

13 棒状珪酸体

14 ブナ科(シイ属)

15 ケスノキ科

16 マンサク科 (イスノキ属)

17 マンサク科 (イスノキ属)

18 マンサク科 (イスノキ属)

Ⅲ. 放射性炭素年代測定結果

1. 試料と方法

試料名	地点・層準	種類	前処理・調整	測定法
No. 1	第1地点	炭化物	酸-アルカリ-酸洗浄 石墨調整	加速器質量 分析 (AMS) 法

2. 測定結果

試料名	¹⁴ C年代	δ ¹³ C	補正 ¹⁴ C年代	暦年代	測定No.
	(年BP)	(‰)	(年BP)	交点(1σ)	(Beta-)
No. 1	10000 ± 100	-25.0	10000 ± 100	_	99999

1)¹⁴C年代測定値

試料の¹⁴C/¹²C比から,単純に現在(1950年AD)から何年前(BP)かを計算した値。¹⁴C の半減期は5,568年を用いた。

2) δ¹³C測定値

試料の測定¹⁴C/¹²C比を補正するための炭素安定同位体比(¹³C/¹²C)。この値は標準物質(PDB)の同位体比からの千分偏差(‰)で表す。

3) 補正¹⁴C年代值

δ¹³C測定値から試料の炭素の同位体分別を知り,¹⁴C/¹²Cの測定値に補正値を加えた上 で算出した年代。

4) 暦年代

過去の宇宙線強度の変動による大気中¹⁴C濃度の変動を補正することにより算出した年代 (西暦)。補正には年代既知の樹木年輪の¹⁴Cの詳細な測定値を使用した。この補正は 10,000年BPより古い試料には適用できない。暦年代の交点とは、補正¹⁴C年代値と暦年代 補正曲線との交点の暦年代値を意味する。1*σ*は補正¹⁴C年代値の偏差の幅を補正曲線に投 影した暦年代の幅を示す。

平成8年度 三角山 I 遺跡 縄文時代遺物包含層の年代について

パリノ・サーヴェィ株式会社

1. はじめに

鹿児島県中種子町三角山 I 遺跡では、トレンチ調査の結果、鬼界アカホヤ火山灰(K-Ah) 層(II層)の下位に、縄文時代草創期隆帯文土器の時期の遺物包含層(V層)が確認された。 V層の上位には縄文時代早期の遺物包含層(Ⅲ層)が検出されており、該期の貴重な層位的出 土例として注目されている。

今回, V層より出土した炭化材片を試料として¹⁴C年代測定を行い, 隆帯文土器の年代観を 確認することにした。

2. 試料

試料はV層より出土した炭化材片である。細片を集めて、測定試料1点として用いた。

3. 測定

測定は学習院大学放射性炭素年代測定室が行った。半減期はLIBBYの5570年を使用する。

4. 結果

測定結果は、10,470±170Y.B.P. (8520B.C:Gak-19077)であった。K-Ahとの層位的 関係に矛盾はみられず、縄文時代草創期の年代観として調和的な結果と考えられる。最近その 編年的位置付けが注目されている隆帯文土器について、具体的な年代資料が得られた意義は大 きい。

平成11年度 鹿児島県,三角山 I 遺跡における自然科学分析

株式会社 古環境研究所

I. 三角山 I 遺跡における放射性炭素年代測定

1. 試料と方法

試料名	地点・層準	種類	前処理・調整	測定法
No. 1	N-13区,X層	炭化材 (ヒノキ科)	酸-アルカリ-酸洗浄,石墨調整	AMS法
No. 2	F-12区,Ⅲ層№749(土器99付着)	炭化物	酸-アルカリ-酸洗浄,石墨調整	AMS法
No. 3	F-12区,Ⅲ層№792,804(土器110付着)	炭化物	酸-アルカリ-酸洗浄,石墨調整	AMS法
No. 4	38号集石,Ⅲ層(D群)O-14区	炭化材	酸-アルカリ-酸洗浄,石墨調整	AMS法
		(マキ属)		
No. 5	37号集石,Ⅲ層	炭化材	酸-アルカリ-酸洗浄,石墨調整	AMS法
No. 6	26号集石,Ⅲ層	炭化材	酸-アルカリ-酸洗浄,石墨調整	AMS法

※AMS法:加速器質量分析法

2. 測定結果

試料名	¹⁴ C年代 (年BP)	δ ¹³ C (‰)	補正 ¹⁴ C年代 (年BP)	暦年代 (西暦)	測定No. Beta-
No. 1	26230 ± 250	-23.6	26250 ± 250	交点:—	137435
No. 2	6440±70	-26.2	6420±70	交点:cal BC5375 1 σ :cal BC5475~5320 2 σ :cal BC5495~5285	137436
No. 3	6790±60	-25.5	6780±60	交点:cal BC5670 1σ:cal BC5720~5635 2σ:cal BC5750~5615	137437
No. 4	9600±80	-24.1	9610±80	交点:cal BC9135,8980,8930 1σ:cal BC9205~8795 2σ:cal BC9240~8735	137438
No. 5	8140±70	-29.0	8070±70	交点:cal BC7060 1 σ:cal BC7080~7040 2 σ:cal BC7185~6795	137439
No. 6	8760±80	-26.4	8740±80	交点:cal BC7760 1σ:cal BC7950~7615 2σ:cal BC8185~8045,BC8010~	137440 7590

1)¹⁴C年代測定值

試料の¹⁴C/¹²C比から,単純に現在(1950年AD)から何年前かを計算した値。¹⁴Cの半 減期は5,568年を用いた。

2) δ¹³C 測定値

試料の測定¹⁴C/¹²C比を補正するための炭素安定同位体比(¹³C/¹²C)。この値は標準物質 (PDB)の同位体比からの千分偏差(‰)で表す。

3) 補正¹⁴C年代值

δ¹³C測定値から試料の炭素の同位体分別を知り,¹⁴C/¹²Cの測定値に補正値を加えた上 で算出した年代。

4) 暦年代

過去の宇宙線強度の変動による大気中¹⁴C濃度の変動を較正することにより算出した年代 (西暦)。較正には年代既知の樹木年輪の¹⁴Cの詳細な測定値,サンゴのU-Th年代と¹⁴C年代 の比較により作成された補正曲線を使用した。最新のデータベース("INCAL98 Radiocarbon Age Calibration" Stuiver et al, 1998, Radiocarbon 40(3))により,約 19,000年BPまでの換算が可能となっている。ただし,10,000年BP以前のデータはまだ不 完全であり、今後も改善される可能性がある。暦年代の交点とは較正¹⁴C年代値と暦年代較 正曲線との交点の暦年代値を意味する。1 σ (68%確率)・2 σ (95%確率)は、較正¹⁴C 年代値の偏差の幅を較正曲線に投影した暦年代の幅を示す。したがって、複数の交点が表記 される場合や、複数の1 σ ・2 σ 値が表記される場合もある。

1. 試料

試料は、三角山 I 遺跡から出土した炭化材2点である。

2. 方法

試料を割折して新鮮な基本的三断面(木材の横断面,放射断面,接線断面)を作製し,落射 顕微鏡によって75~750倍で観察した。樹種同定は解剖学的形質および現生標本との対比に よって行った。

3. 結果

結果を表1に示し、同定根拠となった特徴を記す。また、主要な分類群の顕微鏡写真を示す。 表1 三角山 I 遺跡から出土した炭化材の樹種同定結果

試料	地点・層準	樹種 (和名/学名)
No. 1	N-13区,X層(AT下位)	ヒノキ科 Cupressaceae
No. 4	38号集石,Ⅲ層(縄文時代早期)	マ キ 属 Podocarpus

a. マキ属 Podocarpus マキ属

仮道管、樹脂細胞および放射柔細胞から構成される針葉樹材である。

- 横断面:早材から晩材への移行はゆるやかで,年輪界がやや不明瞭である。年輪の中に樹 脂細胞が散在する。
- 放射断面:放射柔細胞の分野壁孔は、ヒノキ型で1分野に1~2個存在する。樹脂細胞が散 在する。
- 接線断面:放射組織は単列の同性放射組織型で、1~20細胞高である。樹脂細胞が多く見られる。
- b. ヒノキ科 Cupressaceae

図版2

図版1

- 仮道管、樹脂細胞および放射柔細胞から構成される針葉樹材である。
- 横断面:早材から晩材への移行は比較的ゆるやかで,晩材部の幅は狭い。樹脂細胞が見られる。
- 放射断面:放射柔細胞の分野壁孔は,部分的ではあるが,ヒノキ型を示すものが見られる。 接線断面:放射組織は単列の同性放射組織型である。

本試料は、小片であり炭化による変形が著しく広範囲の観察が困難であったことから、ヒノ キ科の同定にとどめた。

4. 所見

分析の結果, 試料No.1 はマキ属, 試料No.4 はヒノキ科と同定された。マキ属には, イヌマキ,

三角山 I 遺跡出土炭化材の顕微鏡写真

ナギがあり,関東以西の本州,四国,九州,沖縄に分布する常緑高木で,通常高さ20m,径 50~80cmである。材は,耐朽性が強く,耐水性も高い。建築,器具,桶,箱,水槽などに用 いられる。ヒノキ科には,ヒノキ,サワラ,ビャクシン,アスナロなどがある。このうちのヒ ノキは,福島県以南の本州,四国,九州,屋久島に分布する日本特産の常緑高木で,通常高さ 40m,径1.5mに達する。

文献

佐伯浩・原田浩(1985)針葉樹材の細胞.木材の構造,文永堂出版, p.20-48. 佐伯浩・原田浩(1985)広葉樹材の細胞.木材の構造,文永堂出版, p.49-100.

平成12年度 鹿児島県,三角山 I 遺跡における自然科学分析

株式会社 古環境研究所

I. 三角山 I 遺跡における放射性炭素年代測定

1. 試料と方法

試料名	地点・層準	種類	前処理・調	整	測定法
No. 1	①IIa層土器573付着	炭化物	酸-アルカリ-酸洗浄,	石墨調整	加速器質量分析 (AMS)法
No. 2	②IIa層土器556付着	炭化物	酸-アルカリ-酸洗浄,	石墨調整	加速器質量分析 (AMS) 法
No. 3	③Ⅲ層包含層	炭化材	酸-アルカリ-酸洗浄,	石墨調整	加速器質量分析 (AMS) 法
No. 4	④Ⅲ層7号集石	炭化材「シキミ」	酸-アルカリ-酸洗浄,	石墨調整	加速器質量分析 (AMS) 法
No. 5	⑤V層土器109付着	炭化物	酸-アルカリ-酸洗浄,	石墨調整	加速器質量分析 (AMS) 法
No. 6	①XI層	炭化材「ツゲ属」	酸-アルカリ-酸洗浄,	石墨調整	加速器質量分析 (AMS) 法
No. 7	②X II 層	炭化材	酸-アルカリ-酸洗浄,	石墨調整	加速器質量分析 (AMS) 法

2. 測定結果

試料名	¹⁴ C年代 (年BP)	δ ¹³ C (‰)	補正 ¹⁴ C年代 (年BP)	暦年代 (西暦)	測定No. (Beta-)
No. 1	4960±60	-25.8	4950±60	交点:cal BC 3710 1σ:cal BC 3780~3660 2σ:cal BC 3930~3860, 3810~3640	153024
No. 2	5410±70	-26.8	5380±70	交点:cal BC 4240 1 σ:cal BC 4330~4150, 4120~4070 2 σ:cal BC 4350~4040	153025
No. 3	6300±70	-26.6	6270±70	交点:cal BC 5280 1σ:cal BC 5320~5210, 5160~5150 2σ:cal BC 5370~5040	153026
No. 4	8800±80	-24.0	8820±80	交点:cal BC 7950 1σ:cal BC 8180~8040, 8010~7760 2σ:cal BC 8230~7610	153027
No. 5 ※3	8710±90 平成12年度 再分	-26.2 分析	8690±90	交点:cal BC 7650 1σ:cal BC 7810~7600 2σ:cal BC 8160~8130. 7980~7570	153028
No. 6	27910±320	-25.6	27900 ± 320	交点:cal —	153029
No. 7	29530 ± 360	-22.4	29570 ± 360	交点:cal —	153030

1)¹⁴C年代測定值

試料の¹⁴C/¹²C比から単純に現在(AD1950年)から何年前かを計算した値。¹⁴Cの半減 期は国際慣例に従って5,568年を用いた。

2) δ¹³C 測定値

試料の測定¹⁴C/¹²C比を補正するための炭素安定同位体比(¹³C/¹²C)。この値は標準物質(PDB)の同位体比からの千分偏差(‰)で表す。

3) 補正¹⁴C年代值

δ¹³C測定値から試料の炭素の同位体分別を知り,¹⁴C/¹²Cの測定値に補正値を加えた上 で算出した年代。

4) 暦年代

過去の宇宙線強度の変動による大気中¹⁴C濃度の変動を較正することにより算出した年代。 較正には年代既知の樹木年輸の¹⁴Cの詳細な測定値,およびサンゴのU-Th年代と¹⁴C年代の 比較により作成された較正曲線を使用した。最新のデータベース("INTCAL98 Radiocarbon Age Calibration" Stuiver et al, 1998, Radiocarbon 40(3))により,約 19,000年BPまでの換算が可能となっている。ただし,10,000年BP以前のデータはまだ不 完全であり,今後も改善される可能性がある。

暦年代の交点とは、補正¹⁴C年代値と暦年代較正曲線との交点の暦年代値を意味する。1 σ(68%確率)および2σ(95%確率)は、補正¹⁴C年代値の偏差の幅を較正曲線に投影 した暦年代の幅を示す。したがって、複数の交点が表記される場合や、複数の1σ・2σ値 が表記される場合もある。

II. 三角山 I 遺跡における樹種同定

1. はじめに

木材は、セルロースを骨格とする木部細胞の集合体であり、解剖学的形質の特徴から概ね属 レベルの同定が可能である。木材は花粉などの微化石と比較して移動性が少ないことから、比 較的近隣の森林植生の推定が可能であり、遺跡から出土したものについては木材の利用状況や 流通を探る手がかりとなる。

2. 試料

試料は、Ⅲ層包含層(縄文時代早期)から出土した炭化材(試料③)およびXI層から出土 した炭化材(試料①)の計2点である。

3. 方法

炭化材を割折して新鮮な基本的三断面(木材の横断面,放射断面,接線断面)を作製し,落 射顕微鏡によって75.750倍で観察した。同定は解剖学的形質および現生標本との対比によっ て行った。

4. 結果

結果を表1に示し、主要な分類群の顕微鏡写真を示す。以下に同定根拠となった特徴を記す。シキミ Illicium religiosum Sieb. et Zucc. モクレン科 図版1

- 横 断 面:小型で角張った道管が,ほぼ単独で密に散在する散孔材である。早材部の年輪界付 近に於いて,道管が少し並ぶ傾向を示す。
- 放射断面:道管の穿孔は階段穿孔板からなる多孔穿孔で,階段の数は多く50を越える。放射 組織は平伏細胞,方形細胞,直立細胞からなる。
- 接線断面:放射組織は、異性放射組織型で、1~3細胞幅で、単列部が太い。
- ツゲ属 Buxus ツゲ科

図版2

- 横 断 面:小型でやや角張った道管が,ほぼ単独で密に散在する散孔材である。
- 放射断面: 道管の穿孔は階段穿孔板からなる多孔穿孔で, 階段の数は10本~15本ぐらいである。放射組織は異性である。

接線断面:放射組織は異性放射組織型で、1~2細胞幅である。

5. 所見

分析の結果, Ⅲ層包含層(縄文時代早期)から出土した炭化材(試料③)はシキミ, XI層 から出土した炭化材(試料①)はツゲ属と同定された。シキミは,関東以西の本州,四国,九 州,沖縄に分布する常緑の小高木で,高さ10m,径30cmに達する。材は,強さ中庸で,旋作, 器具,薪などに用いられる。ツゲ属には,ツゲ,ヒメツゲ,チョウセンヒメツゲ,オキナワツ ゲなどがあり,本州(関東,佐渡ヶ島以西),四国,九州,沖縄に分布する。常緑の低木~小 高木で,通常高さ1~5m,径5~10cmになる。材は強靭,堅硬で耐朽性,保存性に優れ, 器具,機械,楽器,彫刻,印鑑,櫛などに用いられる。

三角山Ⅰ遺跡の炭化材

文献

佐伯浩・原田浩(1985)針葉樹材の細胞.木材の構造,文永堂出版,p.20-48. 佐伯浩・原田浩(1985)広葉樹材の細胞.木材の構造,文永堂出版,p.49-100. 島地謙・伊東隆夫(1988)日本の遺跡出土木製品総覧,雄山閣,296p.

|--|

	試料		樹種 (和名/学名)
3	Ⅲ層包含層(縄文早期)中出土炭化材	シキミ	Illicium religiosum Sieb.et Zucc.
1	XI層出土炭化材	ツゲ属	Buxus

平成13年度 三角山 I 遺跡の竪穴住居状遺構に関する自然科学分析

パリノ・サーヴェイ株式会社

はじめに

三角山 I 遺跡は,種子島中央部の鹿児島県熊毛郡中種子町砂中に所在する。これまでの発掘 調査により,縄文時代草創期の隆帯文土器や磨製石鏃,早期の玦状耳飾りが出土し,基本土層 中には姶良-T n 火山灰(AT)や鬼界アカホヤ火山灰(K-Ah)が確認されている。

今回,縄文時代草創期の竪穴住居跡と考えられる遺構2基が検出された。これらの遺構内からは、炭化物が付着した土器片(隆帯文土器)や炭化種実が出土し、1基の中央部には焼土が認められた。出土した炭化物や炭化種実からは遺構の年代や当時の植物質食糧に関する情報が、 覆土や焼土からは燃料材や住居構築材に関する情報が、それぞれ得られるものと期待された。

そこで、今回の分析調査では、炭化物について放射性炭素年代測定(AMS法)、炭化種実 について種実遺体同定、覆土や焼土について植物珪酸体分析を実施することになった。

1. 試料

放射性炭素年代測定では、土器に付着した炭化物3点を用いる。これら炭化物は、B-8区の V層より出土した土器(番号1493)では外面、竪穴住居状遺構1より出土した土器(番号 123)では外面、竪穴住居状遺構2より出土した土器(番号45)では内面から採取した。

種実遺体同定では,竪穴住居状遺構1・2の覆土から洗い出された種実試料13点および対 照試料として遺構外包含層試料1点を用いる。

植物珪酸体分析では,竪穴住居状遺構1の覆土4点(試料番号1~4)と焼土1点,竪穴住 居状遺構2の覆土5点(試料番号1~5),および対比試料として縄文時代草創期の遺物包含 層であるV層(5層)の2点(試料番号6・8)の合計12点を選択する。

2. 分析方法

- (1) 放射性炭素年代測定(AMS法)
- 試料が微量であるため,測定は株式会社加速器分析研究所の協力を得てAMS法で行った。 (2) 種実遺体同定

試料を双眼実体顕微鏡下で観察し、同定可能な種実遺体等を抽出する。その形態的特徴と 当社所有の現生標本との比較から、種類を同定する。

同定した種実遺体は、乾燥剤とともに種類毎にビンに入れて保存する。

(3) 植物珪酸体分析

植物体の葉や茎に存在する植物珪酸体は, 珪化細胞列などの組織構造を呈している。植物 体が土壌中に取り込まれた後は, ほとんどが土壌化や撹乱などの影響によって分離し単体と なるが, 植物遺体や植物が燃えた後の灰には組織構造が珪化組織片などの形で残されている 場合が多い(例えば, パリノ・サーヴェイ株式会社, 1993)。そのため, 珪化組織片の産状 により, 当時の構築材や燃料材などの種類が明らかになると考えられる。

湿重5g前後の試料について過酸化水素水・塩酸処理,超音波処理(70W,250KHz,1 分間),沈定法,重液分離法(ポリタングステン酸ナトリウム,比重2.5)の順に物理・化学 処理を行い,植物珪酸体を分離・濃集する。検鏡しやすい濃度に希釈し,カバーガラス上に 滴下・乾燥させる。乾燥後、プリュウラックスで封入してプレパラートを作製する。

400倍の光学顕微鏡下で全面を走査し、その間に出現するイネ科葉部(葉身と葉鞘)の葉 部短細胞に由来した植物珪酸体(以下,短細胞珪酸体と呼ぶ)および葉身機動細胞に由来し た植物珪酸体(以下,機動細胞珪酸体と呼ぶ)を、近藤・佐瀬(1986)の分類に基づいて 同定・計数する。

なお、分析の際には覆土や焼土への植物体の含有状態を考える際の参考とするために、分 析試料の乾燥重量、プレパラート作成に用いた分析残渣量、検鏡に用いたプレパラートの数 や検鏡した面積を正確に計量し、堆積物1gあたりの植物珪酸体量を求める。

結果は、組織片の検出個数および植物珪酸体含量の一覧表で示すとともに、各種類の検出 個数や含量を図示する。

3. 結果

(1) 放射性炭素年代測定(AMS法)

結果を表1に示す。補正年代値は、B-8区のV層出土土器の外面に付着した炭化物が約 11,370年前,竪穴住居状遺構1より出土した土器の外面に付着した炭化物が約11,530年前, 竪穴住居状遺構2の土器の内面に付着した炭化物が約11,950年前の値を示す。

なお,表中の同位体比は,基準値からのずれを千分偏差(パーミル:‰)で表している。 δ¹³Cの値は,試料炭素の¹³C/¹²C原子比を質量分析器で測定し,標準にPDBを用いて算出 した値である。今回の試料の補正年代は,この値に基づいて補正をした年代である。

表1 土器付着炭化物の放射性炭素年代測定結果(AMS法)

採取地点	試料 番号	付着部位	試料 の質	補正年代 BP	δ ¹³ C (‰)	測定年代 BP	Code.No.	報告書
B-8区 V層	1493	土器外面	炭化物	$11,370\pm70$	-30.9 ± 1.5	$11,470\pm70$	IAAA-10309	109
竪穴住居状遺構1	123	土器外面	炭化物	$11,530\pm60$	-24.5 ± 1.3	$11,520\pm60$	IAAA-10310	8
竪穴住居状遺構2	45	土器外面	炭化物	11.950 ± 70	-29.1 ± 1.5	12.020 ± 70	IAAA-10311	6

(2) 種実遺体同定

結果を表2に示す。試料中には、炭化し極めて保存状態が悪い炭化材や不明炭化物(木材 組織を持たない炭化物で、部位・種類ともに不明であるもの)、動物遺骸が検出される。ま た、未炭化で保存状態が良好である種実遺体も検出される。この中には、木本1種類(ヒサ カキ)、草本4種類(イネ科、カヤツリグサ科、ナデシコ科、カタバミ属、キク科)の種実 が認められる。

以下に、同定された種実遺体の形態的特徴などを記す。

<木本>

・ヒサカキ属 (Eurya) ツバキ科

種子が検出された。黒褐色,不規則な多角形でやや偏平,径1mm程度。一端に臍があり, 臍の方に薄い。臍を中心に楕円形や円形凹点による網目模様が指紋状に広がる。 <草本>

イネ科 (Gramineae)

未炭化の穎が検出された。淡褐色ないし茶褐色,半偏球形で大きさ2.5mm程度。表面には 横方向に長い細胞が密に配列する。柔らかくて弾力があり,薄い。

・カヤツリグサ科 (Cyperaceae)

果実が検出された。黒褐色、狭倒卵形状の明瞭な三稜形。先端部は尖り、基部は切形。長

さ1.2mm,幅0.4mm程度。果皮は硬く,表面にはごく微小な疣状突起が密布する。カヤツリ グサ属 (Cyperus)の類と考えられる。

・ナデシコ科 (Caryophyllaceae)

種子破片が検出された。茶褐色,腎臓状円形でやや偏平。径1mm程度。完形ならば一端が 凹み,臍がある。種皮は薄く,柔らかい。種皮表面には,臍を取り囲むように瘤状突起が同 心円状に並ぶ。

・カタバミ属 (Oxalis) カタバミ科

種子が検出された。黒灰色,卵形で偏平。長さ1.6mm,幅1.2mm程度。先端は尖る。種皮 は薄く柔らかい。表面には4~7列の肋骨状横隆条が並び,わらじ状にみえる。

・キク科 (Compositae)

果実が検出された。赤褐色, 倒皮針状円柱形。長さ2~2.5mm, 幅0.3mm程度。両端は切形。 果皮には約10本の隆条と溝が交互に配列し, 隆条上には微毛が列生する。

この他に,炭化材や不明炭化物(木材組織を持たない炭化物で,部位・種類ともに不明で あるもの),動物遺骸(昆虫,ミミズなど環形類の卵,菌核などを含む)も認められる。

						種	Î	業	湏	į	名		
試料 番号	遺構・地点名	記載		不明炭化物	炭化材	ヒサカキ属*	イネ科*	カヤツリグサ科*	ナデシコ科*	カタバミ属*	キク科*	不明植物片*	動物遺骸*
4	竪穴住居状遺構1	南東,中層下	10/41	-	破	—	-	_	-	-	1	破	—
5	竪穴住居状遺構1	南東,中層下	10/42	破	破	—	—	—	—	—	1	破	$\left -\right $
6	竪穴住居状遺構1	南東,上層	10/43	破	破	—	4	—	1	1	7	破	-
7	竪穴住居状遺構2	北東,最下層	9/19	-	破	—	—	—	—	—	—	—	破
8	竪穴住居状遺構2	北東,最下層①	10/2	-	破	—	—	—	—	—	—	—	破
9	竪穴住居状遺構2	北東,最下層②,20~30cm		-	破	—	—	—	—	—	—	破	-
10	竪穴住居状遺構2	北東,最下層③	10/2	-	破	—	—	—	—	—	—	—	-
11	竪穴住居状遺構2	南東,最下層	10/2	-	破	—	—	—	—	—	—	—	破
12	竪穴住居状遺構2	南東,最下層	10/4	破	破	—	—	—	—	—	1	—	-
13	竪穴住居状遺構2	南東,最下層④	10/4	-	破	—	—	—	—	—	1	破	-
14	竪穴住居状遺構2	北西,10~20cm	10/212	-	破	—	1	—	—	—	1	破	-
15	竪穴住居状遺構2	北西,10~20cm	10/2	-	破	—	—	—	—	—	—	破	破
16	竪穴住居状遺構2	北西,20cm	10/3①	-	破	1	_		—	—	-	破	-
	遺構外	包含層(V層)			破	—	_	1	_	_	_	破	破

表2 竪穴住居状遺構などから出土した種実の同定結果

注) *:遺構廃絶後に混入した後代のものの可能性がある。

注)破:細片のため個体数推定が困難であるもの。

注)動物遺骸:昆虫,環形類(ミミズなど)の卵,菌核など。

(3) 植物珪酸体分析

結果を表3,図1に示す。

各試料からは植物珪酸体が検出されるものの,保存状態が悪く,表面に多数の小孔(溶食 痕)が認められる。全試料で多産したタケ亜科には,ネザサ節などのタケ・ササ類が含まれ, 特徴的な表面形態により細分が可能である。しかし,今回検出された植物珪酸体は保存状態 が悪く,細分するには至らないため,ここではタケ亜科として一括した。

以下に、遺構・地点毎の産状を述べる。

	表 3	竪穴住居状遺構試料な	どの植物珪酸体分析結果
--	-----	------------	-------------

(個/g)

種類	基本土	:層V層		竪ን	气住居状遣	〕構 1	
試料番号	6	8	1	2	3	4	焼土
イネ科葉部短細胞珪酸体							
タケ亜科	8,312	10,843	9,637	16,445	41,625	36,487	32,994
ヨシ属	101	0	57	0	119	98	74
ウシクサ族ススキ属	710	167	229	461	1,189	442	1,766
イチゴツナギ亜科	0	167	0	0	0	49	221
不明	2,027	1,168	1,033	1,537	2,735	1,621	4,340
イネ科葉身機動細胞珪酸体							
タケ亜科	6,994	7,841	6,310	13,268	26,759	26,076	25,159
ヨシ属	0	0	0	0	59	49	74
ウシクサ族	1,014	0	57	205	297	491	1,177
不明	2,230	1,168	287	615	654	295	1,361
合 計							
イネ科葉部短細胞珪酸体	11,151	12,345	10,956	18,443	45,669	38,697	39,394
イネ科葉身機動細胞珪酸体	10,238	9,008	6,654	14,088	27,770	26,911	27,771
総計	21,389	21,353	17,610	32,531	73,439	65,608	67,165
樹木起源							
第Ⅲグループ	101	167	0	0	0	0	74
第Ⅳグループ	303	167	0	51	0	0	37

(個/g)

表3 竪穴住居状遺構試料などの植物珪酸体分析結果

竪穴住居状遺構2 種 類 試料番号 1 2 3 4 5 イネ科葉部短細胞珪酸体 タケ亜科 31,871 41,764 46,332 35,374 41,027 296 ヨシ属 0 44 0 147 ウシクサ族ススキ属 94 445 1.678 1.485 1.276 イチゴツナギ亜科 98 235 133 148 90 2,745 不明 987 2,268 4,293 3,828 イネ科葉身機動細胞珪酸体 タケ亜科 16,029 28,510 19,984 19,712 18,600 ヨシ属 0 0 0 0 0 ウシクサ族 141 133 592 585 785 不明 94 311 987 945 932 合 計 イネ科葉部短細胞珪酸体 33,187 44,655 52,747 39,694 46,377 イネ科葉身機動細胞珪酸体 16,264 28,955 21,563 21,242 20,317 総計 49,451 73,610 74,310 60,936 66,694 樹木起源 第Ⅲグループ 0 0 0 0 0 第IVグループ 470 0 90 98

・基本土層

V層(5層)より採取された試料番号6・8では,植物珪酸体含量が約2万個/gである。 その大部分がタケ亜科の短細胞珪酸体や機動細胞珪酸体である。この他に,ヨシ属,ウシク サ族,イチゴツナギ亜科などもわずかに検出される。

また、樹木起源珪酸体第Ⅲグループや第Ⅳグループ(近藤・ピアスン,1981)もわずか に認められる。第Ⅲグループは「Y」あるいは「く」の字状の形態、第Ⅳグループは網目模 様の付いた紡錘形を呈する。いずれも、大部分の樹木葉部で観察される。

·竪穴住居状遺構1

覆土4点および焼土試料からは、珪化組織片は全く認められない。

検出される植物珪酸体の種類は,基本土層試料とほぼ同様である。また,タケ亜科が多産 する点も共通し、ヨシ属、ウシクサ族、イチゴツナギ亜科、樹木起源珪酸体もわずか、ある いは稀に認められる。

しかし,植物珪酸体含量は基本土層試料よりも概して多く,特に中央部の焼土試料や付近の試料番号3,北側の試料番号4で多い。この中では,特にタケ亜科の産出が目立ち,基本 土層試料では見られなかったヨシ属機動細胞珪酸体も認められる。

·竪穴住居状遺構2

覆土試料5点では,竪穴住居状遺構1試料と同様に珪化組織片は全く認められない。

植物珪酸体の産状は,竪穴住居状遺構1試料と同様にタケ亜科が多産する。また,植物珪酸体含量も基本土層試料よりも多く,特に中央部の試料で多い。

4. 考察

(1) 遺構の年代

今回得られた年代値は、いずれも11,000年以前の値を示した。鹿児島県・宮崎県では約 11,000年前に噴出したとされる桜島P14(薩摩火山灰)の下位から隆帯文土器が検出され ている(乗畑・東, 1997)。本遺跡でも場所により、N層中に薩摩火山灰に対比される黄褐 色火山灰のブロックが認められる。炭化物が土器の使用時に付着したとすれば、今回調査し た隆帯文土器3点は約11,370年前~約11,950年前以前に製作されたと考えられる。今回の 分析調査により、隆帯文土器の直接的な年代資料を得ることができ、今後の該期土器の研究 を進める上で貴重な成果と言える。また、考古学的所見から縄文時代草創期とされる竪穴住 居状遺構1および竪穴住居状遺構2について、具体的な年代観が得られた点で意義が大きい。

(2) 出土種実の種類

検出された種実遺体は、種類数・個体数ともに少ない。そのため、縄文時代草創期の古植 生や植物質食糧などについて、十分に検討するには至らない。また、炭化せず保存状態が極 めて良好な状態で検出された種実遺体は、土壌中の生物活動や物理・化学的な風化作用にあ まり曝されてなかったことがうかがえる。低湿地遺跡など嫌気的条件下で埋積していた場合 を除けば、炭化していない限り種実はほとんど残らないことが多い。また、このような標本 が含まれる試料の解析に際しては、炭化種実以外を除外して考えた方が妥当だという意見も ある(吉崎、1992)。そのため、今回検出された保存状態が良好な非炭化種実遺体は、本遺 跡周辺に生育していたと思われるが、遺構が埋没後に混入した後代のものであると考えられ る。

(3) 構築材・燃料材について

竪穴住居状遺構1の焼土からは珪化組織片は全く認められず、燃料材の痕跡が残留してい るとは考えにくい。また、竪穴住居状遺構1および竪穴住居状遺構2の覆土からも珪化組織 片が全く認められず、敷物や上屋材などの構築材の痕跡は認められない。

しかし、竪穴住居状遺構1の中央部の焼土や覆土(中央部の試料番号3や北側の試料番号 4)、あるいは竪穴住居状遺構2の中央部では植物珪酸体含量が基本土層よりも極めて多い。 この中では、特にタケ亜科の産出が目立ち、湿潤な場所に生育するヨシ属の植物珪酸体も認 められた。これらの場所で基本土層よりもタケ亜科の植物体が集積していることや、ヨシ属 の植物体が混入していることが示唆される。ただし、種実遺体の産状からみて、後代の攪乱 や上位から落ち込んだ植物珪酸体である可能性もあるため、今回の産状のみから遺構内に敷 物や構築材の一部が存在したことを直ちに断ずることは難しい。この点については、今後、 住居の埋積状態を把握するために覆土の微細構造を観察することや、湿潤な場所に生育する 珪藻化石の分布などを調べることなどで検証できる可能性もある。

なお、V層や遺構覆土から検出された植物珪酸体の種類から、周辺にはタケ亜科をはじめ としたイネ科植物や樹木が生育していたことがうかがえる。本遺跡周辺での当該期の古植生 についても、さらに資料を蓄積して検討していきたい。

引用文献

近藤錬三・佐瀬 隆(1986)植物珪酸体分析,その特性と応用.第四紀研究,25,p.31-64. パリノ・サーヴェイ株式会社(1993)自然科学分析からみた人々の生活(1). 慶應義塾藤沢 |校地埋蔵文化財調査室編「湘南藤沢キャンパス内遺跡 第1巻 総論」、p.347-370、慶應義 塾.

桒畑光博・東 和幸(1997)南九州の火山灰と考古遺物. 月刊地球, 19, p.208-214. 吉崎昌一(1992)古代雑穀の検出.月刊考古学ジャーナル,355, p.2-14.

図版1 種実遺体・植物珪酸体

1 mm	1 mm	
(1)	(2)	
	50 µ m	50 <i>µ</i> m
	(3-7)	(8-13)

13

- 1. 不明炭化物(竪穴住居状遺構1;6)
- 2. 不明炭化物(竪穴住居状遺構2;12)
- 3. タケ亜科短細胞珪酸体(基本土層 V層;6)
- 4. タケ亜科短細胞珪酸体(竪穴住居状遺構2;3)
- 5. ヨシ属短細胞珪酸体(竪穴住居状遺構1;焼土)
- 6.ススキ属短細胞珪酸体(竪穴住居状遺構1;焼土)
- 7. イチゴツナギ亜科短細胞珪酸体(竪穴住居状遺構1;焼土)
- 8. タケ亜科機動細胞珪酸体(基本土層 V層;6)
- 9. タケ亜科機動細胞珪酸体(竪穴住居状遺構2;3)
- 10. ヨシ属機動細胞珪酸体(竪穴住居状遺構1;焼土)
- 11. ウシクサ属機動細胞珪酸体(竪穴住居状遺構1;焼土)
- 12. 樹木起源珪酸体第Ⅲグループ(基本土層 V層;6)
- 13. 樹木起源珪酸体第Ⅳグループ(基本土層 V層;6)

平成14年度 鹿児島県,三角山 I 遺跡における自然科学分析

株式会社 古環境研究所

I. 三角山 I 遺跡における放射性炭素年代測定

1. 試料と方法

試料名	地点・層準	種類	前処理·調整	測定法
No. 1	B-8区,1号住居内	炭化物	酸-アルカリ-酸洗浄,石墨調整	AMS法
No. 2	B-8区,1号住床面	土器9付着炭化物	酸洗浄,石墨調整	AMS法
No. 3	H-11区, II 層4号集石内	炭化物	酸-アルカリ-酸洗浄,石墨調整	AMS法
No.4	F-12区, II 層検出	炭化材	酸-アルカリ-酸洗浄, 石墨調整	AMS法

※AMS法:加速器質量分析法

2. 測定結果

試料名	¹⁴ C年代 (年BP)	δ ¹³ C (‰)	補正 ¹⁴ C年代 (年BP)	暦年代 (西暦)	測定No. Beta-
No. 1	11670±50	-26.6	11640±50	交点:cal BC11830,11760,11560 1σ:cal BC11880~11500 2σ:cal BC11890~11480	175701
No. 2	11900±70	-22.3	11940±70	交点:cal BC12090,11980,11900 1 σ:cal BC12150~11860,11770~11720 2 σ:cal BC13100~12900,12310~12270 :cal BC12180~11840,11810~11690	175702
No. 3	4710±40	-28.2	4660±40	交点:cal BC3500,3460,3,380 1σ:cal BC3510~3420,3390~3370 2σ:cal BC3620~3600,3520~3360	175703
No. 4	4110±40	-29.6	4030±40	交点:cal BC2570,2520,2500 1 σ:cal BC2580~2480 2 σ:cal BC2630~2470	175704

1)¹⁴C年代測定値

試料の¹⁴C/¹²C比から、単純に現在(1950年AD)から何年前かを計算した値。¹⁴Cの半 減期は、国際的慣例によりLibbyの5,568年を用いた。

2) ^{デルタ} δ¹³C 測定値

試料の測定¹⁴C/¹²C比を補正するための炭素安定同位体比(¹³C/¹²C)。この値は標準物質(PDB)の同位体比からの千分偏差(‰)で表す。

3) 補正¹⁴C年代值

δ¹³C測定値から試料の炭素の同位体分別を知り,¹⁴C/¹²Cの測定値に補正値を加えた上 で算出した年代。

4) 暦年代

過去の宇宙線強度の変動による大気中¹⁴C濃度の変動を較正することにより算出した年代 (西暦)。較正には、年代既知の樹木年輪の¹⁴Cの詳細な測定値、およびサンゴのU-Th年代と ¹⁴C年代の比較により作成された較正曲線を使用した。最新のデータベースでは、約 19,000年BPまでの換算が可能となっている。ただし、10,000年BP以前のデータはまだ不 完全であり、今後も改善される可能性がある。

暦年代の交点とは、補正¹⁴C年代値と暦年代較正曲線との交点の暦年代値を意味する。1 ^{3/7}
σ (68%確率) と2σ (95%確率) は、補正¹⁴C年代値の偏差の幅を較正曲線に投影した 暦年代の幅を示す。したがって、複数の交点が表記される場合や、複数の1σ・2σ値が表 記される場合もある。

文献

Stuiver, M., et. al., (1998), INTCAL98 Radiocarbon Age Calibration, Radiocarbon, 40, p.1041-1083.

中村俊夫(1999)放射性炭素法.考古学のための年代測定学入門.古今書院, p.1-36.

II. 三角山 I 遺跡における種実同定

1. はじめに

植物の種子や果実は比較的強靱なものが多く、堆積物や遺構内に残存している場合がある。 堆積物などから種実を検出し、その種類や構成を調べることで、過去の植生や栽培植物を明ら かにすることができる。

2. 試料

試料は、住居跡内の土坑 I と土坑 II から採取された計8点である。試料の詳細を分析結果表 に示す。

3. 方法

試料を肉眼及び双眼実体顕微鏡で観察し,形態的特徴および現生標本との対比によって同定 を行った。結果は同定レベルによって科,属,種の階級で示した。

4. 結果

(1) 分類群

分析の結果,草本2が同定された。学名,和名および粒数を表1に示し,主要な分類群を

写真に示す。以下に同定根拠となる形態的特徴を記す。

[草本]

- イネ科 Gramineae 果実 灰褐色~茶褐色で楕円形を呈す。 果実は黄褐色で円形を呈す。胚の部分はとれていてくぼんでいる。 炭化した果実で,楕円形を呈す。
- キンポウゲ属 Ranunculus 果実 キンポウゲ科

淡褐色で楕円形を呈す。表面はやや粗く、コルク質である。

- (2) 種実群集の特徴
 - 1) 土坑 I
 - ・北西1/4壁

種実は認められなかった。

・北西1/4壁最下層

イネ科果実(穎)1が同定された。

・北東1/4最下層

キンポウゲ属果実3が同定された。

・南西1/4最下層

イネ科果実(穎)1,キンポウゲ属果実1が同定された。

・焼土(床面焼土)

種実は認められなかった。

- 2) 土坑 II
- ・北東1/4

イネ科果実(穎)5が同定された。

南東1/4

種実は認められなかった。

南東1/4壁

イネ科果実(穎)1,キンポウゲ属果実1が同定された。

5. 考察

分析の結果,住居跡内の土坑 I と土坑 II の種実では,イネ科およびキンポウゲ属が同定された。当時の調査区周辺にはこれらの野・雑草が分布しており,そこから何らかの形で土坑内に 種実が混入したものと推定される。

文献

笠原安夫(1985)日本雜草図説,養賢堂,494p.

南木睦彦(1993)葉·果実·種子.日本第四紀学会編,第四紀試料分析法,東京大学出版会, p.276-283.

三角山Ⅰ遺跡の種実

1 キンポウゲ属果実

2 キンポウゲ属果実

3 キンポウゲ属果実 ------1.0mm

4 キンポウゲ属果実 ------1.0mm

5 イネ科果実

6 イネ科果実 ------1.0mm

7 イネ科果実

8 イネ科果実

_____1.0mm

表1 三角山 I 遺跡における種実同定結果

- 造林	善 .	分	類	群	立合	個粉	
退州	两一3个4X回771	学名	和名		네더	旧奴	1/冊 与
	北西1/4壁						同定不能炭化物片1.29g
	北西1/4最下層	Gramineae	イネ種	¥	果実(穎)	1	同定不能炭化物片1.63g
→ † I	北東1/4最下層	Ranunculus	キンオ	ドウゲ属	果実	3	
1.416 1	南西1/4最下層	Gramineae	イネ種	¥	果実(穎)	1	同定不能炭化物片2.12g
		Ranunculus	キンオ	ドウゲ属	果実	1	
	焼土(床面焼土)						同定不能炭化物片0.23g
	北東1/4	Gramineae	イネ科	¥	果実(穎)	5	同定不能炭化物片1.20g
土坑II	南東1/4						同定不能炭化物片0.86g
	南東1/4壁	Gramineae	イネ種	4	果実(穎)	2	同定不能炭化物片1.32g

Ⅲ. 三角山 I 遺跡における植物珪酸体分析

1. はじめに

植物珪酸体は,植物の細胞内に珪酸(SiO₂)が蓄積したものであり,植物が枯れたあとも ガラス質の微化石(プラント・オパール)となって土壌中に半永久的に残っている。植物珪酸 体分析は,この微化石を遺跡土壌などから検出して同定・定量する方法であり,イネをはじめ とするイネ科栽培植物の同定および古植生・古環境の推定などに応用されている(杉山, 2000)。

2. 試料

分析試料は、1号住居跡、2号住居跡、基本土層断面の3地点から採取された計13点である。試料採取箇所を分析結果の柱状図に示す。

3. 分析法

植物珪酸体の抽出と定量は、ガラスビーズ法(藤原、1976)を用いて、次の手順で行った。

- 1) 試料を105℃で24時間乾燥(絶乾)
- 2) 試料約1gに対し直径約40µmのガラスビーズを約0.02g添加(電子分析天秤により 0.1mgの精度で秤量)
- 3) 電気炉灰化法(550℃・6時間)による脱有機物処理
- 4) 超音波水中照射(300W・42KHz・10分間)による分散
- 5) 沈底法による20µm以下の微粒子除去
- 6) 封入剤(オイキット)中に分散してプレパラート作成
- 7) 検鏡・計数

同定は、400倍の偏光顕微鏡下で、おもにイネ科植物の機動細胞に由来する植物珪酸体を対象として行った。計数は、ガラスビーズ個数が400以上になるまで行った。これはほぼプレパラート1枚分の精査に相当する。試料1gあたりのガラスビーズ個数に、計数された植物珪酸体とガラスビーズ個数の比率をかけて、試料1g中の植物珪酸体個数を求めた。

また、おもな分類群についてはこの値に試料の仮比重と各植物の換算係数(機動細胞珪酸体

1個あたりの植物体乾重,単位:10-5g)をかけて,単位面積で層厚1cmあたりの植物体生 産量を算出した。ススキ属(ススキ)の換算係数は1.24,メダケ節は1.16,ネザサ節は0.48, クマザサ属(チシマザサ節・チマキザサ節)は0.75,ミヤコザサ節は0.30である。タケ亜科 については,植物体生産量の推定値から各分類群の比率を求めた。

4. 分析結果

(1) 分類群

分析試料から検出された植物珪酸体の分類群は以下のとおりである。これらの分類群について定量を行い,その結果を表1および図1,図2に示した。主要な分類群について顕微鏡 写真を示す。

〔イネ科〕

キビ族型,ススキ属型(おもにススキ属),ウシクサ族A(チガヤ属など),ウシクサ族 B(大型)

〔イネ科ータケ亜科〕

メダケ節型(メダケ属メダケ節・リュウキュウチク節,ヤダケ属),ネザサ節型(おも にメダケ属ネザサ節),クマザサ属型(チシマザサ節やチマキザサ節など),ミヤコザサ節 型(おもにクマザサ属ミヤコザサ節),未分類等

[イネ科-その他]

表皮毛起源、棒状珪酸体(おもに結合組織細胞由来)、未分類等

- 〔シダ類〕
- 〔樹木〕

クスノキ科,マンサク科(イスノキ属),その他

- (2) 植物珪酸体の検出状況
 - 1) 基本土層断面(図1)

Sz-S下位のV層からK-Ah下位のIII層までの層準について分析を行った。その結果, V 層(試料7,8)では、ミヤコザサ節型が比較的多く検出され、キビ族型、ウシクサ族A、 クマザサ属型なども検出された。また、同層上部(試料7)ではクスノキ科などの樹木 (照葉樹)も検出された。Sz-S層準のIV層(試料6)では、クスノキ科やマンサク科(イ スノキ属)などの樹木(照葉樹)が増加しており、キビ族型は見られなくなっている。K-Ah下位のIII層(試料4,5)では、樹木(照葉樹)が優勢となっており、イネ科はほと んど見られなくなっている。

2) 1号住居跡・2号住居跡(図2)

1号住居跡では、遺構埋土および床面について分析を行った。その結果、床面(試料4) では、ミヤコザサ節型が比較的多く検出され、キビ族型、ウシクサ族A、メダケ節型、ネ ザサ節型、クマザサ属型なども検出された。埋土(試料1~3)では、クマザサ属型が増 加しており、部分的にススキ属型やマンサク科(イスノキ属)なども検出された。2号住 居跡でも、おおむね同様の結果である。

5. 植物珪酸体分析から推定される植生と環境

(1) 基本土層断面

桜島薩摩テフラ(Sz-S,約1.1-1.2万年前)より下位のV層下部の堆積当時は、クマザサ

属(おもにミヤコザサ節)などのササ類を主体としてキビ族やウシクサ族なども生育するイ ネ科植生であったと推定される。

タケ亜科のうち、メダケ属は温暖、クマザサ属は寒冷の指標とされており、メダケ率(両 者の推定生産量の比率)の変遷は、地球規模の氷期-間氷期サイクルの変動と一致すること が知られている(杉山、2001)。また、クマザサ属のうちミヤコザサ節は太平洋側の積雪の 少ない比較的乾燥したところに分布している(室井、1960、鈴木、1978)。これらのこと から、当時は積雪の少ない比較的寒冷で乾燥した環境であったと推定される。クマザサ属は 常緑であることから、大半の植物が落葉または枯死する秋から冬にかけてはシカなどの草食 動物の重要な食物となっている(高槻、1992)。遺跡周辺にこれらのササ類が豊富に存在し たことは、当時の動物相を考える上でも重要である。

その後、V層上部からSz-S層準のIV層にかけては、クマザサ属などのササ類が減少し、 クスノキ科やイスノキ属などの照葉樹が出現・増加したと推定される。このような植生変化 は、晩氷期における急激な気候温暖化に対応していると考えられる。

鬼界アカホヤ火山灰(K-Ah,約6,300年前)直下のⅢ層の時期には、クスノキ科やイス ノキ属などの照葉樹林がさらに拡大したと考えられる。K-Ah直下ではイネ科植物がほとん ど見られないことから、当時の遺跡周辺は照葉樹林に覆われるような状況であったと推定さ れる。

(2) 1号住居跡・2号住居跡

遺構埋土の堆積当時は、クマザサ属(ミヤコザサ節を含む)などのササ類を主体として、 キビ族、ウシクサ族、メダケ属(メダケ節やネザサ節)なども見られるイネ科植生であった と考えられ、埋土上部の時期には部分的にイスノキ属などの照葉樹も見られたと推定される。 このような植生は、基本土層断面のV層の植生と類似しており、これらの住居跡が桜島薩 摩テフラ(Sz-S)よりも下位に位置していることを指示している。今回の分析では、住居 の屋根材や敷物、燃料などとして利用された植物の検出が期待されたが、これを示唆するよ うな結果は得られなかった。

文献

杉山真二(1987) タケ亜科植物の機動細胞珪酸体. 富士竹類植物園報告, 第31号, p.70-83.

- 杉山真二(1999)植物珪酸体分析からみた九州南部の照葉樹林発達史.第四紀研究. 38(2), p.109-123.
- 杉山真二 (2000) 植物珪酸体 (プラント・オパール).考古学と植物学. 同成社, p.189-213.
- 鈴木貞雄(1978) タケ科植物の概説.日本タケ科植物総目録.学習研究社.25-45.
- 高槻成紀(1992)北に生きるシカたちーシカ、ササそして雪をめぐる生態学ー、どうぶつ社、
- 藤原宏志(1976) プラント・オパール分析法の基礎的研究(1)-数種イネ科栽培植物の珪酸体 標本と定量分析法-.考古学と自然科学,9,p.15-29.
- 町田 洋・新井房夫(1992)火山灰アトラス.東京大学出版会,276p.
- 室井綽(1960)竹笹の生態を中心とした分布. 富士竹類植物園報告, 5, p.103-121.

三角山 I 遺跡における植物珪酸体分析結果
鹿児島県,
表 1

検出密度												<u></u> (東	:位:×10	0個/g)
	地点・試料		1号住	居跡			2号住	居跡			- TAI-	甚本土層		
分類群	小台	-	2	က	4	-	0	က	4	4	2	9	7	∞
イネ科	Gramineae(Grasses)													
キビ族型	Paniceae type	7	14	7	00	7		7					14	7
ススキ属型	Miscanthus Type		14				7				7	7	7	
ウシクサ族A	Andoropogoneae A type	58	29	29	15	21	54	28	30		7	29	28	20
ウシクサ族B	Andoropogoneae B type						7							
タケ亜科	Bambusoideae(Bamboo)													
メダケ節型	Pleioblastus sect.Medake		14	7	15	7	7		Ø			7		7
ネザサ節型	Pleioblastus sect.Nezasa	14	7	7	∞		27	14	23					7
クマザサ属型	Sasa (except Miyakozasa)	65	57	100	15	28	54	50	ø			29	35	39
ミヤコザサ節型	Sasa sect Miyakozasa	87	101	165	98	91	94	135	113		14	107	105	215
未分類等	Others	43	65	93	30	49	101	43	∞	7	14	57	21	33
その他のイネ科	Others													
表皮毛起源	Husk hair origin	7	36		∞	7	7	7					7	
棒状珪酸体	Rod-shaped	94	158	172	15	84	201	64	∞		7	86	56	85
未分類等	Others	297	352	401	135	342	363	405	120	52	171	321	237	384
シダ類	Fem							7					7	
樹木起源	Arboreal													
クスノキ科	Laurace ae									60	85	43	14	
マンサク科(イスノキ,	属) Distylium	7								37	100	50		
その他	Others									45	43	14	7	
植物珪酸体総数	Total	681	848	981	345	636	920	761	315	202	449	748	537	794
おもな分類群の推定生	中国											Ţ	单位:kg/	$\mathfrak{n}^{\scriptscriptstyle 2}$ \cdot cm)
ススキ属型	Miscanthus type		0.18				0.08				0.09	0.09	0.09	
メダケ節型	Pleioblastus sect.Medake		0.17	0.08	0.17	0.08	0.08		0.09			0.08		0.08
ネザサ節型	Pleioblastus sect.Nezasa	0.07	0.03	0.03	0.04		0.13	0.07	0.11					0.03
クマザサ属型	Sasa(except Miyakozasa)	0.49	0.43	0.75	0.11	0.21	0.40	0.37	0.06			0.21	0.26	0.29
ミヤコザサ節型	Sasa sect.Miyakozasa	0.26	0.30	0.49	0.29	0.27	0.28	0.41	0.34		0.04	0.32	0.31	0.64
タケ亜科の比率														(%)
メダケ節型	Pleioblastus sect.Medake		18	9	28	14	6		15			13		7
ネザサ節型	Pleioblastus sect.Nezasa	∞	4	က	9		14	∞	18					က
クマザサ属型	Sasa(except Miyakozasa)	60	46	55	18	37	45	44	10			35	45	28
ミヤコザサ節型	Sasa sect.Miyakozasa	32	32	36	48	48	32	48	57		100	52	55	62

図1 三角山1,基本土層断面における植物珪酸体分析結果

植物珪酸体(プラント・オパール)の顕微鏡写真

キビ族型 土層断面 7

キビ族型 土層断面 7

ススキ属型 2号住居跡 2

ウシクサ族A 2号住居跡 3

ウシクサ族 B 2 号住居跡 2

ネザサ節型 2号住居跡 4

クマザサ属型 2 号住居跡 1

ミヤコザサ節型 1 号住居跡 1

棒状珪酸体 1号住居跡 1

シダ類 2号住居跡 3

クスノキ科 土層断面 4

マンサク科(イスノキ属) 土層断面 4

平成15年度 三角山 Ι 遺跡の自然科学分析

パリノ・サーヴェイ株式会社

はじめに

鹿児島県熊毛郡中種子町に所在する三角山 I 遺跡は、標高約245mの台地上に立地する。本 遺跡では、発掘調査により縄文時代草創期・早期・前期の土器や石器が確認されている。今回 の分析調査では、出土土器に付着した炭化物の加速器による放射性炭素年代測定 (AMS法) を実施し、年代資料を得る。

1. 試料

試料は、出土した縄文土器に付着した炭化物5点(No.3737・4363・5765・15599・ 19520) である。試料の詳細は、結果と共に表1に示す。

2. 分析方法

測定は株式会社加速器研究所の協力を得て、AMS法により行った。なお、放射性炭素の半 減期はLIBBYの半減期5,568年を使用する。また、測定年代は1950年を基点とした年代(BP) であり、誤差は標準偏差(One Sigma)に相当する年代である。なお、暦年較正は、 RADIOCARBON CALIBRATION PROGRAM CALIB REV4.4 (Copyright 1986-2002 M Stuiver and PJ Reimer)を用い、いずれの試料も北半球の大気圏における暦年校正曲線を用 いる条件を与えて計算させている。

3.結果

結果を表1・2に示す。試料の測定年代(補正年代)は、No.3737が約11500年前, No. 4363・5765が約12100年前、No.15599が約11700年前、No.19520が約11100年前の値を示 す。これは、キーリ・武藤(1982)によれば、九州地方の縄文時代草創期に相当する値である。

引用文献

キーリC.T.・武藤康弘、1982、縄文時代の年代、縄文文化の研究1縄文人とその環境、雄山 閣. 246-275.

表	1	_	放射性炭素年代測定結果	
25				

番号	採取部位	試料の質	補正年代 BP	δ13C (‰)	測定年代 BP	Code.No.	報告書
No.3737	口縁外面	炭化物	11470±70	-25.34 ± 0.88	11480 ± 70	IAAA-31693	28
No.4363	内面	炭化物	12050 ± 70	-21.62 ± 1.03	11990 ± 70	IAAA-31694	67
No.5765	口縁~胴部内面	炭化物	12090 ± 70	-21.82 ± 0.66	12040 ± 70	IAAA-31695	43
No.15599	内面底部付近	炭化物	11660 ± 70	-22.69 ± 1.11	11630 ± 60	IAAA-31696	138
No.19520	外面	炭化物	11050 ± 70	-27.49 ± 0.94	11090 ± 60	IAAA-31697	141

年代値の算出には、Libbyの半減期5568年を使用。
 BP年代値は、1950年を基点として何年前であるかを示す。
 付記した誤差は、測定誤差σ(測定値の68%が入る範囲)を年代値に換算した値。

表2. 暦年較正結果

番号	補正年代(BP)					月	雪年較ī	E年代(cal)					相対比	Code No.
No.3737	11472 ± 67	cal	BC	11,825	-	cal	BC	11,803	cal	BP	13,775	-	13,753	0.053	IAAA-31693
		cal	BC	11,549	-	cal	BC	11,353	cal	BP	13,499	-	13,303	0.721	
		cal	BC	11,310	-	cal	BC	11,237	cal	ΒP	13,260	-	13,187	0.226	
No.4363	12049±72	cal	BC	12,962	-	cal	BC	12,942	cal	BP	14,912	-	14,892	0.014	IAAA-31694
		cal	BC	12,361	-	cal	BC	11,872	cal	BP	14,311	-	13,822	0.986	
No.5765	12094±67	cal	BC	13,004	-	cal	BC	12,875	cal	ΒP	14,954	-	14,825	0.103	IAAA-31695
		cal	BC	12,373	-	cal	BC	12,069	cal	BP	14,323	-	14,019	0.658	
		cal	BC	12,018	-	cal	BC	11,882	cal	ΒP	13,968	-	13,832	0.239	
No.15599	11664 ± 66	cal	BC	11,868	-	cal	BC	11,816	cal	BP	13,818	-	13,766	0.147	IAAA-31696
		cal	BC	11,724	-	cal	BC	11,524	cal	ΒP	13,674	-	13,474	0.853	
No.19520	11052 ± 64	cal	BC	11,198	-	cal	BC	11,026	cal	ΒP	13,148	-	12,976	1.000	IAAA-31697
計管には DAI	DIOCARRON CAL	IDDAT	FION D	DOCDAM (`AT H	D DEV	A A (C	opunight 10	26 20	02 M 9	Stuivor and	DID	oimon) tal	市田	

計算には、RADIOCARBON CALIBRATION PROGRAM CALIB REV4.4(Cc 計算には表いるしたみめる前の値を使用している。 付記した誤差は、測定誤差σ(測定値の68%が入る範囲)を年代値に換算した値。

平成16年度 三角山 I 遺跡より出土した土器胎土の植物珪酸体分析

パリノ・サーヴェイ株式会社

はじめに

三角山 I 遺跡は,標高約245mの台地上に立地する。これまでの調査により,縄文時代草創期の土器や石器が多量に出土している。

今回は,縄文時代草創期とされる土器の胎土中に含まれる植物珪酸体の有無を確認し,混和 材や栽培植物に関する情報を得る。

1. 試料

試料は、土器胎土5点である。詳細は、分析結果(表1)に併記する。

いずれも縄文時代草創期とされ、土器の胴部の一部と見られる。なお、試料番号1(F-4V 2285)と5(B-11V12)は搬入された可能性が指摘されている。

2. 分析方法

土器胎土試料を超音波洗浄し,土器表面に付着したり,表面のクラック内や微少な穴内に埋 積した土壌および植物珪酸体を除去する。試料をアルミナ製乳鉢で粉砕して,過酸化水素水-塩酸処理,沈定法,超音波処理(70W,250KHz,1分間),重液分離法(ポリタングステン 酸ナトリウム,比重2.5)の順に物理化学処理を行い,植物珪酸体を濃集し,分離する。検鏡 しやすい濃度に希釈し,カバーガラス上に滴下・乾燥させる。乾燥後,プリュウラックスで封 入してプレパラートを作製する。

400倍の光学顕微鏡下で全面を走査し、その間に出現するイネ科葉部(葉身と葉鞘)の葉部 短細胞に由来した植物珪酸体(以下、短細胞珪酸体と呼ぶ)および葉身機動細胞に由来した植 物珪酸体(以下、機動細胞珪酸体と呼ぶ)、およびこれらを含む珪化組織片を近藤・佐瀬 (1986)の分類に基づいて同定し、計数する。

結果は、検出された種類とその個数の一覧表で示す。

3. 結果

結果を表1に示す。いずれの試料からも、植物体の混入を示唆する珪化組織片は認められない。また、検出された植物珪酸体の保存状態は悪く、表面に多数の小孔(溶食痕)が見られる。 試料番号2(D-6V 5193)では、植物珪酸体が全く認められない。

検出された種類数と個数が多い試料は,試料番号3 (F-5V 4387) である。タケ亜科やス スキ属,ヨシ属などの短細胞珪酸体あるいは機動細胞珪酸体が認められる。また,イネ科起源 の他に樹木起源珪酸体の第Ⅲグループ(近藤・ピアスン,1981) も検出される。

試料番号1 (F-4V 2285), 試料番号4 (N-12Ⅲ 365), 試料番号5 (B-11V 12) ではタ ケ亜科やウシクサ族の機動細胞珪酸体, 種類不明の短細胞珪酸体や機動細胞珪酸体がわずかに 認められる。

4. 考察

今回調査した縄文時代草創期とされる土器からは、植物珪酸体がわずかに認められた。実験 的に土器を焼成した調査によると、材料土壌に包含されていた植物珪酸体は被熱後も胎土中に ほとんど残り、その産状は材料土壌の由来を反映する傾向が見られる(辻本・伊藤、1995)。 今回検出された植物珪酸体の保存状態は悪かったが,前述の調査例を考慮すれば被熱により溶 解し,消失した可能性は低い。

また,植物体の混入を示唆する珪化組織片が見られないため,胎土を調整するために混ぜる 混和材としてイネ科の植物体が用いられた可能性は低い。

なお、土器胎土中の植物珪酸体を調べ、栽培に関する情報が得られている事例がある(例え ば藤原、1981)。今回の土器胎土からは栽培種を含むキビ類やイネ属が検出されないため、製 作過程において耕作地の土壌や栽培植物の植物体は混入していないと思われる。したがって、 今回の結果から遺跡周辺の農耕について検討することは難しい。当該期の農耕や古植生につい ては、今後さらに周辺の堆積物について植物珪酸体の産状を調査するとともに、花粉化石や種 実遺体の産状も調査し、総合的に検討したい。

調査した土器胎土のうち、試料番号3(F-5V 4387)は植物珪酸体の産状が他の試料と異なり、検出された種類や個数が多かった。検出されたタケ亜科は、比較的乾いた場所に生育することの多い種類である。またヨシ属は、湿潤な場所に生育する種類である。鹿児島県内でも、縄文時代早期、弥生時代、古墳時代の土器胎土からは周辺に生育したと思われるイネ科に由来する植物珪酸体が検出されている(パリノ・サーヴェイ株式会社、未公表)。そのため、土器胎土中から検出されたタケ亜科やウシクサ族(ススキ属)は、おそらく素地に本来包含されていたものと思われる。試料番号3(F-5V 4387)の土器胎土の材料となった土壌は乾いた場所や湿潤な場所から持ち込まれた可能性が考えられる。また、樹木起源珪酸体第Ⅲグループもわずかに検出された。九州・沖縄地方では樹木起源珪酸体の第Ⅲグループが表層あるいは埋没土壌中に特徴的に認められ、その給源としてイスノキ属が想定されている(近藤、1976)。九州南部では霧島御池軽石(約4200年前)以降の土層から、イスノキ属やクスノキ科などを含む照葉樹林に由来する植物珪酸体が認められている(杉山、1999)。そのため、胎土の材料となった土壌とともに樹木起源珪酸体が混入したと考えられる。

試料番号3以外の土器胎土には,植物珪酸体が全く認められなかった,あるいは認められて も検出した種類や個数が少なかった。この中には,搬入された可能性が指摘される試料番号1 (F-4V 2285)と5(B-11V 12)も含まれる。このグループでは,前述のような場所で形成 された土壌の混和が少なかった可能性が考えられる。その要因は,今回の植物珪酸体の産状か らでは明確にならない。胎土の由来や混和材,製作技法に関する情報を得る上で,今後さらに 胎土中の砂分について鉱物分析を実施し,胎土の材料が採取された地質学的背景も考慮するこ とが望まれる。

引用文献

- 藤原 宏志, 1981, プラント・オパール分析法の基礎的研究(4)-熊本地方における縄文土器 胎土に含まれるプラント・オパールの検出-,考古学と自然科学, 14,55-66.
- 近藤 錬三, 1976, 樹木起源の珪酸体について. ペドロジスト, 20,176-189.
- 近藤 錬三・ピアスン 友子, 1981, 樹木葉のケイ酸体に関する研究(第2報) 双子葉被子 植物樹木葉の植物ケイ酸体について.帯広畜産大学研究報告, 12,217-229.
- 近藤 錬三・佐瀬 隆, 1986, 植物珪酸体分析, その特性と応用. 第四紀研究, 25,31-64.
- 杉山 真二, 1999, 植物珪酸体分析からみた最終氷期以降の九州南部における照葉樹林発達 史. 第四紀研究, 38,109-123.
- 辻本 崇夫・伊藤 良永,1995,市兵衛谷遺跡第II群土器の製作技術について-分析調査結果の解釈から-. 綾瀬市埋蔵文化財調査報告4「市兵衛谷遺跡・新道遺跡-綾瀬市における縄 文早期遺跡の研究-」,綾瀬市教育委員会,108-125.

図版1 植物珪酸体

- 1. タケ亜科短細胞珪酸体(F-5 V;4387)
- 3. タケ亜科機動細胞珪酸体(F-5 V;4387)
- 5. ウシクサ族機動細胞珪酸体(F-4 V;2285)

2. ススキ属短細胞珪酸体(F-5 V;4387)

- 4. ヨシ属機動細胞珪酸体(F-5 V;4387)
- 6. 樹木起源第Ⅲグループ(B-11 V;12)

表1. 土器胎土試料の植物珪酸体	分析結果			※(報告書	雪番号)
	1 (127)	2 (115)	3 (43)	4 (44)	5 (27)
	F-4 V	D-6V	F-5V	N-12Ⅲ	B-11V
種類	2285	5193	4387	365	12
イネ科葉部短細胞珪酸体					
タケ亜科	-	-	8	-	-
ウシクサ族ススキ属	-	-	4	-	-
不明キビ型	-	-	4	-	-
不明ヒゲシバ型	-	-	4	-	1
不明ダンチク型	1	-	15	-	2
イネ科葉身機動細胞珪酸体					
タケ亜科	10	-	8	-	2
ヨシ属	-	-	3	-	-
ウシクサ族	2	-	-	-	-
不明	5	-	16	3	3
合 計					
イネ科葉部短細胞珪酸体	1	0	35	0	3
イネ科葉身機動細胞珪酸体	17	0	27	3	5
総計	18	0	62	3	8
樹木起源					
第Ⅲグループ	2	-	3	-	2

平成17年度 鹿児島県三角山 I 遺跡出土土器付着物の¹⁴C年代測定

小林謙一11・尾嵜大真11・新免歳靖11・遠部慎11・松崎浩之21

1) 国立歴史民俗博物館

2) 東京大学原子力研究総合センター・タンデム加速器研究部門

鹿児島県三角山 I 遺跡出土縄文時代土器付着物の¹⁴C年代測定を試みた。試料は,鹿児島県立 埋蔵文化財センターにおいて,小林が,藤尾慎一郎とともに伺った際に,土器から採取した。 49個体の土器の内外面の付着物について採取し,状態がよいと観察された33試料について試料 処理したが,結果的に炭素量不足のもの・状況の不良なものが多く,4個体について炭素14年 代測定できた。

試料については、一覧を表1に付す。

1 炭化物の処理

試料については,以下の手順で試料処理を行った。(1)の作業は,国立歴史民俗博物館の 年代測定資料実験室において新免・遠部,(2)(3)は,尾嵜が行った。

(1) 前処理:酸・アルカリ・酸による化学洗浄(AAA処理)。

AAA処理は、土器付着物については、アセトンに浸け振とうし、油分など汚染の可能性の ある不純物を溶解させ除去した(2回)。AAA処理として、80℃、各1時間で、希塩酸溶液 (2N-HCl)で岩石などに含まれる炭酸カルシウム等を除去(2回)し、さらにアルカリ溶液 (NaOH、1回目0.001N、2回目以降0.01N、5回目以降0.1N)でフミン酸等を除去する。 5~6回行い、ほとんど着色がなくなったことを確認した。さらに酸処理(12時間)を行 い中和後、水により洗浄した(4回)。

試料の重量について、AAA前処理を行った量(処理量),処理後回収した量(回収量),二 酸化炭素化精製に供した量(精製量),二酸化炭素の炭素相当量をmg単位で、処理した量に 対するAAA処理後に回収された試料の重量による重量比(含有率1),二酸化炭素に精製し た際の炭素含有率(含有率2),含有率1と2を掛けて処理した量に対する炭素量の重量比 (含有率3)を%で、表2に記す。今回測定できた試料は、炭素含有率2が50~60%と高い 炭素含有率であり、良好な年代測定用試料ということができる。

(2) 二酸化炭素化と精製:酸化銅により試料を酸化(二酸化炭素化),真空ラインを用いて不 純物を除去。

AAA処理の済んだ乾燥試料を、500mgの酸化銅とともに石英ガラス管に投じ、真空に引い てガスバーナーで封じ切った。このガラス管を電気炉で850℃で3時間加熱して試料を完全 に燃焼させた。得られた二酸化炭素には水などの不純物が混在しているので、ガラス真空ラ インを用いてこれを分離・精製した。

(3) グラファイト化:鉄(またはコバルト)触媒のもとで水素還元しグラファイト炭素に転換。アルミ製カソードに充填。

1.5mgのグラファイトに相当する二酸化炭素を分取し、水素ガスとともに石英ガラス管に 封じた。これを電気炉で650℃で12時間加熱してグラファイトを得た。管にはあらかじめ 触媒となる鉄粉が投じてあり、グラファイトはこの鉄粉の周囲に析出する。グラファイトは 鉄粉とよく混合した後、穴径1mmのアルミニウム製カソードに600Nの圧力で充填した。

2 測定結果と暦年較正

AMSによる¹⁴C測定は、同時に調製した標準試料とともに、東京大学原子力研究総合センタ ーのタンデム加速器施設(MALT,機関番号MTC)で行った。

年代データの¹⁴CBPという表示は、西暦1950年を基点にして計算した¹⁴C年代(モデル年代) であることを示す(BPまたはyr BPと記すことも多いが、本稿では¹⁴CBPとする)。¹⁴Cの半 減期は国際的に5,568年を用いて計算することになっている。誤差は測定における統計誤差 (1標準偏差,68%信頼限界)である。

AMSでは、グラファイト炭素試料の¹⁴C/¹²C比を加速器により測定する。正確な年代を得る には、試料の同位体効果を測定し補正する必要がある。同時に加速器で測定した¹³C/¹²C比によ り、¹⁴C/¹²C比に対する同位体効果を調べ補正する。¹³C/¹²C比は、標準体(古生物belemnite化 石の炭酸カルシウムの¹³C/¹²C比)偏差値に対する千分率δ¹³C(パーミル、‰)で示され、こ の値を-25‰に規格化して得られる¹⁴C/¹²C比によって補正する。補正した¹⁴C/¹²C比から、¹⁴C 年代値(モデル年代)が得られる(英語表記ではConventional Ageとされることが多い)。δ ¹³C値については、前処理後の残余試料を(㈱明光通商に委託し、安定質量分析計でδ¹³C値を測 定した。

測定値を較正曲線INTCAL04 (暦年代と炭素14年代を暦年代に修正するためのデータベース,2004年版) (Reimer.,et.al. 2004) と比較することによって実年代 (暦年代) を推定できる。両者に統計誤差があるため,統計数理的に扱う方がより正確に年代を表現できる。すなわち,測定値と較正曲線データベースとの一致の度合いを確率で示すことにより,暦年代の推定値確率分布として表す。暦年較正プログラムは,OxCal Programに準じた方法で作成したプログラムを用いている。統計誤差は2標準偏差に相当する,95%信頼限界で計算した。年代は,較正された西暦 cal BCで示す。()内は推定確率である。図は,各試料の暦年較正の確率分布である。

3 年代的考察

δ¹³C値についてみると, KAMB3は-27.1‰, KAMB6は-25.3‰, KAMB20は-25.8‰, KAMB41は-24.8‰と, 4試料とも-25‰~-27‰で, 陸生のC3植物に起源があると推測できる。

暦年較正年代についてみていくと、もっとも新しい縄文前期曽畑式土器付着物である KAMB3は、紀元前3965-3770年に含まれる可能性が95%である。筆者らのこれまでの測定 (今村ほか2004)からみると、縄文前期後葉の時期ととらえられる。

縄文前期轟B式土器付着物であるKAMB6は、紀元前4720-4515年に含まれる可能性が 94%である。筆者らのこれまでの測定(今村ほか2004)からみると、縄文前期前葉の時期と とらえられる。

縄文早期初頭の岩本式土器付着物であるKAMB20は、紀元前9460-9250年に含まれる可 能性が84%である。筆者らのこれまでの測定(小林ほか2004)からみると、縄文早期初頭 (または草創期後葉)の関東地方撚糸文式土器のはじめ頃の時期ととらえられる。

縄文草創期土器付着物であるKAMB41は,紀元前12140-11830年に含まれる可能性が 95%である。筆者らのこれまでの測定(小林ほか2004)からみると,縄文草創期後葉の隆線 文土器の時期ととらえられる。

この分析は、平成17年度科学研究費補助金(学術創成研究)「弥生農耕の起源と東アジア炭 素年代測定による高精度編年体系の構築—」(研究代表 西本豊弘)および国立歴史民俗博物 館平成17年度基盤研究「高精度年代測定法の活用による歴史資料の総合的研究」(研究代表今 村峯雄)の成果を用いている。

本稿を草するにあたり、暦年校正については今村峯雄氏のご教示を得た。感謝します。

<参考文献>

- 今村峯雄2004『課題番号13308009基盤研究 (A・1)(一般) 縄文弥生時代の高精度年代体系の構築』(代表今村峯雄)
- 小林謙一・西本豊弘2003「年代がわかると歴史観が変わる・2」 『歴史を探る サイエンス』 国立歴史民俗博物館, pp.1-64
- Reimer, Paula J.; Baillie, Mike G.L.; Bard, Edouard; Bayliss, Alex; Beck, J Warren; Bertrand, Chanda J.H.; Blackwell, Paul G.; Buck, Caitlin E.; Burr, George S.; Cutler, Kirsten B.; Damon, Paul E.; Edwards, R Lawrence; Fairbanks, Richard G.; Friedrich, Michael; Guilderson, Thomas P.; Hogg, Alan G.; Hughen, Konrad A.; Kromer, Bernd; McCormac, Gerry; Manning, Sturt; Ramsey, Christopher Bronk; Reimer, Ron W.; Remmele, Sabine; Southon, John R.; Stuiver, Minze; Talamo, Sahra; Taylor, F.W.; van der Plicht, Johannes; Weyhenmeyer, Constanze E. 2004 IntCal04 Terrestrial Radiocarbon Age Calibration, 0-26 Cal Kyr BP *Radiocarbon* 46(3), 1029-1058(30).
- M. Sakamoto et al. 2002 An Automated AAA preparation system for AMS radiocarbon daging. *Nuclear Instruments and Methods in Physics Research* B 223-224: 298-301.

1 KAMB 3 (590)口縁部外面付着状態

3 KAMB20 (6) 胴部外面付着状態

