
住居数	3	19	1	2	2	6	15	6	11	1	3	69
形の傾向	円形 1 楕円形 1 隅丸長方形 1	方形 9 不明 6 長方形 2 隅丸方形 1 円形 1	楕円形1	楕円形1 長方形1	楕円形1 長方形1	不明3 円形1 隅丸長方形1 隅丸方形1	楕円形 5 円形 3 長方形 1 円形か楕円形 2 不整楕円形 1 方形 1 不明 2	不明 2 方形 1 多角形 1 楕円形 1 円形 1	円形3 多角形4 不明3 楕円形基調1	長楕円形1	円形 1 不明 2	
炉の種類	炉無し3	炉無し 15 地床炉 3 地床炉複数 1	炉無し1	炉無し2	炉無し2	炉無し3 石囲炉1 埋設土器炉1 地床炉1	石囲炉 8 地床炉 2 炉無し3 複式炉 1 石囲 + 地床炉 1	複式炉3 石囲炉2 石囲埋設土器炉1	複式炉8 石囲炉3	炉無し1	石囲炉 2 炉無し 1	

第4表 竪穴住居属性


第4表には今回調査の竪穴住居跡属性を、第5 表には過年度調査の成果と合わせて竪穴住居と土 坑の数量の推移を、第271~273図には時期別の 遺構配置を示した。竪穴住居の長軸方向に対する 地形立地の関係は以下の3種類に大別される。

ア類・・等高線とほぼ水平となる方向 (等高線に沿う方向に長軸がくる)。

イ類・・等高線を斜め気味に横断する方向(等高線を斜めに切る方向に長軸)。

ウ類・・等高線に対して直交する方向 (等高線を切る方向に長軸)。

調査区の規模(狭小)や遺構同士の重複が激しいことから、全般に遺構の遺存状態は悪い。

第5表 竪穴住居数と土坑数の推移 (平成13~15・26・28年調査総計)

これらの内容から導かれる情報を竪穴住居中心にまとめてみる。なお、本稿で呼ぶ「大型住居」は、過去の調査の定義(基準)に準拠した(岩手埋文:2008第510集参照)。

[前期初頭]竪穴住居は3棟検出した。地形にみる立地は、ア類とした等高線に沿う方向に長軸を取る様相である。12号住の平面形や規模は、前期前葉以降の大型住居の祖形とも見て取れる。

竪穴住居以外の遺構としては、本期と推定される9号土坑の1基を検出している。9号土坑は、平面形は円形で規模1.3×1.1m、深さ0.18mであり、平面規模に比して深度が浅い特徴がある。本時期以降に多数構築されるフラスコ状土坑とは性格が異なるように推測される。また、前期前葉にも類似する遺構が検出されていることも見逃せない。問題提起も兼ねて最近の類例を検索してみたが、宮古市越田松長根 I 遺跡で前期初頭~前葉期の類似した土坑が検出されている(岩手埋文:2017第666集)。また、洋野町小田ノ沢遺跡(※岩手埋文:2019第699集で刊行予定)においても前期前葉期に円形や楕円形を呈する浅い土坑が検出されている。両遺跡とも時期的に整合する。事例の集成や用途の推定などは今後の課題となるが、前期初頭や前期前葉に特徴的に見られる類の土坑の可能性もある。

前期初頭をまとめると、過去の調査で少量の土器は出土していたが、遺構の検出は今回調査が新発見で、本遺跡で前期前葉以前から集落が存立していたことが明らかになった。

[前期前葉] 19棟を検出した。平面形は方形基調と見て取れる。炉は、大型住居と推定されるものは基本地床炉を持つが、この時期の小型や中型規模の竪穴住居は炉を持たないものが多い。大型住居と推定されるものでは41・43・50・52・67号住が挙げられ、さらには33・34号住にもその可能性が窺える。地形にみる立地は上記した大型住居と推定されるものにはア・イ・ウ類の3種類が認められる。67号住はア類、50・52号住はイ類、41・43号住はウ類である。また、小型・中型住居はほぼア類である。過去の調査ではア類とイ類は認められるが、ウ類については今回が初見となる。大型住居は43号住→41号住や52号住→50号住の関係から、同一地点においてわずかに中心軸をずらしほぼ同規模で建て替えを行っている様子が窺える。また、過去の調査で大型住居はア類かイ類なこともあり、建て替えに際しては谷側から山側へと改築を繰り返す傾向と捉えられたが、今回調査ではウ類もあり、必ずしも標高の低い方から高い方へとは変遷していない。

竪穴住居以外としては土坑2基と粘土採掘坑3基があり、粘土採掘坑は初検出となる。1号粘土 採掘坑の埋土上位にはTo-Cuが最大55cmの厚さで堆積している。

過去の調査を含めると竪穴住居の検出数が最も多い時期となる。当該期に見られる大型住居(推定含め)は、大木2b式段階が主体となる可能性がある一方で、50号住の出土土器などを踏まえると大木2a式段階に発生している可能性も窺える。

[前期中葉]前期中葉~末葉円筒下層 a ~ d 式を主体とする時期は、過去の調査で竪穴住居が少なく、 土坑は非常に多い結果である。土坑の時期は前期末葉を主体とするが、特定できないものが多いこ とも勘案して第5表では前期中葉~末葉の遺構は一括している。

前期中葉は31号住のみで、この竪穴住居はTo-Cuより新しいことで前期中葉と推定した経緯がある。 遺存状態が非常に悪い。地形にみる立地はア類となる。

前期中葉は集落規模が大幅に縮小し、尚且つ大型住居も認められない。それらの原因として、 To-Cuの降下の影響についても検討の余地がある。

[前期後葉]今回の調査で遺構は未検出であり、尚且つ土器量も非常に少ない。

過去の調査では、円筒式主体で大木式が客体と捉えられる時期であり、円筒下層c式土器は一定量出土している。ただ、当該期と特定できた遺構は少ない。

[前期末葉] 2棟の検出である。土器量、竪穴住居、土坑は何れも少ない。

過去の調査では円筒下層 d 式土器は多量に出土している。竪穴住居は少ないが、その一方で土坑数は本遺跡のピークとなる。土坑の分布については、前期前葉から継承する土坑が集中する空間(土坑域)が南側や東側に大幅な拡大をみる。

[中期初頭] 2 棟の検出で、その状況から大型住居に近い形態であった可能性を指摘するに留める。 この時期は土器だけをみれば円筒上層 a 式が主体で大木7a式は客体と捉えられる。

過去の調査成果を含めても遺構・遺物ともに少なく、集落の様子が掴みがたい。

[中期前葉] 6 棟検出している。北調査区南東部中心に占地する。遺存状態が悪く、平面形の傾向などは掴めない。炉は石囲炉及び石囲埋設土器炉が認められる。地形にみる立地はア類中心に見て取れる。ただ、過去の調査で深さ約2mと突出して深い竪穴住居が検出されているが、それはウ類である。その他にも同一地点での建て直し時に、長軸を90度変更するものが数棟あり、ウ類からア類に変わる例外的なものも存在する。

土坑は6基検出されているが、当該期の竪穴住居の集中する部分からみて、約10m山側(居住域より標高がやや高くなる)に占地する様子である。

過去の調査と合わせてまとめると、竪穴住居数と比較して土坑数が少なく、計算上は土坑数の倍の竪穴住居数が検出されている。また、石囲炉の出現時期については、力持遺跡では中期初頭には認めがたく、確実なのは本時期からである。本時期は円筒式が大木式に対して主体性を維持しているが、全時期を通じて両者の主客性が最も拮抗する。

[中期中葉] 15棟の検出である。出土土器や当該期遺構同士の重複関係をもとに、時期細分可能なものを以下に取り上げ、所見を述べたい。

大木8a式期古段階としては、4・17・20・37号住が挙げられる。平面形は不明確なものが多い。 炉は石囲炉主体と見て取れる。過去の調査では、楕円形や隅丸長方形を主体とし、加えて炉を2基 持ち主柱が対の配置をとる大型住居も見つかっているが、今回の調査では未確認である(※17・37号 住にはその可能性が残るが)。炉は今回の調査で石囲埋設土器炉が認められない点は差異の一つであ る。本時期に円筒式から大木式へと主客性が変容する。ただ、竪穴住居の構造は中期前葉と大きな 変化が看取されない。

大木8a式期新段階は、9・15号住の2棟が挙げられる。平面形は楕円形基調が多く、炉は石囲炉主体である。前時期との相違点などを見出すことは難しいが、過去の調査では本時期より平面形に円形が追加され、炉は石囲埋設土器炉がなくなり、ほぼ石囲炉となることが指摘されていた。補足として、大木8a~8b式期として時期幅を持って捉えた13・18・19号住は、後述する大木8b式期の古段階が認められない状況からみて、あるいは大木8b式期古段階の可能性もある。

大木8b式期は、25・28・44号住などが挙げられ、何れも大木8b式期の中では新段階と推定される。 平面形は楕円形基調である。炉は石囲炉、複式炉、地床炉の三者三様である。

特記事項として44号住から複式炉が検出されている。この複式炉は石囲部と前庭部から構成され、前庭部は斜面下方になる東側に位置する。前庭部底には礫敷きが施される重厚な作りで、過去の調査では類例のない構造といえる。複式炉が中期後葉大木9式期古段階を待たずに認められたことは、複式炉の出現期を窺う上でも貴重な情報を提示する。

中期中葉全体的には、北調査区南側に竪穴住居の集中箇所があり重複が非常に激しい。地形にみる立地は、大木8a式期は古新段階に関わらずア類を中心にイ類がある。また、建て替えに際しても、ア・イ類からウ類などへの変更がほとんどなく、従って長軸方向の変更も少ない。大木8b式期は複式炉を持つ44号住はウ類、その他はア類である。複式炉の発生が、竪穴長軸方向が変化する一つの転機

として考えられようか。

大木式と円筒式の主客性は本期に逆転し、大木式が圧倒的な主体を担う。中でも、大木8a式期が 竪穴住居数・土器量から力持遺跡の最も隆盛した時期と捉えられる。一方で竪穴住居数と比較して 土坑数が少ない現象も看取される。要因などは今後の検討課題である。

[中期後葉] 6 棟検出された。出土土器や遺構同士の新旧関係などで新古に二分すると、大木9式期 古段階として10・26・36号住、大木9式期新段階は22・46・49号住がそれぞれ推定される。平面形 や規模などに共通点は見出し難い。空間占地は、北調査区の中央~西に竪穴住居が点在する様相で あり、尚且つ当該期同士の重複は認められない。炉は、複式炉3基、石囲炉2基、石囲埋設土器1 基である。竪穴住居以外は土坑1基である。立地にみる地形は、複式炉を持つものはウ類を基本に イ類と捉えられる。

特記事項としては、今回の調査で最も大規模で遺存状態も良好な22号住の検出を挙げておきたい。 床面積約50㎡の大型住居で、東辺に複式炉を持つ。この22号住からはNo.4016~4018の大型石棒3点が出土しているが、その内のNo.4017は西側床面直上で出土している。

過去の調査では、大木9式期は竪穴住居の検出数2棟で土器量も少なく、やや衰退期にあることが想定された。今回調査で大型住居の検出などの内容から、評価を改める必要がある。

[中期末葉] 11棟を検出した。全般に黒土中から掘り込んで壁や床としていることで、平面プランが不確実なものや推定図示したものが含まれる。大木10式土器は、阿部昭典氏の編年(阿部:2008)を参考とした。阿部編年に当該期同士の遺構の重複関係を加味して、大木10式期古段階、中段階、新段階の3区分を試みた。古段階として1・21・47・48号住、中段階は3・5・7・11号住、新段階が2・8・16号住と、それぞれ比定される。平面形と炉形態を探ると、古段階は多角形と楕円形で炉は複式炉、中段階は楕円形・円形・多角形で複式炉、新段階は円形基調で石囲炉となる。この結果を踏まえると中段階から新段階への移行過程で、複式炉が消滅している可能性が窺え、加えて平面形は多角形基調から円形基調へと萌芽がみられる。立地にみる地形は、複式炉を持つ古段階や中段階はウ類を基本にイ類が認められる。新段階は竪穴の平面形や炉の平面形状からは、中軸線が決め難い様相であるが、ア類若しくはウ類である。竪穴住居以外の遺構は、土坑1基、焼土遺構1基である。

過去の調査では大木10式期古段階中心であったが、今回の調査では中・新段階が多く、この内容は大きな相違点の一つであり、本遺跡の集落隆盛期が若干延長されることが分かった。

[後期初頭・初頭~前葉]ここでは後期初頭と初頭~前葉を合わせて概観する。竪穴住居の検出はなく、 土坑2基の検出である。土器は韮窪式が一定量の出土をみた。

過去の調査と合わせて考察すると、中期末葉の隆盛から本期になり集落規模が大幅に縮小する。 ただ、次の後期前葉前半期に、集落としてやや再生した様子にみてとれる。

[後期前葉] 3 棟検出された。 6・42・51号住である。出土土器から蛍沢式期と捉えられる。次の十腰内 I 式期は未検出である。 6 号住以外は大部分が調査区外へ続くため、平面形は推定となるが概ね楕円形基調をみる。炉は 2 棟から石囲炉を検出している。炉の位置は、竪穴住居の中軸線上に位置するものと捉えられるが、詳細は不明である。地形にみる立地は、ア類に限定される。

過去の調査では、遺構は未検出で土器は極少量であった。今回の調査で竪穴住居の検出と土器が一定量出土し、本遺跡が縄文中期末葉以降において、後期初頭に断絶期を挟みつつ集落が再生若しくは回帰した様子が窺えた。次の後期中葉は遺構・遺物ともに皆無であり、本遺跡の画期に捉えられよう。

2 遺 物

土器は180箱出土した。時代・時期は、縄文早期中葉~後期前葉、及び弥生前期である。主体は縄文前期前葉・前葉~中葉、中期前葉~末葉にある。土製品は、ミニチュア土器、土偶、石棒模倣土製品、円盤状土製品など194点出土した。土器片再利用土製品が多く、土偶などは少ない。石器は、磨石・敲石、スクレイパー、石鏃、磨製石斧などが多い。石製品は、玦状耳飾り、石冠、大型石棒など、155点出土した。大型石棒の出土は特記事項の一つである。石器、土製品、石製品の帰属時期は全て縄文時代と推定される。

ここでは、土器と石器を取り上げまとめてみる。

(1) 土 器

第274図には、北調査区と南調査区の遺構外出土土器量の平面分布を、第275図には南調査区(捨て場)の層位毎の出土量を示した。北調査区は西側~南側にかけて多い。北調査区の調査地外西や南に広がる畑地は、高密度の埋蔵文化財包蔵地にあることが確実である。南調査区は調査区ほぼ全体が捨て場と判断される。第274図に図示した状況から、n9・10・11グリッド、o11・12グリッド、p12・13グリッドに突出して土器量が多く、平面的には3段の階段状を呈する。この部分は旧沢跡の西壁~底への傾斜変換点付近に相当することから、主たる遺物包含層であるIV・V層が厚いことにも起因しよう。

次に、遺構単位で土器量が多かった遺構を記載すると(30kg以上)、南調査区捨て場約1,167kg、26号住(中期後葉)約68kg、22号住(中期後葉)約49kg、5号住(中期末葉)約41kg、37号住(中期中葉)約36.9g、46号住(中期後葉)約36.8kg、18号住(中期中葉)約34.3kg、6号住(後期前葉)約34.3kg、28号住(中期中葉)約32kg、9号住(中期中葉)約30kgとなる。6号住を除き全て中期に帰属する竪穴住居である。土器の出土量自体は中期中葉大木8a式がピークとなる。

第276~291図に各時期を代表する土器を集成した。それらを中心に概観する。

[縄文早期]第276図に集成した。中葉の物見台式、後葉ムシリ1式?、末葉赤御堂式が、合わせて8点出土した。当該期の遺構はない。

[縄文前期]第276~284図に集成した。今回の調査では前葉~中葉大木2b式が主体的に出土している。 大木2b式は、口縁~胴部の全面にS字状連鎖沈文のみが施文されるものが多い。例外的なのが、№ 500・1066・1210・1399などで、口縁部にのみS字状連鎖沈文、胴部には単節(縄文原体の横回転による斜行縄文)や組紐など、S字状連鎖沈文以外の地文が施文される。口縁部と胴部に別の原体を施文することでは、大木2a式や白座式の中に認められる要素と共通点にも捉えられる。また、№1399のように口縁部がやや外反する器形は、他の大木2b式の器形とは相違する。口縁部が外反する器形的な特徴は、白座式や大木3式にやや類似する。上記の観点からは、大木2a式~大木3式への型式移行に際しては、白座式が介在しているという見方も生じる。

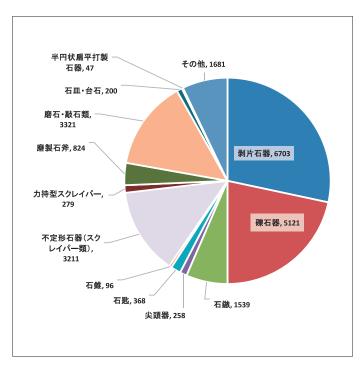
[縄文中期]第285~290図に集成した。大木式と円筒式の主客性や平行関係は、前葉や中葉前半に関わる内容であるが、過去の調査成果からの変更点は認められない。ただ、過去の調査では少量であった中葉榎林式や後葉最花式の資料が一定量得られた。これらと大木8b式や同9式との平行関係には考察の余地がある。末葉大木10式は、新段階の資料が補填されたと捉えられるが、No.6・16・25・1164などは次の後期初頭の要素も兼ね備えており、時期の特定にはやや課題を残す。

特記事項として、完形・略完形土器が複数点出土した7号土坑を挙げておきたい。この土坑は人為堆積で、No.826~841の土器はほぼ一括出土である。円筒上層b式や円筒上層c式を中心に、円筒上層d2式(No.829・832・833)などが出土している。共伴した大木式は、No.839の大木7b式やNo.83・838の大木7b~8a式と型式幅を持って示したものである。No.829・832・833(※この3点は同一個体である)のように、口縁端部の貼り付けは円筒上層b式か同c式的であるが、口縁部文様は円筒上層d2式に見て取れる。つまり、円筒上層c式の属性を残す円筒上層d2式と捉えられようか。前葉と中葉の変遷過程を窺う資料と考えられる。

[縄文後期]第291図に集成した。過去の調査で微量の出土であった後期前半期の土器が一定量の出土を得られた。特に、蛍沢式の資料は充実をみる。それらの出土状況は、北調査区・南調査両方に及ぶことから、当該期の遺構は少ないものの、その活動範囲は力持遺跡の標高の低い部分全体的に広がる可能性を示唆させる。

[**弥生**]弥生土器と推定したものが2点出土した。当該期の遺構は未検出である。普代村においては、 長途遺跡(赤穴式)と下村 W遺跡で弥生土器が出土している。

(2) 石 器 類


第6表には過去の調査と合わせて出土点数と割合を示した。剥片石器6,703点に対して礫石器5,121点と、出土割合はやや剥片石器の方が高いものの、ほぼ拮抗した数字を示す。本県沿岸北部の縄文前期~中期は、礫石器が多く、剥片石器が少ない傾向を示す遺跡が多いこととは相反する内容である。

全体の石器組成としては、磨石・敲石などの広義の敲磨器類が29.7%を占め、スクレイパー26.8%、石鏃12.1%、磨製石斧6.5%、石匙3.1%、力持型スクレイパー2.9%の順に多い。逆に出土割合が低いものとして異形石器、石錐、石箆、打製石斧、凹石などが挙げられる(※第6表では「その他」で総括)。上記してきた出土割合の傾向は、過去の調査と今回の調査はほぼ同様である(数値もほぼ同じ)。これらの石器組成は、需要度に関わるものと捉えて間違いない。円筒式土器が出土する遺跡で通常多くみられる半円状扁平打製石器は、全体の0.4%に過ぎない。この結果からは、需要度が低いことや、青森県や岩手県北内陸部の円筒遺跡とは生業の違い、若しくはそれに代わる同じ用途の石器が本遺跡に存在することを示すものか。次に、力持型スクレイパーと呼称した石器について述べると、帰属時期は、過去の調査では前期前葉~中期中葉までの時期幅で推定されている。今回調査から帰属時期の言及は難しいが、遺構単位では前期初頭~中期末葉まで出土し、また、捨て場出土はTo-Cu上位・下位両方ある。過去の調査より飛躍的に増えているが、この要因は今後精査が必要である。

全体の石材の傾向は、剥片石器は15種類の石材が用いられていることが分かり、その内の約60%は頁岩である。他では力持型スクレイパーに多い細粒花崗閃緑岩や細粒はんれい岩がそれぞれ3%強を示す。礫石器は、29種類に及ぶ石材が用いられており、砂岩25%、頁岩14%、花崗閃緑岩12%、細粒花崗閃緑岩10%、ホルンフェルス5%の順に多い。

全体の石材の産地は、剥片石器、礫石器に関わらず北上山地産が全体の約95%を占め、奥羽山脈産は3%以下である。石質鑑定から、主たる石材である頁岩の産地が北上山地と判明している。少なくとも前期前葉~中期末葉の長期に亘り、豊富に石材を供給できる地域や露頭が遺跡近郊に存在したことや、それの入手経路が確立していたなどの状況が想定されようか。なお、黒曜石は分析の項で後述するが、出来島産と小赤沢産と推定されている。

14 Pui	13~15年度	26・28 年度	Art Mil
種別	調査	調査	総数
石器総点数	7564 点	4260 点	11824 点
剥片石器	4538 点	2165 点	6703 点
	(60%)	(51%)	(55.5%)
礫石器	3026 点	2095 点	5121 点
	(40%)	(49%)	(44.5%)
石鏃	1151 点	388 点	1539 点
	(15.2%)	(9.1%)	(12.1%)
尖頭器	172 点	86 点	258 点
	(2.2%)	(2%)	(2.1%)
石匙	236 点	132 点	368 点
	(3.1%)	(3.1%)	(3.1%)
石錐	82 点	14 点	96 点
	(0.1%)	(0.3%)	(0.2%)
不定形石器	2137 点	1074 点	3211 点
(スクレイパー類)	(28.3%)	(25.2%)	(26.8%)
力持型	77点	202 点	279 点
スクレイパー	(1%)	(4.7%)	(2.9%)
磨製石斧	613 点	211 点	824 点
	(8.1%)	(5%)	(6.5%)
磨石・敲石類	1831 点	1490 点	3321 点
	(24.2%)	(35%)	(29.7%)
石皿・台石	142 点	58 点	200 点
	(1.9%)	(1.4%)	(1.6%)
半円状扁平	29 点	18 点	47 点
打製石器	(0.4%)	(0.4%)	(0.4%)
その他	1094 点	587 点	1681 点
	(15.5%)	(13.8%)	(14.6%)

第6表 力持遺跡石器組成

3 分析から

今回実施した科学分析の結果を踏まえ所見を述べたい。

[年代測定]目的・試料を説明する。平成26年度に実施したVI章1では、野外調査時に竪穴住居や捨て場から得られた木炭や炭化物を試料に、遺構の実年代の追求を志向した。平成27年度に実施したVI章2では、土器に付着するススやおこげを対象とし土器の実年代を明らかにし、遺跡の時間軸の構築に寄与する目的で行った。試料名は1~28まで通し番号となっている。また、採取場所として遺構名やその時期を、また資料9~28には土器型式も付記したが、その後の報告書作成が進んだ段階で竪穴住居の時期や土器型式名を訂正したものもある。第7表で補足する。分析の結果、縄文時代前期~中期各時期の実年代を明らかにするとともに、年代測定値の蓄積にも寄与できたと評価さ

試料	採取場所・時期・掲載番号	測定年代 (yrBP)
1	6号住 埋土中 後期前葉	3,680 ± 30
2	15 号住 埋土中 中期中葉	5,080 ± 30
3	P12 グリッド V層下位	5,960 ± 30
4	7号土坑 埋土中	4,500 ± 30
5	A Ⅱ n11 グリッド V層 前期中葉~後葉	4,950 ± 20
6	12 号住 床面 前期初頭	5,910 ± 30
7	14 号住 焼土直上層 中期前葉	4,370 ± 30
8	55 号住 埋土下位 前期前葉	5,040 ± 30
9	2号住 埋土下位 (大木 8a 式) (掲載番号:228)	4,510 ± 20
10	25 号住 床面 (大木 8b- 1 式) →大木 8b- 1 ~ 2式 (掲載番号:307)	4,650 ± 30
11	26 号住 埋土上位 (大木 8b- 2式) →大木9古 (掲載番号:353)	4,230 ± 20
12	37 号住 埋土上位 (大木 8a 式?) (掲載番号:456)	4,800 ± 30
13	51 号住 埋土上位 (8b-2·3式) →大木9古式 (掲載番号:645)	4,520 ± 30
14	63 号住 埋土中 (大木 2b 式) (掲載番号:776)	5,440 ± 30

試料	採取場所・時期・掲載番号	測定年代
15	7号土坑 埋土中(円筒上位 b 式)→円筒上層 c 式(掲載番号:840)	4,800 ± 20
16	10 号土坑 埋土中 (中期前葉?) →中期前葉~中葉 (掲載番号:853)	4,440 ± 30
17	A II d5 グリッド IV∼V層 (大木 10 式) (掲載番号:929)	4,400 ± 30
18	A Ⅱ e7 グリッド Ⅳ層(円筒上層 c 式)(掲載番号 :113)	4,430 ± 30
19	A II m12 グリッド V層 (大木 9 式) (掲載番号:987)	4,600 ± 30
20	42号住ほか 埋土中~下位ほか(数地点間で接合)(大木9式)(掲載番号:591)	4,180 ± 30
21	A II n9・n10グリッド V層下位(To-Cu下位)(早稲田 6 類 c)(掲載番号:1024)	6,000 ± 30
22	A II oll グリッド V層 (To-Cu 上位) (前期中葉) →前期前葉 (掲載番号:1252)	5,440 ± 30
23	A Ⅱ oll グリッド Ⅰ層下位(白座式)→前期前葉~中葉(掲載番号:1272)	5,410 ± 30
24	A II p13 グリッド V層(大木 2a 式)→白座式(掲載番号 :1508)	5,170 ± 30
25	A II p13 グリッド V層 (前期中葉) →前期前葉~中葉 (掲載番号:1492)	5,270 ± 30
26	A II q13 グリッド IV層(大木 8a 式)→大木 8a 新式(掲載番号 :1572)	4,680 ± 30
27	A Ⅱ r13 グリッド Ⅳ層(大木5式)(掲載番号:1612)	5,300 ± 30
28	第4トレンチ Ⅳ~Ⅴ層 (大木6式) (掲載番号:1687)	5,100 ± 30

第7表 力持遺跡年代測定値

れる。分析から得られた測定値(年代値)について所見を述べると、To-Cu降下時期より古いと捉えた 試料3・14・21・22や、To-Cu降下時期より新しいと捉えられる試料5は、妥当性の高い年代値と見 て取れる。逆に、従来からの研究成果と比較して、誤差値と判断されるものもある。前期前葉の試 料8はやや新しい年代値と推定される。試料21の早稲田6類cについても前期前葉とみれば数百年 古い。ただ、この試料については土器型式の特定に問題がある可能性もあり、あるいは前期初頭上 川名2式か。大木5式の試料27、大木6式の試料28、円筒上層c式の試料15、大木8式の試料2・9・ 12・26、大木8b式の試料10、大木9式の試料13・19・などは、明らかに古い年代を示している。

[火山灰分析]目的は、今回調査で検出されている黄色、肌色、灰色など色調が異なるパウダー状のテフラが、To-Cuで相違ないのかどうか、分析からの裏付けを得る目的で実施した。試料1・2は、1号粘土採掘坑から検出された同一地点・同一堆積層で、上位がサンプル2とした灰色、中位がサンプル1とした黄色を呈する部分の試料である。現場時の所見として、色調には差異が認められるが、間層は無く、同じユニットと考えられる。試料3は12号住床面付近から採取した。同住居周辺には黄色を呈するテフラの良好堆積が認められた反面、遺構の埋土自体は薄く、採取時はテフラ以外の土壌が多く混在したと思われる試料である。分析の結果、試料1・2は火山灰ガラスが多く含まれ火山ガラスの形態・色調組成、屈折率特性、重鉱物組成などから、To-Cuと同定された。試料3はテフラ粒子の含有が非常に少なく、高確度のテフラ同定は難しいものの、To-Cuに由来する可能性が考えられる。以上から、今回の調査で出土したテフラは、5,250年前に十和田火山から噴出した十和田中掫テフラ(To-Cu)である裏付けを得られたと評価される。

[黒曜石産地同定]

目的は、力持遺跡出土黒曜石7点の 産地の特定から物資の移動を考える情報入手にある。出土地や層位から推定 される帰属時期は、TIK-1~5は中期中葉~末葉、TIK-6は前期、TIK-7は前期前葉である。蛍光X線分析による産地推定を行った。分析の結果、5点が出来島産、残り2点は小赤沢産と判明した。この結果を積極的に支持すれば、黒曜石の帰属時期と捉えられる縄文前期前葉~後期前葉において、

試料名	器種	出土地点	層位	重量 (g)	原産地	推定帰属 時期	備考
TIK-1	石鏃	A II g5 グリッド	IV~ V層	1.6	出来島	中期	No. 3282、 未成品
TIK-2	フレーク	A II n12 グリッド	Ⅲ層 下位	0.4	小赤沢	中期 ~後期	不掲載
TIK-3	スクレイパー	7号住	炉の 東側	4.3	出来島	中期末葉	No. 3055
TIK-4	フレーク	5号住	6層	4.8	小赤沢	中期末葉	不掲載、 弱い被熱あり
TIK-5	フレーク	9 号住	床面 直上	0.5	出来島	中期中葉	不掲載
TIK-6	スクレイパー	A II nll グリッド	V層	1.3	出来島	前期	不掲載、 被熱あり
TIK-7	Uフレ	34 号住	埋土中	0.4	出来島	前期前葉	不掲載

第8表 力持遺跡黒曜石産地同定

本地域は北上川上流域付近や津軽半島周辺と交流があったことが推定される。今後への課題として、 黒曜石の入手ルートの解明などを挙げておきたい。

[琥珀分析]目的は、力持出土琥珀の産地を特定し、物資の移動を考える情報入手にある。試料は径 10~20mmの原石数点以外は、径 2~5 mmの細片となる。これらシャーレ単位で150点の分析を実施した。なお、琥珀の総出土量は427.4gで、過去の調査出土の600gと合わせると本遺跡からは1,027.4g、概算で約10,000点を超える琥珀細片が出土している。分析はFT-IR分析と熱分析を実施した。分析の結果、150点全でが久慈市産およびいわき市産と判断される結果を得られた。なお、久慈市産といわき市産の琥珀はその生成年代および由来する植物が同じであるとされており、自然科学的な分析では両者を区別することはできないらしい。ただ、考古学的な観点から、出土地の地理的および時代的な要素を考慮すると、久慈市産である可能性が高いとする考察結果を得られた。

[石器使用痕分析]目的は、石器の動作や対象物の特定から、使用用途を探ることにより遺跡内で行われた生業の一端を解明することである。対象試料として過去の調査で力持型スクレイパーと呼称した、本遺跡を象徴する石器に特化して実施した。この石器は現時点で沿岸部の遺跡に限定して出土していることも付記しておく。

分析結果として、考察された内容を以下にまとめてみる。

- ・背面刃部から使用痕光沢分類のEタイプ光沢などが確認された。また、摩耗した半月形の微小剥離が伴う。これらから導かれる内容として、被加工物は皮革類などの軟質物と考えられる。この石器の分布や立地を踏まえると、魚類や大型海獣の被加工物が、用途の候補に含まれる。
- ・力持型スクレイパーの形態は、幾つかに区分されるが、規模の傾向として隅丸長方形、撥形、隅丸 撥形、正方形の順で軽くなる。大別すると、大型は隅丸長方形に、小型は隅丸撥形の2種類となる。 スクレイピング機能は同じでも加工対象によって大型と小型を使い分けていた可能性が新たな情報 として提示された。
- ・用いられる石材は、大型は細粒花崗閃緑岩や細粒はんれい岩が多いのに対して、小型は多様である。 よって、石材差が使用痕光沢の現れ方に影響している可能性がある。

4 ま と め

過去の調査との比較から、特記事項を抽出しまとめとする。

[時期にみる空間占有と集落構造] ここでは竪穴住居数や遺物量が多い前期前葉と中期前葉~末葉を取り上げ、まとめてみたい。

① ここでは、前期前葉は大木2a式に加え前期前葉~中葉として表記してきた大木2b式を含め稿を進めることとする。過去の調査で前期前葉の竪穴住居が集中的に検出された、いわゆる居住域(※第8図のAII a 10グリッド付近が中心地)と、今回の調査で竪穴住居が多数検出された北調査区とは45~50mほど離れた位置関係にある。過去の調査成果と地形の連続性を加味して推定すると、居住域は少なくともこれら2つの中心的な空間に分かれて存在する可能性が考えられる。土坑域は、過去の調査からAII x 8~BII d 9 グリッドにかけて長さ20m以上、幅10m以上の範囲に占地し、居住域より高位な場に形成されている。土坑数自体は竪穴住居1棟につき土坑1基程度という関係にあり、土坑数が急増するのは本時期以降の円筒下層期からになる。

追記として、北調査区の遺構密度から、調査地外南東側(AⅡg8~AⅡm12グリッド付近)には相当数の竪穴住居群が広がると予想される。

② 中期前葉~中期末葉の竪穴住居の分布としては、B II k 16グリッド付近→南調査区東側付近→ 北調査区全体→A I j 25グリッドにかけて幅20m前後の帯状に、「⊃」の字をやや左下がりにしたように居住域が巡ると考えられる。中期は中葉と末葉に集落規模が拡大する。それに伴う土坑の数と 分布の様相としては、土坑数は竪穴住居 1 棟あたり0.5基以下と少なく、また土坑域的な空間は構成 せず竪穴住居の近隣に構築される傾向で捉えられる。円筒式土器と大木式土器の主客性は、前葉は 円筒上層 b 式や同 c 式を主体とするが、中葉になり大木8a式主体に変容する。ただし、円筒上層 b · c 式期と大木8a式期古段階の竪穴住居を比較した場合、構造上は大きな変化はない。それらに伴う 土坑の数や分布の様相も同様である。つまり、土器が円筒式から大木式に変容して集落規模は拡大 するが、竪穴住居などの構造には変化が看取されない。変化が見られるのは、大木8a式期新段階若 しくは大木8b式期(中葉後半期頃)である。竪穴住居の構築に際しては、その長軸方向は前期初頭期 から基本的には等高線と水平が継承されているが、平面形が円形や複式炉の発生により変化する。 複式炉を持つ時期の竪穴住居は、前庭部が斜面下方側をみる作りを基本とするので、等高線を切る 方向(ほぼ東西方向)に長軸が来る構造が基本となる。この複式炉の発生時期は、大木8b式期新段階 と推定されたが、主体的に複式炉が見られるのは大木9式期以降、大木10式期中段階までである。

[To-Cuと土器の関係] To-Cuの産状は、黄色、肌色、灰色など色調が異なるパウダー状に認められ、分析からTo-Cuである結果を得られた。堆積様相は、遺存状態の良好な50号住や1号粘土採掘坑などの土層観察では自然堆積と判断された。ただ、いわゆるプライマリーではなく、水成による二次堆積と捉えられる。

さて、To-Cu降下期と土器の関係については、早稲田6類、大木1式、大木2a式はTo-Cu降下期より古い。To-Cu降下期より新しい土器は円筒下層a式である。大木3式は、型式特定にやや躊躇するNo.1353の1点を除きTo-Cuより上位から出土している。

大木2a式は、普代村長途遺跡においてもTo-Cu下位から出土しており、To-Cu下位出土が確実であると判断される。To-Cuとの層位関係が明確でないのが次の大木2b式である。大木2b式の出土状況には特にも注視していたが、遺構内出土は圧倒的にTo-Cu下位が多く、南調査区捨て場出土は同テフラ上位がやや多い。To-Cuとの新旧関係が注目される大木2b式は、今回調査でも明確には判断できず、大木2b式がTo-Cuの降下時期を挟む可能性を指摘するに留める。白座式については、To-Cu上位が主体で下位は少ない。

[大木式と円筒式の主客性]大木式土器と円筒式土器の主客性が認められるのは、前期中葉~中期中葉に亘る。今回の調査では前期中葉~中期初頭に関しては新情報が得られていない。ただ、過去の調査との変更点は無いと考えられる。前期中葉大木3式と円筒下層a式が並行するという仮定のもとに稿を進めると、前期中葉の主客性は過去の調査では円筒下層a式が主体と捉えられた。ただ、今回調査の土器量だけを見るなら大木3式の方が多い結果にあり、再検討事項と考えられる。大木式と円筒式の主客性が明確なのは中期前葉と中期中葉前半で、前葉は円筒上層b式と同c式、中葉前半は大木8a式である。また、今回の調査では大木8b式や大木9式との並行関係が有力な榎林式や最花式も一定量の出土を得られた。

今回の調査で、北緯40°付近における南北縄文文化接触の様相について、さらなる情報を提供できたものと、評価できよう。

Ⅴ・Ⅵ章参考引用・文献

阿部昭典 2008 『縄文時代の社会変動』小林達雄監修未完成考古学叢書6

岩田安之 2017 「ミニチュア化された模倣品―三内丸山遺跡の棒状土製品を中心として―」『特別史跡 三内丸

山遺跡年報—20—』P29~35

(公益社団法人東京地学協会P653~663)

小林達雄編 2008 『総覧 縄文土器』株式会社アム・プロモーション

佐藤達夫 1983 「青森県上北郡早稲田貝塚」『東アジアの先史文化と日本』 P224 ~ 283

千葉 毅・高山理美 2014 「東北地方北部における縄文時代後期初頭から前葉土器編年研究の現状と課題-青森県安部遺

跡出土土器の理解のために - 」『縄文時代』第25号 P1~116 縄文時代文化研究会

早瀬亮介 2009 「前期大木式土器の変遷と地域性 - 編年研究の現状と課題 - 」『日本考古学協会2009年山形大会

研究発表資料』P273 ~ 282

星 雅之・茅野義雄 2006 「十和田中掫テフラからみた円筒下層 a 式土器成立期の土器様相」『三内丸山遺跡の生態系史』 植

生史研究特別 2号 P151~180 日本植生史学会

武藤 康弘 1987 「東北地方北部の縄文前期土器群の編年学的研究 - 表館式,早稲田 6 類土器をめぐって - 」「考古 學雜誌』第74巻第2号日本考古學学會 P29~51

<他県報告書関連>

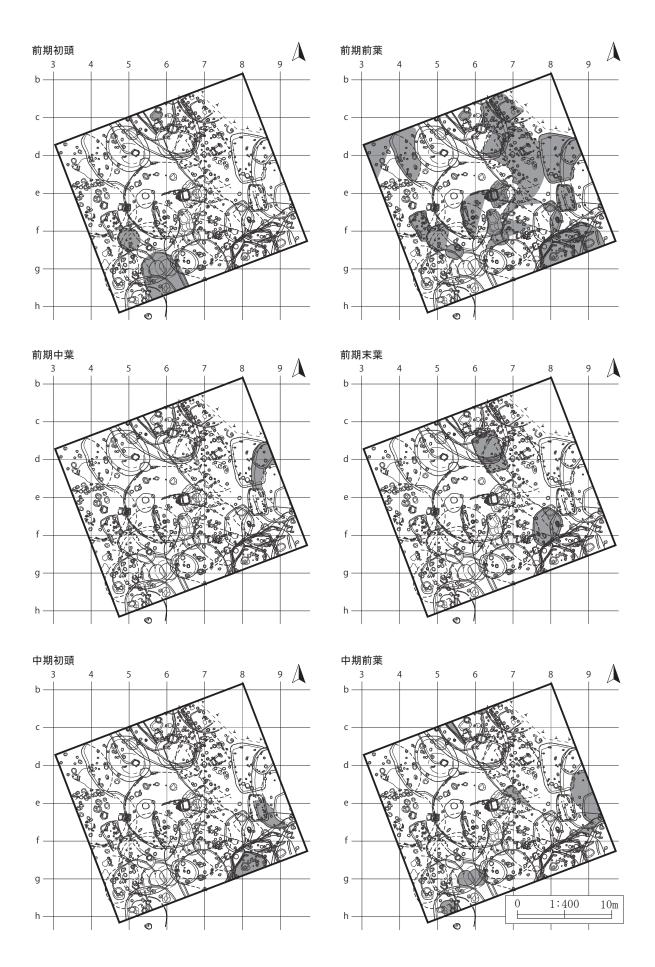
青森県教育委員会 1980 『砂沢平遺跡発掘調査報告書』青森県埋蔵文化財発掘調査報告書第53集

青森県教育委員会 2018 『三内丸山遺跡44 総括報告書 第二分冊』青森県埋蔵文化財調査報告書第588集

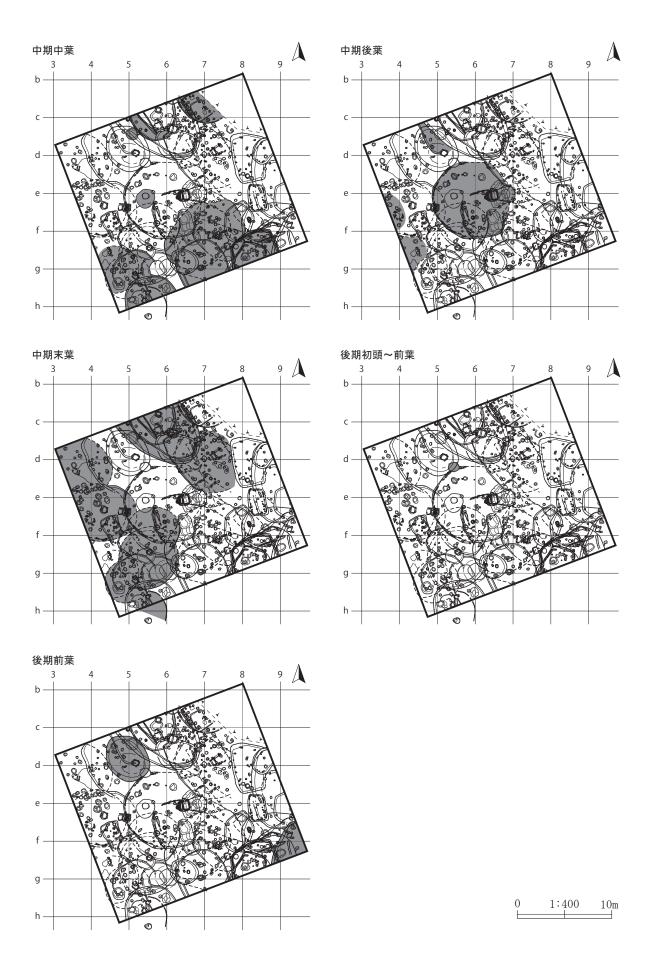
青森県階上町教育委員会 1989『白座遺跡・野場遺跡(3)発掘調査報告書』

宮城県七ヶ浜町教育委員会 2013『大木囲貝塚-災害復旧に伴う東貝層発掘調査報告書-』七ヶ浜町文化財調査報告書第10集

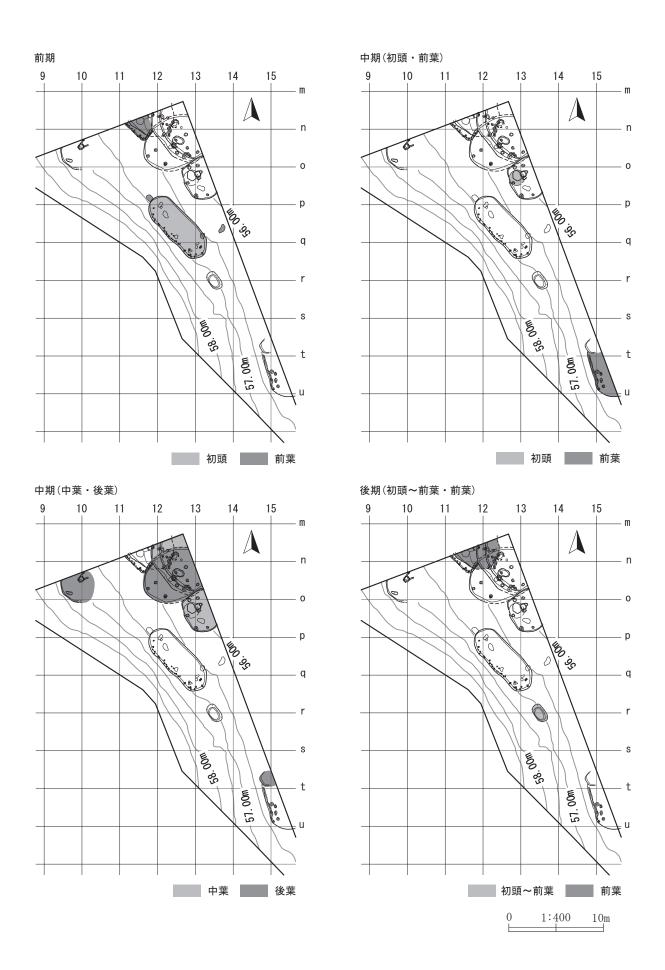
<岩手県報告書関連>

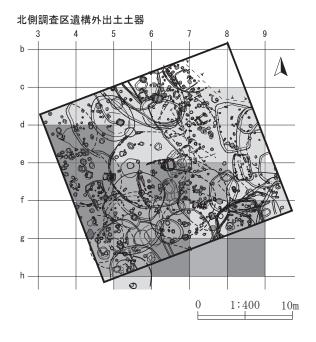

一戸町教育委員会 1993 『御所野遺跡』I 一戸町文化財調査報告書第32集 一戸町教育委員会 2006 『御所野遺跡』Ⅲ 一戸町文化財調査報告書第53集

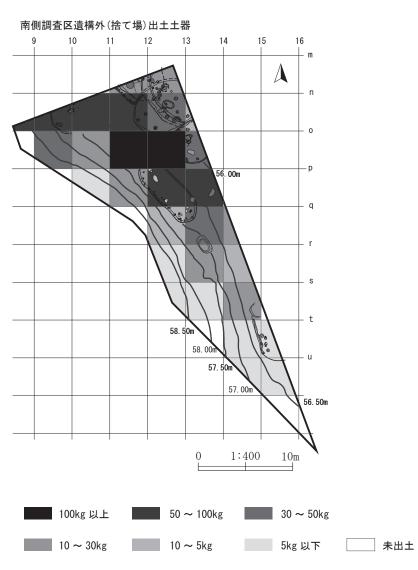
一戸町教育委員会 2015 『御所野遺跡 V - 総括報告書一』一戸町文化財調査報告書第70集


<公益財団法人岩手県文化振興事業団埋蔵文化財調査報告書(発行年順)>※岩手埋文と呼称し記載

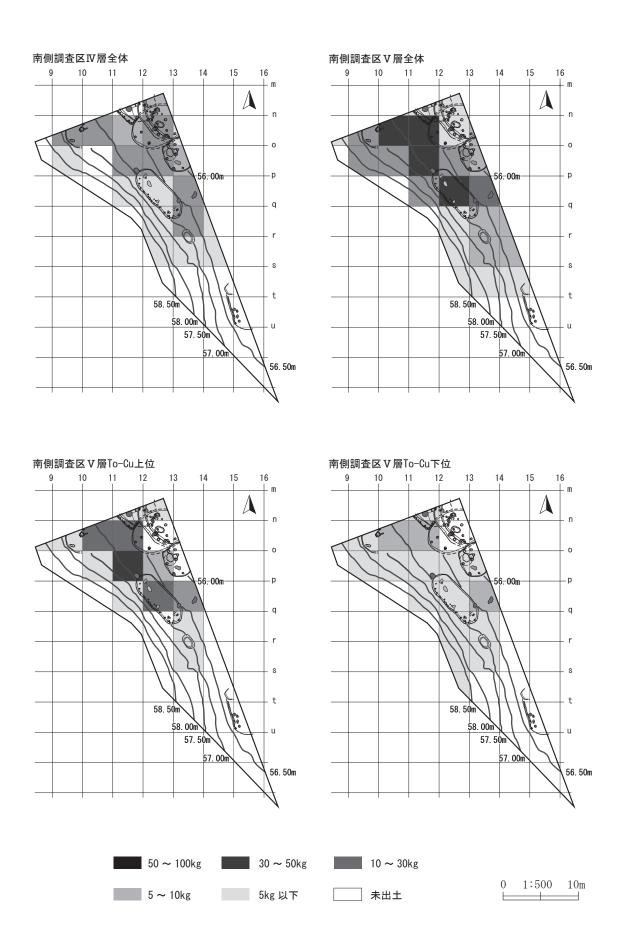
岩手埋文 1994 『寺久保遺跡発掘調査報告書』岩手埋文第239集 岩手埋文 1996 『平沢Ⅰ遺跡発掘調査報告書Ⅲ』岩手埋文第264集 岩手埋文 2000 『沢田 I 遺跡発掘調査報告書』岩手埋文第318集 2008 『力持遺跡発掘調査報告書』岩手埋文第510集 岩手埋文 岩手埋文 2008 『袰帯遺跡発掘調査報告書』岩手埋文第522集 岩手埋文 2014 『屋形遺跡発掘調査報告書』岩手埋文第629集 岩手埋文 2017 『越田松長根 I 遺跡発掘調査報告書』岩手埋文第666集


岩手埋文 2017 『乙部野Ⅱ遺跡発掘調査報告書』岩手埋文第682集

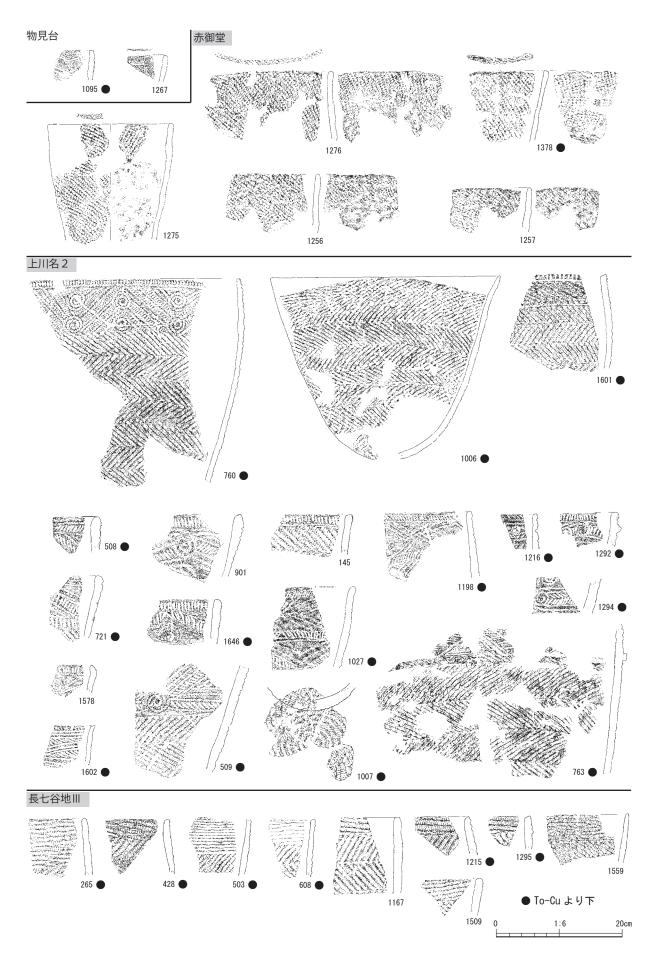

第271図 北側調査区時期別遺構分布図(1)

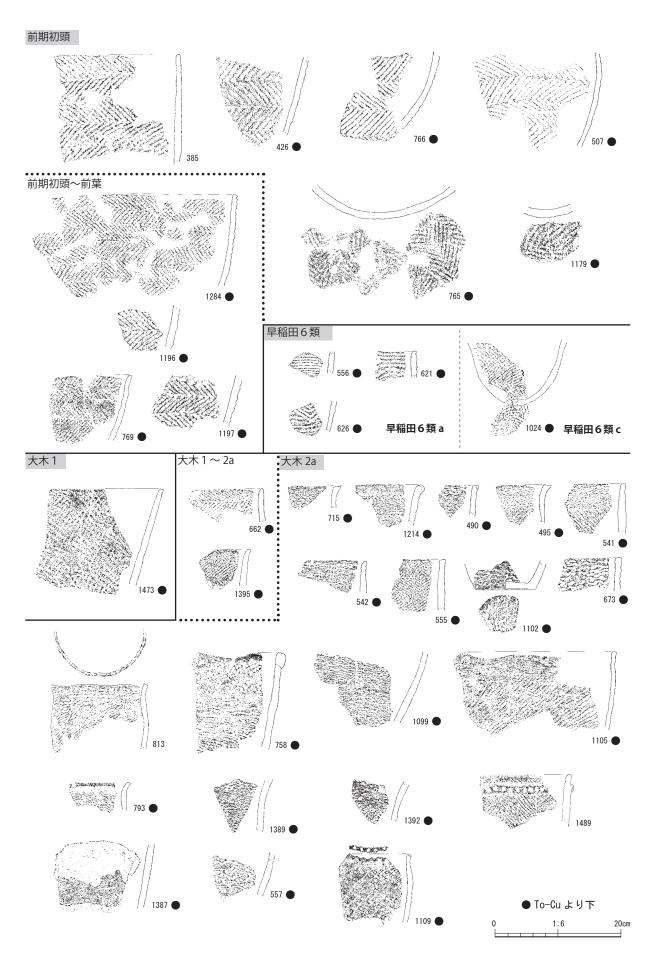


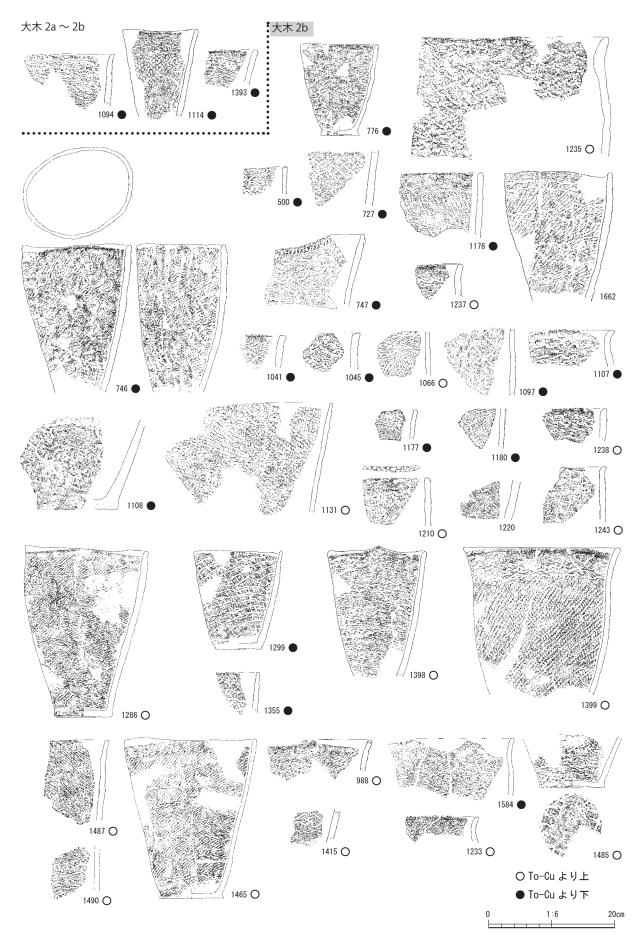
第272図 北側調査区時期別遺構分布図(2)

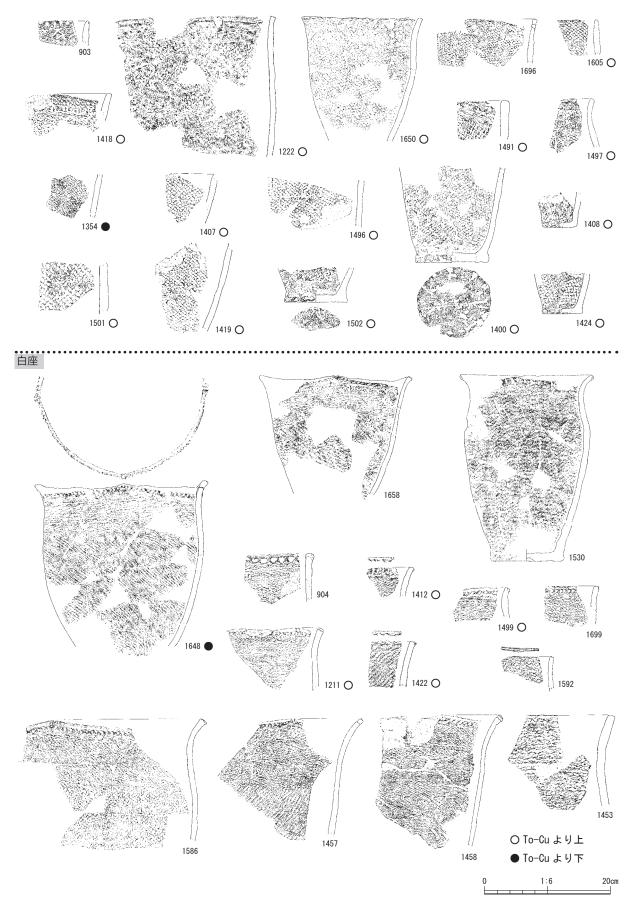


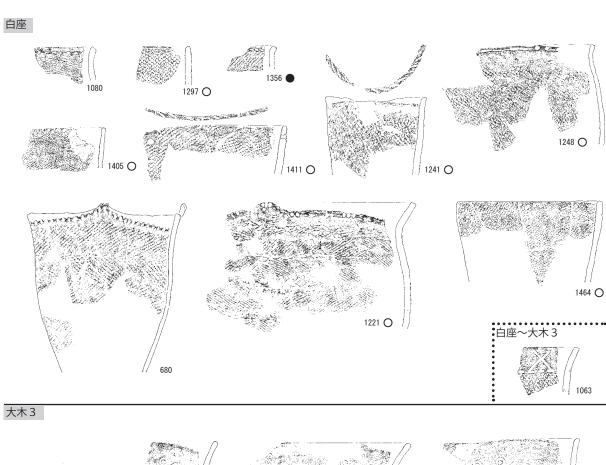
第273図 南側調査区時期別遺構分布図

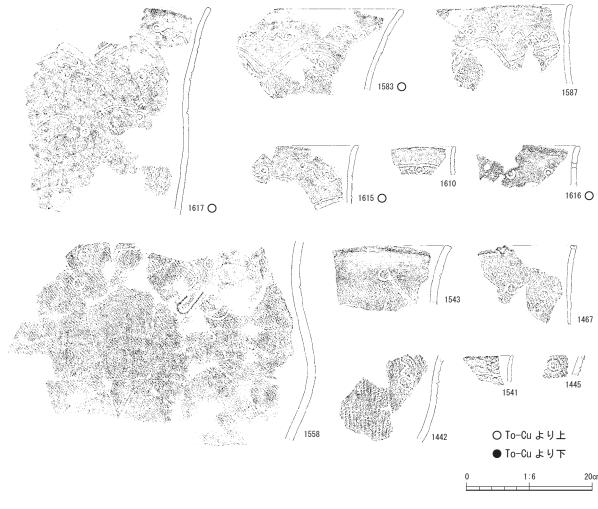



第274図 土器出土量分布図(1)

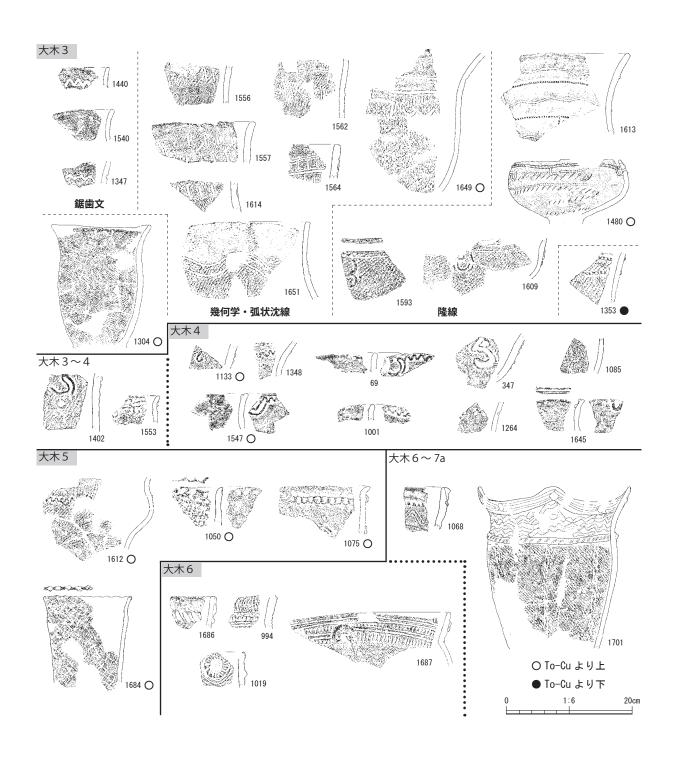

第275図 土器出土量分布図(2)

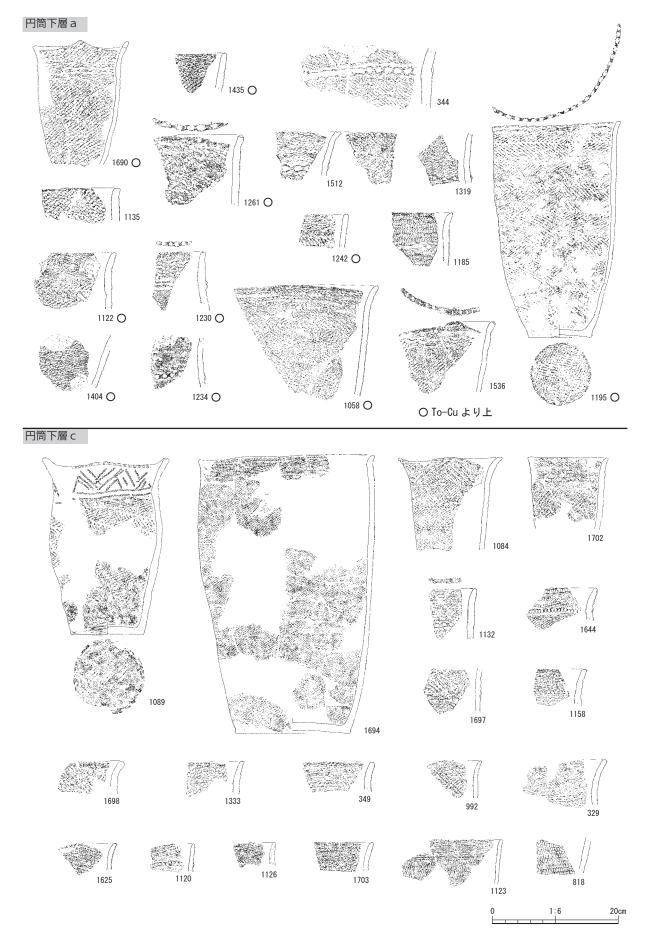

第276図 土器集成図1(物見台、赤御堂、上川名2、長七谷地Ⅲ)

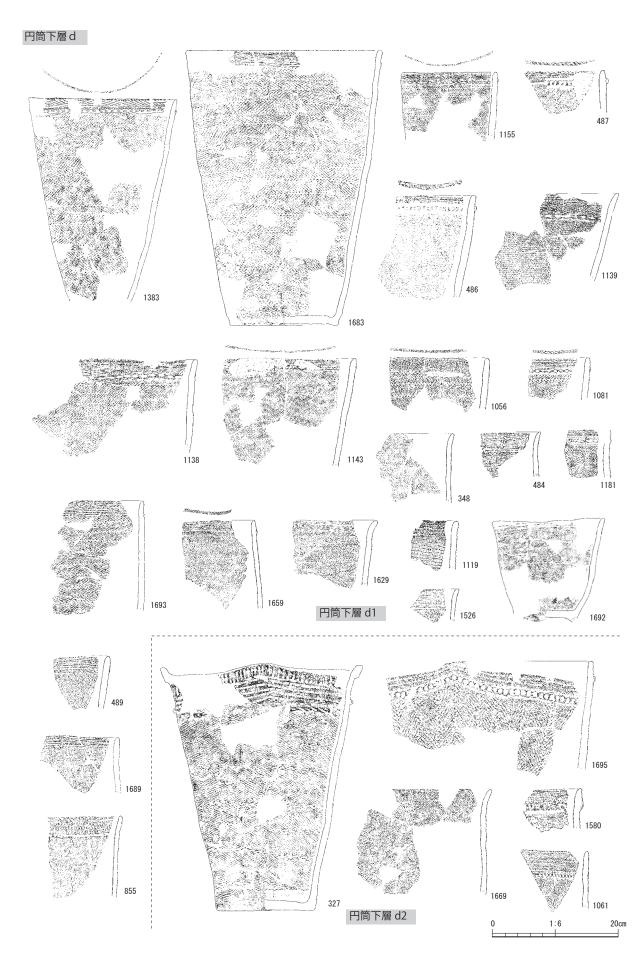

第277図 土器集成図2(前期初頭、早稲田6類、大木1·2a)



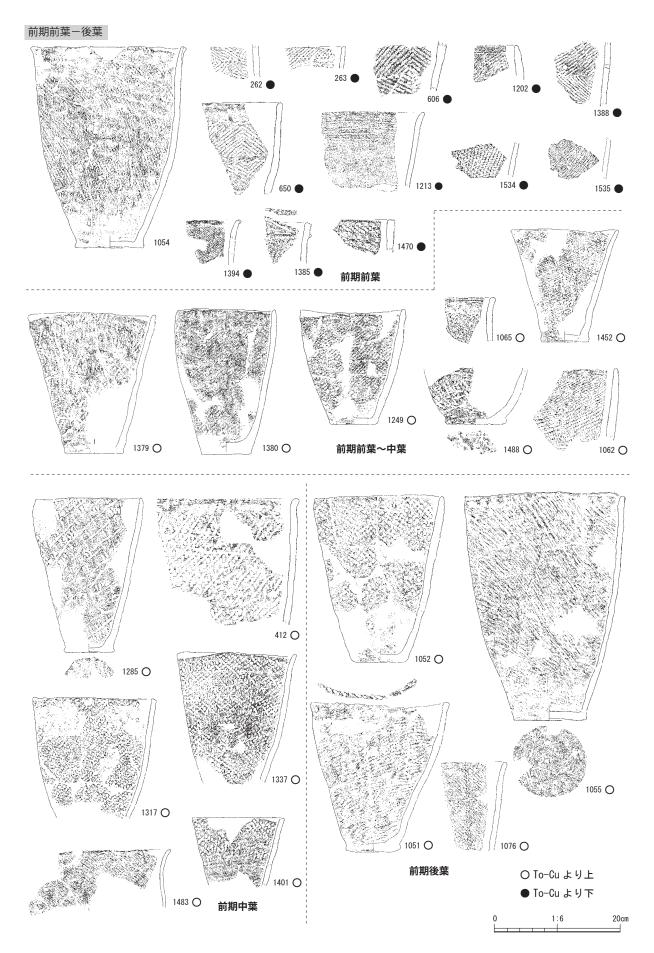
第278図 土器集成図3(大木2b)

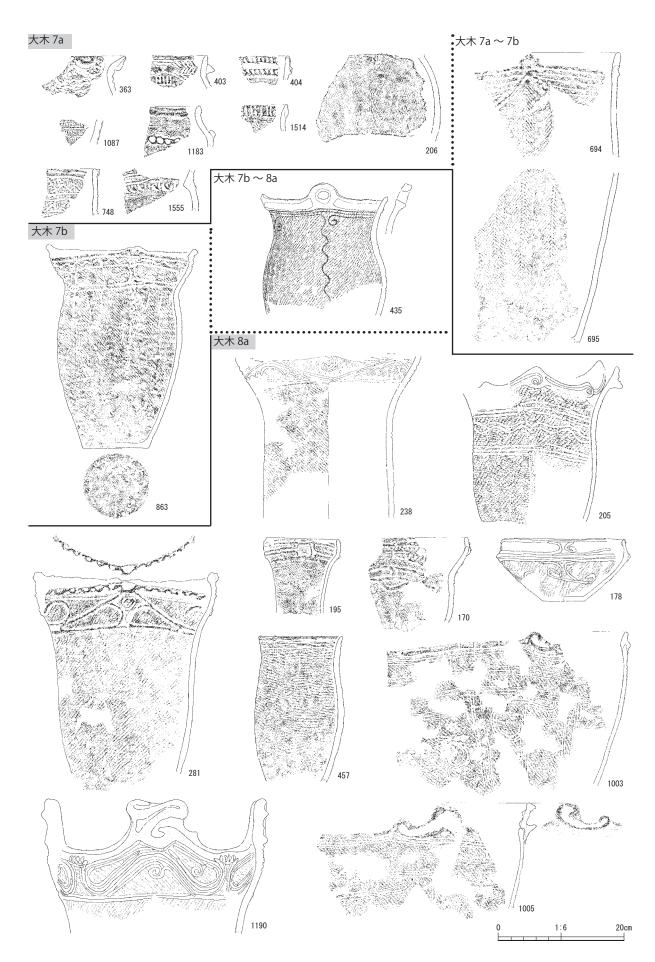



第279図 土器集成図4(大木2b・白座、白座)



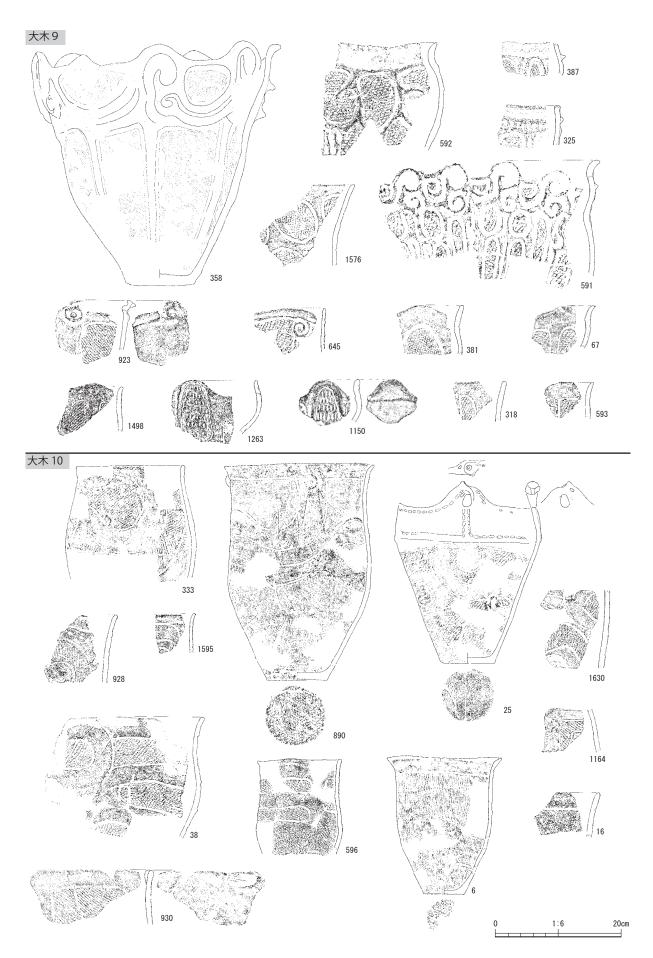
第280図 土器集成図5(白座、大木3)




第282図 土器集成図7(円筒下層a・c)

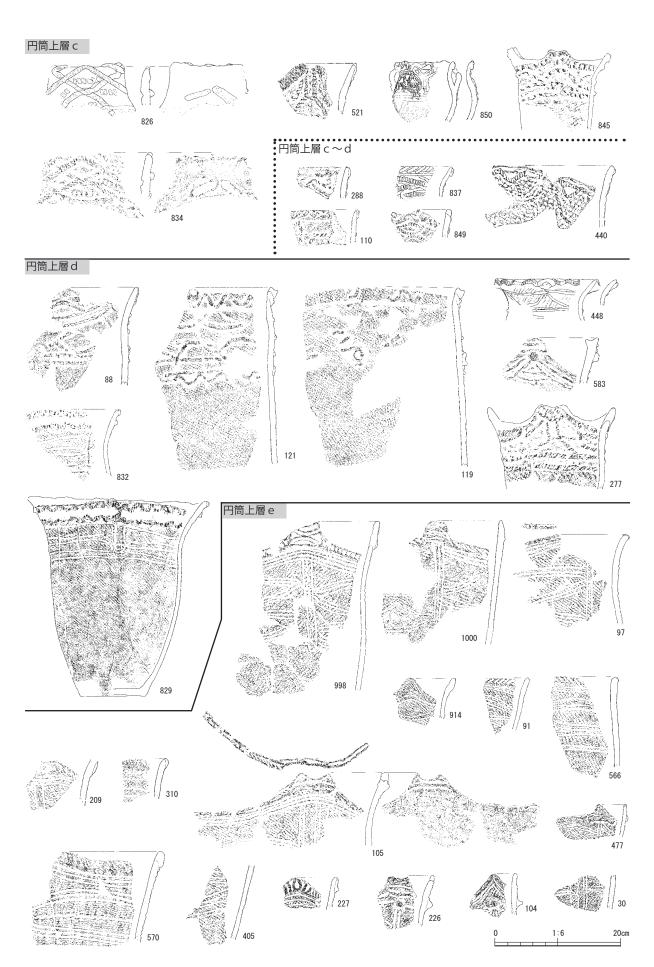
第283図 土器集成図8(円筒下層d)

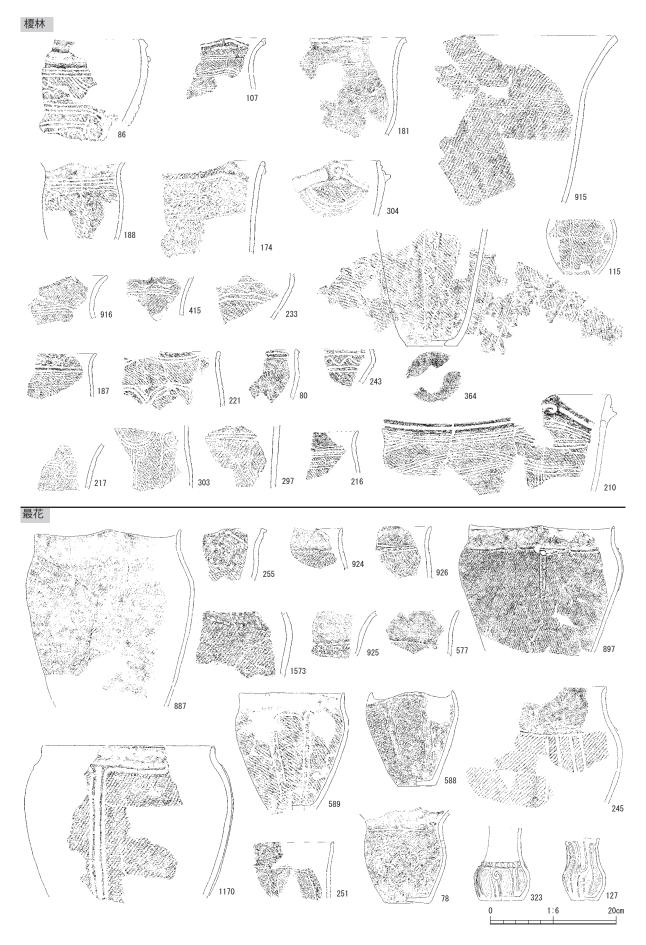
第284図 土器集成図9(前期前葉-後葉)



第285図 土器集成図10 (大木7a・7b・8a)

大木 8b


第286図 土器集成図11 (大木8a・8b)


第287図 土器集成図12 (大木9・10)

第288図 土器集成図13 (円筒上層a・b・c、新保・新崎)

第289図 土器集成図14 (円筒上層 c・d・e)

第290図 土器集成図15 (榎林、最花)

第291図 土器集成図16(上村、韮窪、宮戸 I b、蛍沢、十腰内 I)

報告書抄録

ふりぇ	が な	ちからもちいせきはっくつちょうさほうこくしょ									
書	名	力持遺跡発掘調査報告書									
副書	名	三陸沿岸道路建設関連遺跡発掘調査									
卷	次										
シリーズ名		岩手県文化振興事業団埋蔵文化財調査報告書									
シリーズ番号		第694集									
編著者	星雅之										
編集機関		(公団)岩手県文化振興事業団埋蔵文化財センター									
所 在	地	₹020	〒020-0853 岩手県盛岡市下飯岡11-185 TEL (019) 638-9001								
発 行 年	月日	西暦2	019年:	3月18日							
ふりがな	ふりァ			コード	北緯。//	東経。,,,,	調査期間		調査面積	調査原因	
所収遺跡	所収込		市町村	寸 遺跡番号	0 / "	0 / //	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
profestives 力持遺跡	いわてけんしも 岩手県下 *だいむち 普代村16: でんばいぎか 天拝坂		03485	5 JG92-0137	40度 01分 22秒 世界測	52分 58秒	2014.00 2014.1 2016.00 2016.10	1.28 9.05	768m [*] 130m [*]	三陸沿岸道路	
15.10 鬼肚夕	発 団	ナたロ	生/12	ナた 専排	<u> </u>	- ナル 塩	E. H-fan		#±.∃1	車 密	
所収遺跡名	種別	主な問	守代	主な遺構	/m /	主な遺		特記事項			
力持遺跡	集落跡	縄文		土坑14基 粘土採掘坑3基 焼土遺構3基		縄文土器180箱 土製品194点 石器類4260点 石製品155点 琥珀3箱		縄文時代前期〜後期の竪穴 住居跡、土坑を検出。 土器は縄文時代早期中葉〜 後期前葉、弥生時代前期			
要約	中期前葉	~末葉でゐ	ある。育	前葉に亘る大規模な 前期は十和田中掫テ と円筒土器の主客性;	フラ(To-	·Cu テフ					

岩手県文化振興事業団埋蔵文化財調査報告書第694集

力持遺跡発掘調査報告書

三陸沿岸道路関連遺跡発掘調査 (第1分冊)

印 刷 平成31年3月11日 発 行 平成31年3月18日

- 編 集 (公財)岩手県文化振興事業団埋蔵文化財センター 〒020-0853 岩手県盛岡市下飯岡11地割185番地 電話(019)638-9001
- 発 行 国土交通省東北地方整備局三陸国道事務所 〒027-0029 岩手県宮古市藤の川4番1号 電話(0193)62-1711 (公財)岩手県文化振興事業団 〒020-0023 岩手県盛岡市内丸13番1号 電話(019)654-2235
- 印 刷 (株) 吉田印刷 〒020-0016 岩手県盛岡市名須川町23番地27号 電話 (019) 625-2323